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Abstract

In order to perform localization and navigation over
significant distances (up to a few kilometers), it is im-
portant to be able to accurately map the terrain to be
traversed. Local methods, such as conventional stereo,
do not scale well to large distances and prevent long-
range planning. In this paper, we discuss wide-baseline
stereo techniques for rovers. In wide-baseline stereo,
the image pair is captured with the same camera, but at
different positions of the rover. While the larger base-
line allows improved accuracy for more distant ter-
rain, stereo matching is more difficult for two reasons.
First, odometry errors result in uncertain knowledge of
the relative positions of the cameras when the images
are captured. Second, the change in perspective makes
stereo matching difficult, since image landmarks no
longer have the same appearance in both images. We
address these problems and show test results on real
images.

1 Introduction

For the robotic exploration of Mars, a key goal is
to maximize the amount of scientific data returned
during the fixed span of a mission. This means that
a rover must navigate accurately to science targets
observed in orbital images or images captured while
landing. Since communication with a rover on Mars is
usually performed only once per day, the rover must
be able to navigate to a target that it cannot see. If
the rover fails to reach the goal, an entire day of sci-
entific activity can be lost as the rover again attempts
to reach the goal. Current work on rover mapping
and localization has partially addressed this issue (for
example, [3, 5, 7, 8]).

One issue that has not, yet, been addressed is the
computation by a rover of accurate maps of terrain
many meters distant. This allows longer range plan-
ning and improved localization capabilities. Conven-
tional stereo vision can generate accurate maps for
close targets. However, the accuracy of these methods
scales poorly for distant targets, since the range error
increases with the square of the distance. One solu-
tion to this problem is to use a larger baseline (the
distance between the cameras), which improves the
accuracy of the range estimates. The obvious prob-
lem is that a rover with a limited size cannot have two
cameras with a large baseline.

We achieve an arbitrarily large baseline using two
images captured by the rover at separate positions.
While this can improve the accuracy of the range es-
timation, it introduces new problems. First, stereo
algorithms typically calibrate a stereo pair of cameras
such that the relative position and orientations of the
cameras are known to high precision. This is not pos-
sible with wide-baseline stereo, since rover odometry
errors prevent such high precision camera positioning.
Second, the change in the viewpoint for the images
makes stereo matching more difficult, since the terrain
no longer has the same appearance in both images.

Our algorithm addresses these problems and con-
sists of the following steps:

1. Motion refinement. While our method as-
sumes that an estimate of the camera positions is
available, we do not assume that this estimate is
accurate. We perform a motion refinement step in
order to refine the relative camera position. The
overall process consists of the following substeps:

(a) Feature selection. Localizable features
are first selected in one of the images using a
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Figure 1: Feature matching example. (a) Features selected in the left image. (b) Initial features matched in right image.
(c) Matched features in the left image after outlier rejection. (d) Matched features in the right image after outlier rejection.

variant of the Förstner interest operator [1].

(b) Feature matching. Matches for the se-
lected features are detected using a hierar-
chical search over the entire image.

(c) Nonlinear motion estimation. The
Levenberg-Marquardt method is used to
optimize the motion parameters with re-
spect to the image matches that have been
detected. This optimization enforces the
epipolar constraints in the stereo image pair.

2. Image rectification. In order to facilitate stereo
matching, the images are rectified so that the
epipolar lines lie along the scanlines of the image
[2].

3. Disparity calculation. Robust dense match-
ing is performed using maximum-likelihood im-
age matching techniques combined with efficient
stereo search techniques. Subpixel disparities are
computed by fitting the likelihood surface.

4. Triangulation. Once image disparities have
been computed, triangulation is performed to de-
termine the three-dimensional position of each of
the image pixels.

The remainder of this paper describes each of these
steps and shows results using this methodology.

2 Feature selection and matching

In order to refine the motion estimate between the
two camera positions, we first detect interest points in
one image and find the corresponding matches in the
second image. The initial evaluation of each location
in the first image is conducted using the Förstner in-
terest operator [1]. This operator scores each pixel
based on the strength of the gradients in a region
around the pixel. For a pixel to score highly, it must
have both strong local gradients in the image and
isotropy of the gradient (so that linear edges are dis-
carded.) This is accomplished by examining the co-
variance matrix of the local gradients. The largest
eigenvalue of this matrix is an estimate of the strength
of the local gradients and the ratio of the eigenvalues
yields the degree of isotropy.

To select individual features, we divide the image
into sub-images and select the best local maxima in
each sub-image. The reason for the subdivision of the
image is to ensure that we select features in each part
of the image. A match for each of the selected features
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is then sought in the second image.
Matching between the images is performed using

a hierarchical multi-resolution search for 7×7 tem-
plates centered at each of the selected features. Fig-
ure 1 shows an example of the features selected and
matched using these techniques. In this case, 256 fea-
tures were selected in the first image. Of these, candi-
date matches were found for 42 features in the second
image, some of which are incorrect. After outlier re-
jection 22 correct matches remained for input to the
motion refinement step. One direction of future work
will be to increase the fraction of selected features that
can be robustly matched, for example using the robust
matching framework described below.

3 Motion refinement

Motion refinement is the process of adjusting the
initial estimate for the robot position and orientation
using the stereo matches found in the image. Once the
matches have been found as described in the previ-
ous section, we apply Levenberg-Marquardt optimiza-
tion in order to refine the input motion estimate. In
particular, we seek precise values for the translation
T and rotation R relating the positions of the rover
camera at the two locations. This is necessary so that
the images can be rectified and the search space for
the dense disparity estimation can be reduced to the
corresponding scanline. Our optimization method is
related to previous nonlinear methods for performing
motion estimation from image data (see, for example,
[9, 11]).

Our state vector includes not only the six parame-
ters describing the relative camera positions (only five
are recoverable, since the problem can be scaled to an
arbitrary size), but also the depth estimates to each
of the recovered features. With this augmented state
vector, the objective function that we are minimizing
becomes the sum of squared distances between the de-
tected feature position and the estimated feature posi-
tion (calculated using backprojection from the current
motion estimate):

N∑
i=1

(
(ci − ĉi)

2 + (ri − r̂i)
2
)

, (1)

where (ri, ci) are the row and column position of the
ith feature match in the second image and (r̂i, ĉi) are
the predicted position of the ith feature in the second
image using the current motion and depth estimate.
The optimization is iterated, updating the motion and

depth estimates at each step, until the objective func-
tion is minimized.

The application of these techniques to the images
in Figure 1 resulted in an average reprojection error
per pixel (the values summed and squared in Eq. 1)
of 0.34 pixels. In a series of similar tests, the average
reprojection errors 0.31 pixels, with only two outliers
having reprojection error greater than 1.0 pixel.

4 Image rectification

In wide-baseline stereo matching, there is often a
very large (positive or negative) disparity between
matching points in the two images. This necessitates a
large search space in the horizontal dimension for the
correct match. If a search must also be performed in
the vertical dimension, then the overall computation
required will be large. We rectify the images using
the refined motion estimate so that the matches will
be along the corresponding row of the other image (as-
suming the refined motion estimate is accurate). This
is achieved if the images are warped such that they
appear as if each camera was rotated to have z-axis is
perpendicular to the baseline and x-axis is parallel to
the baseline.

To accomplish the rectification, we use the method
of Fusiello et al. [2]. Let R1 and R2 be the rotation
matrices of the two cameras in the world coordinate
frame and c1 and c2 be their centers of projection in
this frame. The camera intrinsic parameters are the
same for both images, since they are captured with the
same camera. These intrinsic parameters are given by:

A =




αu γ u0

0 αv v0

0 0 1


 , (2)

where αu and αv are the focal lengths in horizontal
and vertical pixels, u0 and v0 are the image coordi-
nates of the principal point, and γ is the skew factor
(for non-orthogonal axes).

A 3D point with coordinates [x y z]t is projected
into an image point whose 2D image coordinates in
the first image [u1 v1]t are given by the intersection of
the image plane with the line containing the point and
c1. Using homogeneous coordinates, we can write:




u1

v1

1


 � A[R1 | − R1c1]




x
y
z
1


 = P1




x
y
z
1


 , (3)
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Figure 2: Images after rectification. Lines have been added to show the relative position of features in the two images. (a)
Left image. (b) Right image.

where � indicates proportionality. A similar relation-
ship holds for coordinates in the second image.

The rectifying transformation is a virtual rotation
of the left and right camera around their respective
centers of projection, with no change in translation.
The new rotation R of both cameras in the world coor-
dinate frame must be such that the new image planes
are coplanar. This ensures that the epipoles are at
infinity, and therefore the epipolar lines are parallel.
To enforce horizontal epipolar lines, the baseline must
be parallel to the x-axis in both cameras’ local frame
of reference.

The rotation is constructed of three row vectors as
follows:

R =




rt
1

rt
2

rt
3


 (4)

1. r1 is a unit vector in the direction of c1 − c2.

2. r2 is a unit vector orthogonal to r1 and to the
z-axis in the local frame of reference of camera 1.

3. r3 is a unit vector perpendicular to both r1 and
r2.

With the new rotation, the projection matrices be-
come:

Pi = A[R| − Rci] = [Qi|qi] (5)

and the rectifying transformation is:

Ti = Qi(ARi)−1. (6)

After applying the rectifying transformation, we re-
center the images to capture as much of the data as
possible within the same image boundaries. Figure 2
shows our sample images after rectifying them accord-
ing to this process using the motion estimate provided
by the previous optimization. The lines drawn in the
images indicate that the rectification is good, with cor-
responding points lying on the same scanline.

5 Disparity estimation

Given the rectified images, disparity estimation is
performed by combining a robust template match-
ing method [6] with an efficient stereo search strat-
egy. Our experiments have indicated that the use of
a matching measure such as the SSD produces very
poor results. We use a maximum-likelihood measure
that uses distance measurements from each pixel in
the image template to the closest corresponding pixel
in the search image. Di(δ) is the distance for the ith
template pixel at disparity δ. Assuming the distances
are independent, our likelihood function is:

L(D1(δ), ...,Dm(δ) | δ) =
m∏

i=1

p(Di(δ)), (7)

where p(Di(δ)) is the probability density function
(PDF) of Di(δ) evaluated at the template disparity
δ. In order to find the correct disparity, we find the
displacement δ that maximizes the above likelihood
function.

Our maximum-likelihood measure improves upon
the SSD in two important ways. First, the SSD mea-
sure compares only the pixels that are directly over-
lapping at some disparity of the template with respect
to the search image. If camera motion or perspective
distortion causes pixels to move by different amounts
between the two images, then it will not be possible to
find a template position where all of the pixels are cor-
rectly overlapped. Our distance measure allows pix-
els that are not directly overlapping to be matched
by linearly combining the distance in the image with
the difference in intensity. Computing the best dis-
tance for a pixel at a particular template position is
no longer trivial with this formulation. However, effi-
cient computation of the distances can be performed
by precomputing a three-dimensional distance trans-
form of the input data [6].
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Figure 3: Computed disparity map. (a) Right image. (b) Disparity image. Dark values represent larger disparities.

The other improvement over SSD matching is that
the possibility of an outlier is explicitly represented. In
this application, any terrain feature that is visible in
one of the images, but not in the other is an outlier for
the matching process. Such outliers occur frequently
for images taken from different viewpoints. In order
to model such outliers, we use a probability density
function for each pixel distance that has two terms,
one for inliers and one for outliers:

p(d) = αp1(d) + (1 − α)p2(d). (8)

The first term is the error density for inliers and the
second term is the error density for outliers, where α
is the probability that a particular distance represents
an inlier. For inliers, we use a normal distribution in
the distance to the closest pixel. For outliers, we use a
constant. (This is not a true probability density, but
it allows us to model each distance as equally likely in
the case of an outlier.)

In order to perform dense matching between the
rectified images using the measure described above,
we use an efficient search strategy common in stereo
vision. This strategy makes use of the observation
that a brute-force implementation performs many re-
dundant computations for adjacent positions of the
template at the same displacement. We eliminate the
redundant computation by storing the information for
reuse as necessary for fast matching.

Once the integral disparity estimates have been
computed using template matching, we compute a
subpixel disparity estimate and an estimate of the
standard deviation of the error for each pixel. This
is performed by fitting a curve to the likelihood scores
near the maximum [5]. Disparity estimates are pruned
if the expected error is too large or if the likelihood of
the selected location is not large enough.

Figure 3 shows the disparity map that was com-
puted for the example in the previous figures. In this

case, we obtain sparse results in some portions of the
image. This occurs for several reasons. First, there is
insufficient texture in thy sky to correctly match the
pixels. Second, there are large regions of the image
that are not visible in the other image. Note how the
high quality disparity matches for the mountains in
the background end abruptly about a third of an im-
age width from the right hand side. This is because the
mountains to the left of this region are not present in
the other image. Finally, the significant change in the
viewpoint (approximately 20 degrees) makes matching
difficult, particularly in the foreground, where there is
very little similarity between the correctly matching
features.

Figure 4 shows a second example. Denser results
are obtained in this case, since the cameras were point-
ing in nearly the same directly and the baseline was
considerably smaller. Data is correctly pruned from
the lower right portion of the image, since this region
is not visible in the other image.

6 Rover integration

The wide-baseline stereo method has been inte-
grated with the CLARAty architecture for robotic au-
tonomy [4, 10], which is designed for modularity us-
ing object-oriented methods. CLARAty uses generic
functional classes that specify the interface and func-
tionality of a generic algorithm. Stereo vision is an
example of such a generic functional class. The stereo
vision class uses generic image and camera classes in
its implementation. In turn, the stereo vision class can
be used in the implementation of a visual navigation
class.

Our wide-baseline stereo technique has been imple-
mented as specialization of the generic stereo vision
class. This allows the wide-baseline stereo techniques
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Figure 4: Computed disparity map. (a) Right image. (b) Disparity image. Dark values represent larger disparities.

to be used in any place that the generic stereo vision
class is used in the CLARAty architecture. The cur-
rent computation time required for the code is around
120 seconds on a 500 MHz workstation. We believe
that this can be improved and that a significant com-
putation time is reasonable, since this operation would
be performed infrequently.

7 Summary

We have described techniques to allow wide-
baseline stereo to be performed on a Mars rover. With
these techniques, the rover can accurately map ter-
rain many meters away, unlike conventional stereo.
We have overcome two significant problems to achieve
good results. Inexact knowledge of the relative posi-
tions of the cameras has been addressed using a non-
linear motion estimation step. This step automatically
selects and matches features in the images in order to
refine the initial motion estimate. The problem of ro-
bust matching between terrain viewed from different
perspectives has been addressed using a robust tem-
plate matching method that tolerates outliers and per-
spective distortion. The overall method has achieved
good stereo matching results even with a signification
change in image viewpoint.
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