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Abstract

Least median of squares (LMS) regression is a robust method to fit equations to observed data (typically in a linear
model). This paper describes an approximation algorithm for LMS regression. The algorithm generates a regression solution
with median residual no more than twice the optimal median residual. Random sampling is used to provide a simple
O(nlog® n) expected time algorithm in the two-dimensional case that is successful with high probability. This algorithm is
also extended to arbitrary dimension d with O(n ~!logn) worst-case complexity for fixed d > 2. © 1997 Elsevier Science

B.V.
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1. Introduction

A common problem in many fields is to fit an equa-
tion to a set of observed data points. Often a lin-
ear model can be used. Let us say that we have n
data points {pi, ..., p»} in a d-dimensional space, so
pi = [Xi1, ..., %ia]T. In the classical linear model, the
points are fit by a hyperplane as follows:

d—1
Xig = ( E a;x;j) + ay4.

j=1

A robust method of fitting this hyperplane to the set of
points is the least median of squares (LMS) estima-
tor [12], which exhibits the best possible breakdown
point with respect to outliers [ 11]. The LMS estimator

! This work was performed while the author was with the Cornell
University Department of Computer Science, Ithaca, NY.

minimizes the median of the squared residuals, where
the residuals are defined as

d—1
ri = Xid — ( E a,-x;j) — &y.
J=1

A disadvantage to the LMS estimator is that it is ex-
pensive to compute. Currently known exact solutions
to this problem require O(n?*!logn) time for fixed
d >2.[11,8]. For d = 2, Edelsbrunner and Souvaine
[31 supply the best known exact algorithm, which re-
quires O(n?) time and O(n) space.

Due to the complexity of these algorithms, approxi-
mate methods are used for most problems. The method
that is commonly used in practice is given by Leroy
and Rousseeuw [6], who describe the PROGRESS
system to approximate the LMS estimator. They use a
random sampling approach that yields an O(nlogn)
time algorithm for problems with fixed dimension. The
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hidden constant is exponential in the number of di-
mensions. The drawback to this method is that even
if a “good” sample is taken, where all of the points in
the sample have less than the optimal median residual,
the error in the fit may be arbitrarily large.

We describe an approximation algorithm for LMS
regression in two dimensions that has an approxima-
tion factor of 2, that succeeds with high probability,
and that has O(nlog? n) expected complexity. This al-
gorithm is also extended to higher dimensions with the
same approximation factor and O(n?~!logn) worst-
case complexity for fixed d > 2.

2. An approximate LMS problem

For now, we restrict our attention to the problem of
determining the least-median-of-squares (LMS) re-
gression line for  points in the plane. Let p; = (x;, ;)
for 1 < i < n. We define the median to be the mth
largest value, where m = |n/2 | +1, although we could,
in fact, choose any rank or quantile without changing
the algorithm significantly.

Consider the set of lines that have residuals with
respect to some pair of points that are no greater than
some arbitrary e. For points p; and p;, we denote this

set by Lo(pi, p;).-

Le(pi,pj) ={(a,B) | yi —ax; — B < € and
yj —ax; — B< g}

The smallest & for which there exists a line /,,, such
that [,y € Le(pi, pj) for (';) distinct pairs of points
in the set is the optimal median residual. In addition,
lopt is the optimal LMS regression line, since it yields
the line with minimum residual to m of the points.

The LMS regression problem can be decomposed
into n subproblems, each of which considers a dis-
tinct distinguished point py. Each pair of points that
includes the distinguished point, (px,p:i), kK # i, is
called a distinguished pair. The subproblems now de-
termine the smallest & for which there exists a line
155 such that 15, € Lo (pr, p;) for m — 1 distinct dis-
tinguished pairs, and also determine the line, lf,’;,,, that
solves the problem. The m points that are the closest
to the optimal LMS line yield subproblems that pro-
duce the optimal solution. Random sampling of the
distinguished points can now be used to reduce the

number of subproblems that must be examined, while
still achieving a high probability that the correct solu-
tion is found. Call a subproblem examining a partic-
ular distinguished point a constrained LMS problem.
Note that the complexity of solving such subproblems
is not necessarily lower than the original problem.

We consider simpler subproblems that allow ap-
proximate solutions. For a particular distinguished
point, p;, we determine the smallest £ (denoted by
e’r’e“l) for which there exist m — 1 (not necessar-
ily distinct) parallel lines {/;,...,1y—1} such that
li € Le(Prky» Pr(iy)» 1 < i < m— 1, for some per-
mutation of the points 7 where 7(k) = m, and also
determine the line I3}, that passes through py and is
parallel to /;. The median residual with respect to 5,
is denoted by &5},

Such subproblems relax the constraints on the LMS
problem by allowing a series of parallel lines, all of
which lie within € of the distinguished point (rather
than a single line), that optimize the median residual.
We call these constrained approximate LMS problems.

3. Is the solution accurate?

We now consider the quality of the solutions to the
constrained approximate LMS problems. For simplic-
ity, we assume that there are no ties in the solutions to
the problems and that no two points have the same x-
coordinate. However, these restrictions can be easily
removed.

Let [, to be the optimal LMS regression solution,
yielding median residual &,,,. We call any point that
has a residual, with respect to the optimal LMS solu-
tion, that is no greater than the mth largest such resid-
ual, a good point, where m is the rank we are minimiz-
ing. The m closest points to the LMS line are thus the
good points. All other points are bad points. A good
sample is one that contains no bad points.

Proposition 1. If the distinguished point, pi, is a
good point, then e, < 2&0p:.

Proof. The proposition follows from the following
two lemmas. [J

Lemma 2. [f the distinguished point, py, is a good
point, then €y < gpy.
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Proof. Consider the optimal LMS regression line, /,p;.
At least m points, including py, have a residual no
greater than g,,; With respect to Iy, by definition of
the median residual. Permute the points by o such
that the distinguished point is p,, and the remaining
points are pi, ..., pm—1. We have Loy € Le,, (Pi, Pm)
for 1 < i < m— 1 and this places an upper bound of
Eopr ON Epg. [

Lemma 3. For any distinguished point, py, ehfp <
2ePk,

Proof. Consider the line, /55, that is the solution to
the constrained approximate LMS problem. From the
problem definition, we must have m points (including
the distinguished point), each of which has a residual
no more than & with respect to some line that is
parallel to /%5, The residual of each point from 55,
is thus no greater than 2&7%, since I5;, passes through

the distinguished point. [

The solution to a constrained approximate LMS
problem is thus guaranteed to yield a median resid-
ual no greater than 2, for any problem where the
distinguished point is a good point.

The bounds in Lemmas 2 and 3 are tight, but the
bound in Lemma 2 can only be achieved when the
distinguished point has distance &, from the optimal
LMS line. If the distance of the distinguished point
from the optimal LMS line is &4;s, then &r; < (&4is +
€op) /2 and a regression line is found with median
residual no greater than &g;5 + €,p;. We are thus likely
to get a better result when the distinguished point is
close to the optimal LMS line, and, if the distinguished
point lies on the true LMS regression line, then we
have £4pp = €,pr. (The optimal LMS solution is found
whenever the distinguished point lies on [,,.)

4. Solving constrained approximate LMS
problems

Consider a particular pair of points, p; = (xi, ¥i)
and p; = (x;,y;), and a particular residual &. If x; #
x;, then the lines belonging to L¢(p;, p;) have slopes
in the following range:

yi—Yi—2¢ )’j"}’i+28] (1
Xj — Xi Xj — Xi '

ae

To solve a constrained approximate LMS problem,
we must find the minimum & such that m — 1 of the
n — 1 slope ranges yielded by the distinguished point
overlap at some point. From (1), each distinguished
pair yields a vertical cone (a V shape) in the a-¢
plane with its base on the £ = 0 axis. The problem
can thus be transformed into finding the lowest point
in the (m — 1)-level of the n — 1 cones.

Note, first, that any particular £ can be tested in
O(nlogn) time to determine if it is correct, below the
correct value, or above the correct value. This is per-
formed by computing the 2n — 2 cone boundaries at &,
sorting them, and scanning them in order while main-
taining a count on the number of the slope ranges that
overlap in each region (i.e. the count is incremented
when we reach the beginning of a slope range and
decremented when we reach the end of a slope range).
If a finite region is found where m — 1 or more regions
overlap, then the correct € is below the tested value. If
no points are found where m — 1 regions overlap, then
the correct ¢ is above the tested value. If a single point
(assuming no ties) is found at which m — 1 or more
regions overlap, then the tested value is the solution
and the slope of 5}, is given by this point of overlap.

This formulation of the problem is amenable to
parametric search techniques, since the solution must
occur at the intersection of two cone boundaries.
For example, we can use Megiddo’s techniques [9]
to solve this problem in O(nlog3 n) time, since the
testing step requires O(nlogn) time. Cole [1] de-
scribes techniques by which this can be improved
to O(nlog® n) using either a randomized algorithm
or a complex deterministic algorithm. We describe a
variation on the inversion sampling and contraction
methods given by both Matousek [7] and Dillencourt
et al, {2] that yields a simple O(n log2 n) randomized
method for solving this problem.

The approach that we follow is to randomly sample
n of the (n — 1) (n—2) /2 cone intersections (we can
neglect the intersections that occur between two right
cone boundaries or two left cone boundaries). These
intersections are sorted according to £ and the two that
bracket the correct value are determined in O(n log2 n)
time using O(logn) steps of binary search. Each step
tests the median € in the remaining interval and de-
termines whether the correct value is above, below, or
at the tested value, as described above. The interval is
then contracted appropriately.
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Now, the remaining intersections that lie between
the determined brackets must be found. The expected
number of such intersections, /, is O(n) (this is a
variant of well known results, see [10]). These in-
tersections can be enumerated in O(nlogn + 1) time
using inversion counting techniques [5,7,2]. A final
binary search is then performed on these remaining
intersections to find the solution to the constrained ap-
proximate LMS problem. The expected time required
for a single trial is thus O(n log2 n).

Let us consider how many constrained approximate
LMS problems must be examined such that at least one
is a good sample with high probability. The probability
of examining at least one good sample in ¢ trials, if
sampling with replacement is used, is

n—m\!t 1y?
P =1-(57) 21-(3)-

To achieve Pyyoq > 1 —6, we may use ¢ = [ log, 6]
trials. The number of trials is thus independent of the
number of data points, and the overall approximate
LMS algorithmrequires O(n log2 n) expected time for

fixed & (with a constant that has a logarithmic depen-
dence on §).

5. Higher dimensions

In higher dimensions, the LMS problem is that of
finding the (d — 1)-dimensional hyperplane that best
fits n points in d-dimensions:

d—1

Xg = _s_ ajxi+ ay.
J=1

To extend our algorithm for solving constrained ap-
proximate LMS problems to this case, d — 1 distin-
guished points are sampled, rather than a single one,
and a d-dimensional cone is constructed in the space
spanned by (&, a1,...,a4_1) for each set of d points
that includes the d — 1 distinguished points. These
cones are searched in a manner similar to the two-
dimensional case, although the two step search proce-
dure is no longer necessary. This section sketches this
method.

We must first specify how to construct the cone of
slopes that are consistent with some hyperplane fitting
each of d points up to an error of €. Let the coordinates

of the points be given by p; = (xj1,...,xiq) for 1 <
i < d. The hyperplane that fits the set of points exactly
(assuming non-degeneracy) is given by:

-1

aj X1 .. X1a-1 1 i

ay X4l ..+ Xad—-1n 1 Ya

Allowing an error of ¢ yields a volume in the a-
space that is bounded by the 2¢ hyperplanes given by
all possible combinations of adding & or —& to each
of the y;’s in the above equation:

2 4] X1t .- -

Xia-1 1 nte

Qg Xdl -+ Xd(d-1) 1 Y4 +e&

If the points are in general position (i.e. the matrix
is invertible), this yields 2¢ — 2 hyperplanes in the
(g,a1,...,a4-1) space. Note that we drop ay, since
we are examining only the slopes and not the inter-
cept parameter. This also allows us to discard the two
hyperplanes where ¢ either added to each point or sub-
tracted from each point, since these only change the
intercept of the hyperplane from the exact fit and not
the slopes.

The cone for the set of points can now be con-
structed from the intersection of the half-spaces above
(with respect to &) each of these hyperplanes. The
cones have their bases at € = 0, axes perpendicular
to the € = O hyperplane, and a cross-section that is a
convex polyhedron of linearly increasing size in €.

In order to solve a constrained approximate LMS
problem in a d-dimensional space, the minimum ¢ at
which there exists a point in the (m — 1)-level of the
n — 1 cones is sought. This solution must occur at the
minimum & at which some pair of the cones intersect.
Note that determining the minimum & at which an ar-
bitrary pair of cones intersect is a linear programming
problem with d dimensions and 2¢+! —4 constraints. It
is thus possible to enumerate the O( n?) possible solu-
tions (corresponding to each pair of cones) in O(n?)
time for any fixed d.

To determine which of these possible solutions is
correct, it suffices to sort them and perform binary
search using a decision procedure that is able to de-
termine which side of any particular & the correct so-
lution lies on. In order to test a particular &, we search



C.FE Olson/ Information Processing Letters 63 (1997) 237-241 241

the arrangement of the (d — 1)-dimensional convex
polyhedra given by slicing each of the cones at &€ and
determine if any point lies within m — 1 of the poly-
hedra. The sorting step requires O(n?logn) time and
the decision procedure for each of the O(logn) bi-
nary search steps requires O(n?~!) time for any fixed
d > 2 [4]. The algorithm thus requires O(n¢~! logn)
time for fixed d > 2 and is guaranteed to find a so-
lution with residual no greater than twice the optimal
residual, if each of the d — 1 distinguished points is a
good point.

The probability that any particular trial examines a
set of d — 1 good points (sampling without replace-
ment) is

d-2

m—i m—d+2\4-1
P1=H " >( ” ) .

Taking ¢ trials yields the following probability of
success (sampling with replacement):

P=1-(1-P)"

We can achieve P, > 1 — 8 by using

. logé
T log(1 — (1/4)4-1°
ifn>4d — 8.

6. Summary

This work has considered an approximation al-
gorithm to perform LMS regression. We have for-
malized an approximate LMS problem and shown
that solutions to this problem have bounded error in
terms of the median residual that they yield. A two-
dimensional constrained approximate LMS problem
can be solved in O(nlog? n) expected time using a
variety of randomized algorithms or a complex de-
terministic algorithm. Random sampling is used to

determine a good solution to unconstrained approxi-
mate LMS problems with high probability by solving
a constant number of constrained approximate LMS
problems. The algorithm is simple to implement and
yields a method that is fast and accurate in practice.
The techniques have been extended to higher dimen-
sions with an O(n?~'logn) worst-case complexity
for fixed d > 2, although the hidden constant is expo-
nential in d.
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