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Abstract

This paper describes techniques to perform e�cient

and accurate recognition in di�cult domains by match-

ing dense, oriented edge pixels. We model three-

dimensional objects as the set of two-dimensional

views of the object. Translation, rotation, and scal-

ing of the views are allowed to approximate full three-

dimensional motion. A modi�ed Hausdor� measure is

used to determine which transformations of each ob-

ject model are reported as matches. The use of dense,

oriented edge pixels allows us to achieve a low rate of

false positives. Techniques to prune the search space

are used to obtain a system that is e�cient in practice.

We give results of the system recognizing object views

in intensity and infrared images.

1 Introduction

Much recent work on object recognition has focused
on matching sparse feature points in the object model
and in the image. Analysis has shown that relying on
such feature points implies that false positives will oc-
cur in images with moderate complexity [4, 5, 6, 9].
In addition, many objects are di�cult to model by
sparse feature points and these points can be di�cult
to locate robustly in images. Recent work has investi-
gated matching dense edge maps using the Hausdor�
distance [7, 8]. Since this representation retains more
information from the object, false positives are less
likely.

For some applications, we have small object mod-
els and/or complex images, and even the use of dense
edge maps is not su�cient to rule out false positives
reliably. This paper discusses techniques to improve
matching performance by using additional local infor-
mation. In particular, we consider matching dense
pixels with associated orientations. The use of such
information reduces the number and size of false posi-

tives considerably. Analysis that determines the prob-
ability that a false positive will be found when using
these techniques can be found in [10]. This informa-
tion can also improve the speed of such recognition
tasks by helping to prune the search space.

We use matching techniques that �nd close matches
between sets of dense, two-dimensional points, yet
we are interested in detecting objects with consid-
erable three-dimensional structure. To accomplish
this, we consider two-dimensional views of the three-
dimensional objects from multiple viewpoints and
match the object views to the images. Our search
strategy explicitly models two-dimensional translation
and rotation, and scaling of the object.

In the next section, we will describe how we mea-
sure the quality of a match between the object model
and the image. This measure is a modi�cation of the
Hausdor� distance that allows orientation information
to be included in a natural manner. We will then de-
scribe, in Section 3, our search strategy to e�ciently
�nd positions of object models composed of dense, ori-
ented edge pixels that align closely with the image.
Section 4 discusses the performance of the system, in
terms of both speed and accuracy. Finally, Section 5
summarizes the paper.

2 Matching dense, oriented edge pixels

The directed Hausdor� distance between two point
sets, M and I, is:

h(M; I) = max
m2M

min
i2I

km � ik

where k � k is any norm. This yields the maximum
distance of a point in set M to its nearest point in set
I. In the context of object recognition, the Hausdor�
distance is used to measure the quality of a match
between an object model and an image. IfM is the set
of (transformed) object model points and I is the set
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Figure 1: An example showing where false positives occur in practice due to dense edge pixels. (a) A FLIR image
after histogram equalization. (b) The edges found in the original image. (c) An object view. (d) A false positive
matching the entire object model to image pixels with � = 1.

of image edge points, the directed Hausdor� distance
measures the distance of the worst matching object
point to its closest image point. Of course, due to
occlusion, we cannot assume that each object point
appears in the image. We are thus interested in the
partial distance between these sets, given by:

hK(M; I) = Kth

m2M
min
i2I

km � ik (1)

This measures the Hausdor� distance among the K
object points that are closest to image points. We can
set K to be the minimumnumber of object points that
we expect to �nd in the image if the object model is
present or we can set K such that the probability of a
false positive match occurring at random is small.

Typically, we are interested in whether there ex-
ists a match of size K with Hausdor� distance below
some threshold, �. It is useful to conceptualize this
as a set containment problem. Let S1 � S2 denote
the Minkowski sum of sets S1 and S2. The statement
h(M; I) < � is equivalent to M � (I � E�), where E�

is the area in the image that could match an object
point at the origin.

E� = fx j kxk � �g:

Similarly, hK(M; I) < � and jM \ (I � E�)j � K

are equivalent, where j�j denotes cardinality.
One method of determining whether a match of size

K exists is to dilate I by E� and probe the result at
each of the points in M . Each time the probe hits a
point in the dilated image, a match has been found.
We simply sum these matches and determine if the
result surpasses K.

When we have a combination of a small set of ob-
ject features and a complex image, this measure can
still yield a considerable number of false positives, par-
ticularly when the transformation space is large. Fig-
ure 1 shows a case where examining the directed Haus-
dor� distance might lead us to believe that a match
is present where it is not in FLIR (Forward Looking
Infra-Red) imagery. The dense edges caused by the
texture at some locations in the image can lead to
false positive object model matches. These problems
can be solved, in part, by using orientation informa-
tion in addition to spatial information in determining
the proximity between points in the transformed ob-
ject model and the image.

We can generalize the Hausdor� distance to use ori-
entations by considering each edge point, in both the
object model and the image, to be a vector in IR3:

p =

2
4 px

py
po

3
5

where (px; py) is the location of the point and po is
the direction of the gradient at the point. Typically,
we are concerned with edge points on a pixel grid and,
thus, the x and y values fall into discrete sets. We can
map the orientations into a discrete set in a similar
manner. Let's call a set of image points that have
been extended in this fashion an oriented image edge

map, Io, and similarly, let's call a such an extended set
of points in the object model an oriented model edge

map, Mo.
We now need a measure to determine the distance

between pixels in these oriented edge maps. Among
pixels with the same orientation, we would like the
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distance to reduce to the previous Hausdor� distance.
Furthermore, the previous distance should be a lower
bound on the new distance. One measure that ful�lls
these conditions is:

h�(M;I) = max
m2M

min
i2I

max

�����
����
�
mx � ix

my � iy

�����
���� ; jmo � ioj

�

�

This has the same general form as the previous
Hausdor� measure, but we now measure the distance
between two points by taking the maximumof the dis-
tances in translation and orientation. In this measure,
� is a normalization factor that makes the orientation
values comparable with the spatial values.

Requiring a match to have h�(M; I) � � constrains
the matching points to be close both spatially and
in orientation. We can set the parameters � and �

arbitrarily to adjust the required proximities. Partial
distances can also be computed as in Equation 1.

Considering this as a set containment problem
yields the following as the error volume with which
we must dilate Io prior to probing:

E�;� =

�
t j

����
����
�
tx
ty

�����
���� � �; jtoj � ��

�
:

If we choose the discretized orientations such that
� = 1 and use the L1 norm, this simpli�es to:

E� = ft j ktk1 � �g:

We can now probe Io �E at the transformed loca-
tions of the pixels in the oriented model edge map to
determine if a match is present.

3 Search Strategy

Recent work has shown that e�cient approximate
methods can be formulated to compute the minimum
Hausdor� distance between sets of points by discretiz-
ing the space of possible transformations of the model
points. We'll discuss how such methods work in gen-
eral before describing the extension to oriented points.

Chamfer matching [1, 3] is an edge matching tech-
nique that minimizes the sum of the distances from
each object edge point to its closest image edge
point. This technique is closely related to minimiz-
ing the generalized Hausdor� measure, which instead
selects the Kth largest of these minimum distances.
Paglieroni [11, 12] considered methods to speed up
chamfer matching by probing a distance transform of
the image at the transformed object edge points. The

distance transformmeasures the distance of each loca-
tion in the image from an edge point and can be com-
puted e�ciently using a two-pass algorithm [13, 2, 11].
If the sum of the distance transform probes of each
of the object points at some transformation is large
enough, then we can rule out not only the current
transformation, but also many transformations close
to it.

Huttenlocher and Rucklidge [7, 8, 14] use similar
techniques in conjunction with Hausdor� matching.
We now consider the distance transform of the dilated
image. If the Kth largest probe into this distance
transform is 0, then we have found a match of size K.
Otherwise, the Kth largest probe yields the distance
to the closest possible position of the object model
that could produce a match of size K.

Let's consider which transformations this allows us
to rule out. To do this we must �rst decide how the
transformation space will be discretized. To ensure
that we do not miss any good matches, we discretize
the transformation space such that two adjacent trans-
formations move any object pixel by at most 1 pixel
(Euclidean distance). Note that if we want the coars-
est possible discretization that maintains this prop-
erty, the discretization will be dependent upon the
object model being considered. Now, if d is the value
of the Kth largest probe, we can rule out any trans-
formation that does not map any object pixel to an
image location that is at least distance d from where
the current transformation maps it1.

Now, since our oriented object and image points
are three-dimensional vectors, we require a three-
dimensional distance transform, but there is a ques-
tion as to how the distance should be measured in the
orientation direction. We would like treat each orien-
tation plane independently, but since rotations of the
object model may change the orientation of some ob-
ject pixels, we cannot do this if we wish to rule out
neighboring transformations that vary in rotation. To
avoid this problem, we treat each rotation of the ob-
ject model independently (essentially as separate ob-
ject models). Now, since none of the transformations
we would like to rule out change the orientation of
the object model, we can treat each of the orientation
planes of the distance transform independently.

Using the techniques described above, we can now
formulate an algorithm to perform e�cient recogni-
tion. We simply start at some location in the dis-

1This certainly includes all transformations within a city-
block distance of d� 1 of the current transformation in the dis-
cretized transformation space, but usually includes more trans-
formations depending on the Lp norm used and the transfor-
mation space.
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Figure 2: A snake-like search strategy is used.

cretized transformation space and probe the distance
transform at the locations of the transformed object
pixels. The results of these probes allow us to rule
out some subset of the transformation space. We then
proceed to the next transformation (in some ordering)
that has not been ruled out and repeat this process,
until each transformation has either been probed or
ruled out.

The ordering that we use to examine transforma-
tions in the translation+scale space is snake-like, in
an e�ort to do few probes. See Figure 2. Each time
a discrete transformation is examined, irrespective of
whether it is probed or it is ruled out by a previous
probe, the local bound on the distance to closest pos-
sible transformation that could produce a match is
decremented and propagated to all of the neighbor-
ing transformation cells in both translation and scale.
At each of these neighbors, the propagated value is
compared against the bound already present and the
larger of the two is saved. This method of propagation
requires a map to be kept in memory of the current
bounds of all of the translations for the current scale
and the next scale. The snake-like ordering guaran-
tees that when we use this propagation technique, no
transformation is probed when it should have been
ruled out by the probe of a previous transformation.

It may possible to achieve further speedup by se-
lecting the transformations to probe in some noncon-
necting fashion to allow less probes to be performed.
(Paglieroni [11], for example, discusses a scheme to
do this in conjunction with chamfer matching.) The
disadvantages to this method are that the full propa-
gation of the bounds resulting from a probe must be
performed immediately and more storage space is re-
quired since a map of the full transformation space
must be kept in memory. Alternately, a hierarchical
cell decomposition method could be used [8, 14], but
this technique has not been explored for this system.

To reduce overhead, we use a two-level hierarchy
of transformations. For each scale and rotation, the

transformations on the translation axes are divided
into 3 � 3 blocks. At �rst, only the center of each of
these blocks is examined (in the snake-like ordering).
As long as the distance at the center of the block is
greater than one, we do not need to examine any of the
neighboring transformations. Any time the distance is
less than or equal to one, we subsequently probe the
neighbors of the transformation. We could use larger
blocks or a taller hierarchy to further reduce overhead.

4 Performance

Figure 3 shows an example of the use of these tech-
niques. The image is a low contrast infrared image
of an outdoor terrain scene. After histogram equaliza-
tion, a tank can be seen in the left-center of the image,
although, due to the low contrast, the edges of the
tank are not clearly detected. Despite the mediocre
edge image, a large match was found at the correct lo-
cation of the tank. It should be noted, however, that
this was not the only match reported. The largest
match found, in fact, was a false positive.

The current implementation of these techniques
uses 16 discrete orientations and � = � = 1 (each ori-
entation bucket thus corresponds to 2�

16
radians, but

matches are allowed in neighboring buckets, also). In
these experiments, we limited the allowable orienta-
tion and scale change of the object views to 10� and
10%, respectively.

Figure 4 shows another example in a complex in-
door scene. In this case, the object model was ex-
tracted from a frame in an image sequence and we are
matching it to a later frame in the sequence. Fig-
ure 4(d) shows the position of the object detected
when orientation information was used. No false pos-
itives were found in this case. When orientation in-
formation was not used, several false positives were
found. Figure 4(e) shows some of the false positives
that yielded larger matches than the correct position
of the object.

The use of orientation information has lowered the
size of the maximum false positive found considerably.
When orientation informationwas not used in 40 trials
with object models and images similar to those found
in Figure 3, a false positive accounting for the entire
object model was found in 36 of the 40 cases, with an
average of 99.7% of the object model accounted for by
the image. When orientation information was used in
these same trials, the largest false positive accounted
for, on average, 79.9% of the object model.

The actual running time of the system is good. The
preprocessing stage requires approximately 7 seconds
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(a) (b) (c) (d)

Figure 3: Automatic target recognition example. (a) The FLIR image after histogram equalization. (b) The
edges found in the image. (c) The largest scoring position near the correct location of the target. (d) The largest
scoring position over the entire image.

(a) (b) (c) (d) (e)

Figure 4: Image sequence example. (a) The object model. (b) Part of the image frame that the object model
was extracted from. (c) The image frame in which we are matching. (d) The position of the object located using
orientation information. No false positives were found for this case. (e) Several false positives that were found
when orientation information was not used.

on a Sparc-5 for a 256 � 256 image. This stage per-
forms the edge detection on the image, creates and di-
lates the oriented image edge map, and performs the
distance transform on each orientation plane of the
oriented image edge map. This step needs to be per-
formed only once per image. The running time per ob-
ject view varies with the size of the object model and
the matching threshold used, but we have observed
times ranging from 2 seconds to 6 seconds. See Ta-
ble 1 for some examples. Note that the largest value
observed was for a case with a large object model (95
pixels) and with a small threshold (60 pixel matches).
Most trials required less than 4 seconds per object
view.

In addition to reducing the false alarm rate, the use
of orientation information has signi�cantly improved
the speed of matching. We can see in Table 1, that, in
a small sample of the trials, the number of transfor-
mations that are probed is reduced by approximately

an order of magnitude. The running times per model
reported in Table 1 are reduced less due to overhead.

Overall, these techniques have considerably reduced
the size and number of false positives found and at the
same time reduced the number of transformations that
must be considered.

5 Summary

This paper has discussed matching techniques for
sets of dense, oriented edge pixels. The use of such
techniques allows recognition in domains that would
previously have yielded too many false positives. We
have given an extension of the Hausdor� distance that
allows the matching of sets of oriented points. Using
this measure, we have formulated a search strategy
that allows us to �nd the transformations (transla-
tion, rotation, and scale) that match some minimum
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Using orientations No orientations
Points Threshold Probes Time Biggest Probes Time Biggest

Sample 67 53 63K 3.0s 63 709K 7.8s 67
FLIR 67 60 25K 2.2s 62 350K 4.5s 67
images 95 60 160K 6.4s 65 1411K 17.9s 95

95 76 45K 3.7s -y 703K 9.7s 95
Intensity Image 123 98 39K 5.1s 99 588K 11.2s 120

y No match was found surpassing the threshold for this case.

Table 1: Performance comparison. Probes is the number of transformations of the object model that were probed
in the distance transforms and is in thousands. The time given is for matching a single object model and neglects
the image preprocessing time. Biggest is the size of the largest false positive found.

number of the object points closely to the image in
this new measure. Experiments have con�rmed that
this strategy not only produces far fewer false positive
matches, but is considerably faster than when orien-
tations are not considered.
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