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Abstract

This paper analyzes the improvements that can be

gained in object recognition through the use of sim-

ple, imperfect grouping techniques. We consider, in

particular, the pose clustering method of object recog-

nition. Simple grouping techniques are described that

determine pairs of points that are connected in the im-

age edge map. We show that such grouping techniques

can considerably improve both the speed and accuracy

of object recognition. Experiments are described that

demonstrate the improvements in performance.

1 Introduction

Object recognition methods for complex problems
have been plagued by poor speed and accuracy. The
primary cause of both of these problems is image clut-
ter. Such clutter requires considerable computation
to process and causes false positives to be found. So-
lutions to these problems have been only partially
successful. Two methods that have been useful are
grouping and indexing. Grouping methods attempt
to determine which features in an image are part of a
single object. Indexing methods determine which sets
of model features may match these sets of image fea-
tures. These methods can be powerful when they are
used together [2].

Many studies have analyzed the power of indexing,
by itself, as a means to reduce the search space for
object recognition [2, 6, 9, 11, 15]. It has been demon-
strated that, when we attempt to recognize objects in
the presence of noise, feature indexing systems index,
on average, a constant fraction of all of the possible
matches for a particular set of image features. Index-
ing thus does not reduce the computational complex-
ity of recognition in the presence of noise.

Grouping, on the other hand, can reduce the com-
putational complexity of object recognition. Grimson
[5] has shown that the performance of a particular con-
strained search system is exponential in the problem
size if we have spurious features, but it is low-order
polynomial if the data is known to have all come from
a single object. Of course, the requirement that all of
the data comes from a single object implies the need
for a perfect grouping system, unless we limit ourselves
to very simple problems. This paper shows that even
simple, imperfect grouping techniques can improve the
computational complexity of object recognition. In
addition, such grouping can considerably improve the
accuracy of recognition by decreasing the false alarm
rate.

Many cues have been used to perform grouping of
image features. Some of the examples include paral-
lelism, proximity, colinearity, connectivity, convexity,
symmetry, and closure. This paper will consider only
simple grouping mechanisms that �nd pairs of points
that are likely to belong the same object. While prox-
imity, or even color or texture, can provide such infor-
mation, we concentrate on using connectivity of fea-
ture points in the image edge map.

We use these grouping techniques to improve the
pose clustering method described in [13], which recog-
nizes three-dimensional objects from a single view in
two-dimensional images. A detailed analysis is given
to determine the complexity and accuracy of the sys-
tem when these grouping techniques are used. A com-
parison against the analysis for the case where group-
ing is not used indicates that grouping substantially
improves the system in both regards.

The following section will describe the pose cluster-
ing method of object recognition and the framework
that will be used in this paper. Section 3 will dis-
cuss the methods used to perform grouping. We will
then discuss the computational complexity and accu-
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Function recognize(input: model-points, image-points)
Repeat:
Choose two random image points, �1 and �2.
For all pairs of model points, �1 and �2:
For all point matches, (�3; �3):
Determine the poses aligning the group
match,  = f(�1; �1); (�2; �2); (�3; �3)g.

Find and output clusters among these poses.
End

Figure 1: E�cient pose clustering algorithm.

racy achieved when using grouping in Sections 4 and
5, respectively. Section 6 describes experiments that
were performed using this system on real images. Fi-
nally, Section 7 summarizes the paper.

2 Recognition framework

Pose clustering is an object recognition technique
based on the generalized Hough transform [1]. The
key is that the pose of an object can be determined (al-
most) uniquely from a small set of feature matches be-
tween the model and the image. For the case of three-
dimensional object feature points and two-dimensional
image feature points, the number of matches that are
required is three [3, 10]. The correct matches should
yield poses close to the correct pose of the object. If
we determine the poses corresponding to all possible
matches (since we don't know which are correct in ad-
vance), then a large cluster in the pose space indicates
the likely position of the object. But, for the problem
of recognizing three-dimensional objects from inten-
sity images, there are O(m3n3) such matches, where
m is the number of model points and n is the number
of image points.

We have previously shown that if the clustering op-
eration �nds exactly those poses that bring some num-
ber of matches between sets of model and image points
into alignment up to some error criterion, then pose
clustering has optimal accuracy for point matching
[13]. Approximate algorithms that do not achieve op-
timality are used for e�ciency reasons. We have also
shown that the computational complexity of pose clus-
tering can be reduced to O(mn3) and that the space
e�ciency can be improved through the use of decom-
position and randomization techniques. A summary
of this system follows.

Figure 1 gives the algorithm that is used in [13].
This algorithm considers subproblems where a pair of

distinguished points, (�1; �2), are selected that must be
correct model points for the algorithm to succeed. If
we consider each possible pair of distinguished points,
this algorithm would perform essentially equivalently
to the conventional pose clustering method. This
would require O(m3n3) time. Randomization is used
to reduce the number of pairs of distinguished points

that we need to examine to approximately n2

(fm)2 ln
1
�
,

where f is the minimum fraction of the object that we
require to appear in the image to recognize it and � is
the error rate that we allow. We then consider each
of the 2m(m � 1) permutations of possibly matching
model points, (�1; �2). For each of these, we determine
the poses aligning the matches (�1; �1), (�2; �2) and
each of the (m � 2)(n � 2) additional point matches,

(�3; �3). Approximately n2(n�2)(m�2)
f2

ln 1
�
poses are

computed overall. Since the clustering step is per-
formed in linear time using recursive histograming
techniques, the overall time required by this algorithm
is O(mn3).

An error analysis [12] showed that the probability
that a bin in the pose space yields a false positive of
size K through the random accumulation of feature
points is approximately:

p �

�
bmn

1 + bmn

�K

where b is the average fraction of pose space that
brings a model point into alignment with an image
point up to some error criterion. If we set our recogni-
tion threshold toK = fm, then the most image points
that we can tolerate with false alarm rate  is:

n �
f

b ln 1


3 A simple grouping mechanism

Grouping image features into sets that are likely
to come from the same object can considerably im-
prove the speed and quality of object recognition. It
is possible for such techniques to not only distinguish
points that may come from the same object, but also
to reduce the search within a single object, by only
producing certain subsets of features among all possi-
bilities.

This work uses a simple grouping mechanism to
determine which pairs of feature points are likely to
belong to the same object. The criterion used to de-
termine whether two feature points should be grouped
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(a) (b)

(c) (d)

Figure 2: The grouping process. (a) The corners in the original image. (b) The edges of the original image.
(c) The lines detected in the edge image using Hough transform techniques. (d) The groups detected in the
image.

is whether they are connected1 in the image edge
map. Since the objects used in these experiments
were largely polyhedral, we used the heuristic that the
edges connecting the feature points should be straight.
Of course, this is not necessary for correct group-
ing operation. A second heuristic, requiring that the
points be some minimum distance apart to form a
group, was used for two reasons. First, this excluded
many unmodeled groups that were formed due to ar-
eas of high image texture. Second, groups that are
close together produce unstable results in the pose es-
timation method and are thus unlikely to be useful in
any case.

The �rst step in the grouping process is to deter-
mine the feature points in the image. A fast interest
operator [4] is used detect corner points in the image.
Next, the edges are detected. Straight lines in the
edge map are determined using the Hough transform
techniques described in [14]. Finally, the corners that

1We use this term loosely. A method is used that allows
small gaps between colinear edges to be bridged.

lay close to the straight lines are detected and groups
formed.

Figure 2 shows an example of the grouping process
on an image of a stapler. In this case, 38 groups were
found involving 34 of the 63 image feature points.

4 Computational Complexity

Let's now consider the computational complexity of
object recognition using pose clustering when group-
ing is used to determine which pairs of distinguished
points to use.

The number of groups found by grouping systems
is typically linear in the number of image points. For
grouping based on connectivity in the edge map, we
are guaranteed a linear number of such groups if we
have polyhedral objects. Let's thus assume we have
�in image groups and �mm model groups. (For trihe-
dral objects, we have 1

2 � �i �
3
2 and 1

2 � �m � 3
2 , if

we eliminate points from consideration if they are not
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part of one the groups.)
If f is the fraction of the model points appearing

in the image, then the expected fraction of correct
groups appearing in the image is at least f2. The
actual fraction should be larger, since pairs of points
that are grouped are more likely to be either both
occluded or unoccluded than random pairs of points.
The probability that k trials will be unsuccessful is
then:

p �

�
1�

f2�mm

�in

�k

since there are expected to be f2�mm correct model
groups among the �in image groups.

We can set this probability to be less than some
arbitrarily small constant � and solve for the number
of trials necessary to achieve this accuracy:

�
1�

f2�mm

�in

�k
� �

k �
ln �

ln 1� f2�mm

�in

�
�in

f2�mm
ln

1

�

For each image group, we consider each of the
model groups as a possible match. For each such
match, we then determine and cluster the poses cor-
responding to all of the matches between three image
points and three model points that match the image
group to the model group. This yields an O(mn2)
algorithm. The number of poses computed is approxi-

mately �in(n�2)(m�2)
f2

ln 1
�
, a speedup of approximately

n
�i

over the version that did not use grouping to select
good distinguished points.

5 Accuracy

This section will consider the probability that a
false positive will be found when using these imperfect
grouping techniques and compare it with the proba-
bility when no grouping techniques are used.

Previous work [7, 8, 12] has used the Bose-Einstein
occupancy model to estimate the probability of �nd-
ing a false positive at some point in pose space in
various recognition problems. This analysis can be
modi�ed for the case at hand by considering the prob-
ability that points in pose space are both consistent
with a match between grouped features and consistent
with su�cient additional matches to result in a false
positive. If the locations of the individual model and
image features are independent then these two proba-
bilities are also independent. So, we can compute the

probability, PfpK , of a false positive of size K at some
point in pose space as the product of the probability,
Pg, that the pose is compatible with one of the group
matches of size 2 and the probability, PrK�2 , that the
remaining matches accumulate to a random match of
size K � 2.

PfpK = PgPrK�2

First consider Pg. Let's approximate the probabil-
ity distribution of poses such that the distribution of
transformed model features is uniform in the image.
This implies that the probability, P1, that a pose will
bring a pair of model features into alignment with a
pair of image features to within an error of � is:

P1 =

�
��2

WH

�2

where W and H are the width and height of the image
in pixels.

If there are �in image groups and �mm model
groups then we have:

Pg � (1� (1� P1)
�m�imn) �

�m�imn�
2�4

W 2H2

Now we must consider whether K � 2 additional
matches are brought into alignment by the pose. Pre-
vious work [12] has indicated that this can be approx-
imated by

p �

�
bmn

1 + bmn

�x
where b � ��2

WH
is the fraction of pose space aligning

a single model and image point and x = K � 2 is the
size of the false positive. We thus have:

PrK�2 �

 
mn

WH
��2

+mn

!K�2

And:

PfpK �

 
mn

WH
��2

+mn

!K�2
�m�imn�

2�4

W 2H2

Table 1 gives a comparison of the estimated prob-
ability of a false positive for a problem with m = 30,
n = 150 and WH = 65536 for the case with no
grouping and the case with grouping. The probabil-
ity of a false positive is much lower when grouping
is used. False positives should occur approximately
230 times more frequently when grouping is not used
for � = 3 and approximately 49 times more frequently
when � = 5.
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No grouping Grouping
f � = 3 � = 5 � = 3 � = 5
1:0 3:86 � 10�6 6:08 � 10�3 1:67 � 10�8 1:24 � 10�4

:75 8:74 � 10�5 2:18 � 10�2 3:77 � 10�7 4:45 � 10�4

:50 1:97 � 10�3 7:80 � 10�2 8:50 � 10�6 1:59 � 10�3

Table 1: The estimated probability of a false positive
for the case with no grouping and with grouping. For
this problem: m = 30, n = 150, WH = 65536, �i =
�m = 1:5.

Figure 3: The recognized position of the stapler.

6 Experiments

This system has been tested on several of the same
images as the original pose clustering system [13] to
verify the improved performance. Figure 3 shows the
recognized position of the stapler from Figure 2. Fig-
ure 4 gives an additional example of the recognition
process.

The running time of the recognition algorithm on
these examples was between 6 and 10 minutes per ob-
ject on a Sparc-5, depending on the complexity of
the object model and image. The previous imple-
mentation required several hours to run on a Sparc-
10. This improvement is not solely due to grouping,
an improvement in the implementation also yielded
a speedup. A better comparison to determine the
speedup gained is the number of poses that were com-
puted and clustered in each case. Table 1 gives these
numbers for the objects recognized in Figure 4. When
using grouping, the system examines less than 1% of
the poses examined when grouping is not used in these
cases.

No signi�cant false positives were found when the
grouping techniques were used. Some instances oc-

object Nng Ng
Nng
Ng

widget 2:56 � 108 2:52 � 106 101.5
plane 3:70 � 108 3:54 � 106 104.7
hammer 2:56 � 108 2:52 � 106 101.5
person 2:11 � 108 2:09 � 106 100.9

Table 2: Number of poses computed with no grouping
(Nng) and with grouping (Ng).

curred where a correct group match produced hy-
potheses that included several correct and incorrect
feature matches, but the same groups produced bet-
ter matches involving predominantly correct matches.

7 Summary

This paper has shown that even simple, imperfect
grouping techniques can yield a considerable improve-
ment in both the speed and accuracy of object recog-
nition. Grouping techniques based on connectivity in
the edge map were used to improve the pose cluster-
ing method of object recognition. The grouping tech-
niques reduced the computational complexity of the
algorithm and experiments validated that the running
time was reduced considerably in practice. Further-
more, the analysis indicates that the rate of false pos-
itives is considerably reduced through the use of these
techniques.
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