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Abstract. Popular algorithms for feature matching and model extraction fall into two broad categories: generate-
and-test and Hough transform variations. However, both methods suffer from problems in practical implementations.
Generate-and-test methods are sensitive to noise in the data. They often fail when the generated model fit is poor
due to error in the data used to generate the model position. Hough transform variations are less sensitive to noise,
but implementations for complex problems suffer from large time and space requirements and from the detection of
false positives. This paper describes a general method for solving problems where a model is extracted from, or fit
to, data that draws benefits from both generate-and-test methods and those based on the Hough transform, yielding
a method superior to both. An important component of the method is the subdivision of the problem into many
subproblems. This allows efficient generate-and-test techniques to be used, including the use of randomization to
limit the number of subproblems that must be examined. Each subproblem is solved using pose space analysis
techniques similar to the Hough transform, which lowers the sensitivity of the method to noise. This strategy is
easy to implement and results in practical algorithms that are efficient and robust. We describe case studies of
the application of this method to object recognition, geometric primitive extraction, robust regression, and motion
segmentation.
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1. Introduction

The generate-and-test paradigm is a popular strategy
for solving model matching problems such as recog-
nition, detection, and fitting. The basic idea of this
method is to generate (or predict) many hypothetical
model positions using the minimal amount of data nec-
essary to identify unique solutions. A sequence of such
positions is tested, and the positions that meet some
criterion are retained. Examples of this technique in-
clude RANSAC (Fischler and Bolles, 1981) and the
alignment method (Huttenlocher and Ullman, 1990).

The primary drawback to the generate-and-test
paradigm is its sensitivity to noise. Let us call the data
points (or other features, in general) that are used in
predicting the model position for some test the distin-

guished features, since they play a more important role
in whether the test is successful. The other features are
undistinguished features. Errors in the locations of the
distinguished features cause the predicted model po-
sition(s) to be in error. As the error grows, the testing
step becomes more likely to fail.

To deal with this problem, methods have been de-
veloped to propagate errors in the locations of the dis-
tinguished features (Alter and Jacobs, 1998; Grimson
et al., 1994). Under the assumption of a bounded er-
ror region for each of the distinguished features, these
methods can place bounds on the locations in which
various model features can be located in an image. If
we count the number of image features that can be
aligned with the model (with the constraint that the
distinguished features must always be in alignment up
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to the error bounds) these techniques can guarantee that
we never undercount the number of alignable features.
The techniques will thus never report that the model is
not present according to some counting criterion when,
in fact, the model does meet the criterion.

On the other hand, this method is likely to overcount
the number of alignable features, even if the bounds
on the location of each individual feature are tight.
The reason for this is that, while the method checks
whether there are model positions that brings each
of the undistinguished image features into alignment
with the model (along with all of the distinguished fea-
tures) up to the error bounds, it does not check whether
there is a single position that brings all of the counted
undistinguished features into alignment up to the error
bounds.

A competing technique for feature matching and
model extraction is based on the Hough transform.
This method also generates hypothetical model posi-
tions solutions using minimal information, but rather
than testing each solution separately, the testing is per-
formed by analyzing the locations of the solutions in
the space of possible model positions (or poses). This
is often, but not always, accomplished through a his-
togramming or clustering procedure. The large clusters
in the pose space indicate good model fits. We call tech-
niques that examine the pose space for sets of consistent
matches among all hypothetical matches Hough-based
methods, since they derive from the Hough transform
(Illingworth and Kittler, 1988; Leavers, 1993). While
these techniques are less sensitive to noise in the fea-
tures, they are prone to large computational and mem-
ory requirements, as well as the detection of false
positive instances (Grimson and Huttenlocher, 1990)
if the pose space analysis is not precise.

In this paper, we describe a technique that com-
bines the generate-and-test and Hough-based meth-
ods in a way that draws ideas and advantages from
each, yielding a method that improves upon both.
Like the generate-and-test method, (partial) solutions
based on distinguished features are generated for fur-
ther examination. However, each such solution is
under-constrained and Hough-based methods are used
to determine and evaluate the remainder of the solu-
tion. This allows both randomization to be used to
reduce the computational complexity of the method
and error propagation techniques to be used in order
to better extract the model(s). We call this technique
RUDR (pronounced “rudder”), for Recognition Using
Decomposition and Randomization.

We will show that the problem can be treated as
many subproblems, each of which is much simpler
than the original problem. We then discuss various
methods by which the subproblems can be solved. The
application of randomization to reduce the number of
subproblems that must be examined is next described.
These techniques yield efficiency gains over conven-
tional generate-and-test and Hough-based methods. In
addition, the subdivision of the problem allows us to
examine a much smaller parameter space in each of the
subproblems than in the original problem and this al-
lows the error inherent in localization procedures to be
propagated accurately and efficiently in the matching
process.

This method has a large number of applications.
It can be applied to essentially any problem where
a model is fit to cluttered data (that is, with outliers
or multiple models present). We describe case stud-
ies of the application of this method to object recog-
nition, curve detection, robust regression, and motion
segmentation.

The methodology described here is a generalization
of previous work on feature matching and model ex-
traction (Olson, 1997a, 1997b, 1999). Similar ideas
have been used by other researchers. A simple variation
of this method has been applied to curve detection by
Murakami et al. (1986) and Leavers (1992). In both of
these papers, the problem decomposition was achieved
through the use of a single distinguished feature in the
image for each of the subproblems. We argue that the
optimal performance is achieved when the number of
distinguished features is one less than the number nec-
essary to fully define the model position in the errorless
case. This has two beneficial effects. First, it reduces
the amount of the pose space that must be considered
in each problem (and the combinatorial explosion in
the sets of undistinguished features that are examined).
Second, it allows a more effective use of randomiza-
tion in reducing the computational complexity of the
method. A closely related decomposition and random-
ization method has been described by Cass (1997) in
the context of pose equivalence analysis. He uses a
“base match” to develop an approximation algorithm
for feature matching with uncertain data.

2. Related Research

In this section, we review research on generate-and-test
and Hough-based algorithms for model matching.
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2.1. Generate-and-Test Methods

The basic idea in generate-and-test methods is to se-
quentially generate hypothetical model positions in the
data and test the positions. The hypothetical model
positions are generated by conjecturing matches be-
tween the model and a set of features in the data and
then determining the model position(s) such that the
model is aligned with the data features. These posi-
tions are tested by comparing the position of the model
against the remainder of the data. One common mea-
sure of the quality of the position is the number of
data features that agree well with the model at this
position.

Fischler and Bolles (1981) described the RANSAC
(for RANdom SAmple Consensus) technique. They
suggested that, when solving for the model position,
it is best to use the minimum number of data fea-
tures necessary to yield a finite set of solutions (as-
suming no error). This reduces the likelihood that one
of the data features does not belong to the model, since
there may be outliers or multiple models present. They
also used a randomization technique, where sets of
data features were sampled randomly until the prob-
ability of at least one sample being correct is suf-
ficiently large, assuming that the model is actually
present in the image. In addition to applying these
techniques to pose determination from point features
(Fischler and Bolles, 1981), these techniques were
applied to curve and surface detection (Bolles and
Fischler, 1981).

One problem that generate-and-test methods can
have is that error in the data features causes error in
the model position estimate that can result in failure
to detect the model correctly. An alternative to simply
testing the model position corresponding to some hy-
pothesized data set is to iteratively refine the model
position as additional data features are conjectured
to belong to the model (Ayache and Faugeras, 1986;
Faugeras and Hebert, 1986; Lowe, 1987). This can sig-
nificantly improve the overall match, particularly when
the initial data set is noisy, although it will not help if
the initial matching contains an outlier. Another tech-
nique, which can be used if the localization error can
be modeled, is to carefully propagate the effects of lo-
calization error in the testing step (Alter and Jacobs,
1998; Grimson et al., 1994). While this technique will
not miss instances of a model that satisfy some error
criterion, it will find instances that do not satisfy the
criterion.

2.2. Hough-Based Methods

Parameter space analysis techniques can be traced back
to the patent of the Hough transform (Hough, 1962).
The Hough transform was initially used to track particle
curves in bubble-chamber imagery. Subsequent work
by Rosenfeld (1969) and Duda and Hart (1972) played
a substantial role in popularizing the Hough transform
and it has since become an established technique for
the detection of curves and surfaces, as well as many
other applications. The basic idea of the Hough trans-
form is that each data feature can be mapped into a
manifold in the parameter space of possible curves (or
model positions, in general). Typical implementations
consider a quantized parameter space and count the
number of data features that map to a manifold inter-
secting each cell in the quantized space. Cells with high
counts correspond to curves in the image. Surveys of
the Hough transform and applications have been pub-
lished by Illingworth and Kittler (1988) and Leavers
(1993).

Ballard (1981) demonstrated that the Hough trans-
form can be generalized to detect arbitrary shapes
(composed of discrete points) in images. This method
determines a mapping between image features and an
accumulator for a parameter space describing the pos-
sible positions of the object. When each image feature
has been mapped into the parameter space, instances
of the shape yield local maxima in the accumulator.
Ballard used pixel orientation information to speed up
the algorithm and improve accuracy. It was also sug-
gested that pairs of features could be mapped into the
parameter space to reduce the effort in mapping fea-
tures into the parameter space, but this was considered
infeasible for most cases.

More recent work has incorporated the idea of map-
ping sets of features into the parameter space (Bergen
and Shvaytser, 1991; Leavers, 1992; Xu et al., 1990).
The primary benefit that is gained from this is that only
those feature sets that are large enough to map to a sin-
gle point (or a finite set of points) in the parameter space
are examined. A drawback is that there are many such
sets of features. An additional technique that has proven
useful for improving the efficiency of the Hough trans-
form is randomization (Bergen and Shvaytser, 1991;
Kiryati et al., 1991; Leavers, 1992; Xu et al., 1990).

Generalized Hough transform techniques have been
applied to many object recognition problems (and
these techniques are sometimes called pose clustering
in this context) (Linnainmaa et al., 1988; Silberberg
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et al., 1984; Stockman, 1987; Thompson and Mundy,
1987). Most of these applications consider feature sets
that map to single points in the space of possible
model transformations and then perform some cluster-
ing method to detect objects (often multi-dimensional
histogramming).

3. General Problem Formalization

The class of problems that we solve using RUDR are
those that require a model to be fit to a set of observed
data features, where a significant portion of the ob-
served data may be outliers (in fact, the model may
contain outliers as well) or there may be multiple mod-
els present in the data. These problems can, in general,
be formalized as follows.

Given

• D—the data to match. The data is a set of a set of fea-
tures or measurements, {δ1, . . . , δd}, that have been
extracted, for example, from an image. For simplic-
ity, we assume that all of the data features are of a
single geometric class, such as points or segments,
but this restriction can be removed.

• M—the model to be fit. This model may be a set of
distinct features as is typical in object recognition, or
it may be a parameterized manifold such as a curve or
surface, as in curve detection and robust regression.
The only constraint on the model is that we must be
able to determine hypothetical model positions by
matching the model with sets of data features.

• T —the set of possible positions or transformations
of the model. We use τ to denote individual trans-
formations in this space.

• A(M,D, T , τ, D)—the acceptance criterion. A
binary-valued criterion that specifies whether a trans-
formation τ satisfactorily brings the model into
agreement with a set of data features, D ∈D. We
allow this criterion to be a function of the full set of
data features and the set of transformations to allow
the criterion to select the single best subset of data
features according to some criterion or to take into
account global matching information.

Determine and Report

• All maximal sets of data features, D ∈D, for which
there is a transformation, τ ∈ T , such that the ac-
ceptance criterion, A(M,D, T , τ, D), is satisfied.

(Only the maximal sets are reported so that the sub-
sets of each maximal set need not be reported.)

This formalization is very general. Many problems
can be formalized in this manner, including object
recognition, geometric primitive extraction, motion
segmentation, and robust regression.

A useful acceptance criterion is based on bound-
ing the fitting error between the model and the data.
Let C(M, δ, τ ) be a function that determines whether
the specified position of the model fits the data fea-
ture δ (for example, up to a bounded error). We
let C(M, δ, τ ) = 1, if the criterion is satisfied, and
C(M, δ, τ ) = 0, otherwise. The model is said to be
brought into alignment with a set of data features,
D = {δ1, . . . , δx } up to the error criterion, if all of the
individual features are brought into alignment:

x∏
i=1

C(M, δi , τ ) = 1 (1)

The bounded-error acceptance criterion specifies that
a set of data features, D = {δ1, . . . , δx }, should be re-
ported if the cardinality of the set meets some threshold
(x ≥ c), there is a position of the model that satisfies
(1), and the set is not a subset of some larger set that is
reported.

While this criterion does not incorporate global in-
formation, such as mean-square-error or least-median-
of-squares, RUDR is not restricted to using this
bounded-error criterion. This method has been applied
to least-median-of-squares regression with excellent
results (Olson, 1997a).

Example. As a running example, we will consider
detecting circles in two-dimensional image data. For
this case, our model M is simply the parameteriza-
tion of a circle, (x − xc)

2 + (y − yc)
2 = r2, and our

data D is a set of image points. The space of possible
transformations is the space of circles,T = [xc, yc, r ]T .
We use a bounded-error acceptance criterion such
that a point is considered to be on the circle if
|
√

(x − xc)2 + (y − yc)2 − r | < ε. We will report the
circles that have

∑d
i=1 Cε(M, δi , τ ) > πr . In other

words, we search for the circles that have approxi-
mately half of their perimeter present in the image,
although any other threshold could be used.

4. RUDR Approach

The main components of the approach that we take are
as follows. First, we subdivide the problem into many



Geometric Feature Matching and Model Extraction 43

smaller subproblems, as in generate-and-test methods.
However, our subproblems do not fully constrain the
pose of the model. Each subproblem is solved using
a Hough transform-based method to search a partially
constrained pose space in which with model may lie.
Randomization techniques are used to limit the number
of subproblems that are examined with a low probabil-
ity of failure.

Let us call the hypothetical correspondence between
a set of data features and the model a matching. The
generate-and-test paradigm and many Hough-based
strategies solve for hypothetical model positions us-
ing matchings of the minimum cardinality to constrain
the model position up to a finite ambiguity (assuming
errorless features). We call the matchings that contain
this minimal amount of information minimal match-
ings and denote their cardinality k. We consider two
types of models. One type of model consists of a set
of discrete features similar to the data features. The
other is a parameterized model such as a curve or sur-
face. When the model is a set of discrete features,
the minimal matchings specify the model features that
match each of the data features in the minimal match-
ing and we call these explicit matchings. Otherwise,
the data features are matched implicitly to positions in
parameterized model and we, thus, call these implicit
matchings.

In the generate-and-test paradigm, the model posi-
tions generated using the minimal matchings are tested
by determining how well the undistinguished features
are fit according to the predicted model position. In
Hough-based methods, it is typical to determine the
positions of the model that align each of the minimal
matchings and detect clusters of these positions in the
parameter space that describes the set of possible model
positions,1 but other pose space analysis techniques
can be used (Breuel, 1992; Cass, 1997).

The approach that we take draws upon both generate-
and-test techniques and Hough-based techniques. The
underlying matching method may be any one of sev-
eral pose space analysis techniques in the Hough-based
approach (see Section 5), but unlike previous Hough-
based methods, the problem is subdivided into many
smaller problems, in which only a subset of the min-
imal matchings is examined. When randomization is
applied to selecting which subproblems to solve, a low
computational complexity can be achieved with a low
probability of failure.

The key to this method is the subdivision of the
problem into many small subproblems, in which a

distinguished matching of some cardinality g < k be-
tween data features and the model is considered. Only
those minimal matchings that contain the distinguished
matching are examined in each subproblem and this
constrains the portion of the pose space that the sub-
problem considers. We could consider each possible
distinguished matching of the appropriate cardinal-
ity as a subproblem, but we shall see that this is not
necessary in practice.

In the remainder of this section, we show that the
subdivision of the problem into many smaller subprob-
lems does not inherently change the solutions that are
detected by the algorithm. We then discuss the op-
timal cardinality for the distinguished matching that
constrains each subproblem and the application of this
methodology using approximation algorithms. Follow-
ing sections describe algorithms that can be used to
solve the individual subproblems and the use of ran-
domization to limit the complexity of the algorithms.

4.1. Problem Equivalence

Let’s consider the effect of the decomposition of the
problem on the matchings that are detected by a sys-
tem using a bounded-error criterion, C(M, d, t), as
described above. For now, we assume that we have
some method of determining precisely those sets of
data features that should be reported according to the
bounded-error acceptance criterion. The implications
of performing matching only approximately and the
use of an acceptance criterion other than the bounded-
error criterion are discussed subsequently.

Proposition 1. For any transformation, τ ∈ T , the
following statements are equivalent:

1. Transformation τ brings at least x data features into
alignment with the model up to the error criterion.

2. Transformation τ brings at least (
x
k ) sets of data

features with cardinality k into alignment with the
model up to the error criterion.

3. For any distinguished matching with cardinality g
that is brought into alignment with the model up
to the error criterion by τ , there are (

x−g
k−g ) mini-

mal matchings that contain the distinguished match-
ing that are brought into alignment up to the error
criterion by τ .

Proof: The proof follows from combinatorics. We
sketch the proof that (a) Statement 1 implies
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Statement 2, (b) Statement 2 implies Statement 3, and
(c) Statement 3 implies Statement 1. The statements
are thus equivalent.

(a) From Statement 1, there are at least x data features
with C(M, δi , τ ) = 1. We can thus form at least
( x

k ) distinct sets of these data features with cardi-
nality k. Each such set has

∏k
i=1 C(M, δi , τ ) = 1.

These matchings thus contribute at least ( x
k ) to the

sum.
(b) To form the ( x

k ) sets of data features that are brought
into alignment with the model, we must have x in-
dividual data features satisfying C(M, δi , τ ) =
1. (If there were y < x such features then we
could only form ( y

k ) minimal matchings satis-
fying Eq. (1).) Choose any subset G of these
matches with cardinality g. Form the ( x − g

k − g ) sub-
sets with cardinality k − g that do not include
any feature in G. Each of these subsets when
combined with G forms a minimal matching that
is brought into alignment up to the error crite-
rion since each of the individual features satisfies
C(M, δi , τ ) = 1.

(c) From Statement 3, the g data features in the distin-
guished matching are brought into alignment up to
the error criterion by τ . In addition there must ex-
ist x − g additional data features that are brought
into alignment up to the error criterion by τ to
form the ( x−g

k−g ) subsets of cardinality k − g that are
brought into alignment up to the error criterion by
τ . Thus, in total, there must be g + x − g = x data
features that are brought into alignment up to the
error criterion by τ . ✷

Statement 3 indicates that as long as we examine
one distinguished matching that belongs to each of
the matchings that should be reported, the strategy
of subdividing the problem into subproblems yields
equivalent results to examining the original problem as
long as the threshold on the number of matches is set
appropriately.

This decomposition of the problem allows our
method to be viewed as a class of generate-and-test
methods, where distinguished matchings (rather than
minimal matchings) are generated and the testing step
is performed using a pose space analysis method (such
as clustering or pose space equivalence analysis) rather
than comparing a particular model position against
the data. Methods for solving the subproblems are
discussed further in Section 5.

4.2. Optimal Cardinality

While distinguished matchings of any cardinality could
be considered, we must balance the complexity of
the subproblems with the number of subproblems that
are examined. Increasing the cardinality of the distin-
guished matching is beneficial up to a point. As the size
of the distinguished matching is increased, the number
of minimal matchings that is examined in each sub-
problem is decreased and we have more constraint on
the position of the model. The subproblems are thus
simpler to solve.

By itself, this does not necessarily improve matters,
since there are more subproblems to examine. How-
ever, since we use randomization to limit the number
of subproblems that are examined, a lower computa-
tional complexity is achieved by having more sim-
ple subproblems than fewer difficult ones. Section 6
shows why this is true. On the other hand, when we
reach g = k, the method becomes no better than a stan-
dard generate-and-test technique and we lose both the
benefits gained through the Hough-based analysis of
the pose space and the property that the subproblems
become simpler with larger distinguished matchings.
We, thus, use distinguished matchings with cardinality
g = k − 1. For each subproblem, this means that we
examine a set of minimal matchings that share k − 1
data features and that vary in only one feature.

4.3. Approximation Algorithms

For practical reasons, we may not wish to use an al-
gorithm that reports exactly those matchings that sat-
isfy the error criterion, since such algorithms are of-
ten time consuming. In this case, we cannot guarantee
that examining a distinguished matching that belongs
to a solution that should be reported will result in de-
tecting that solution. However, empirical evidence sug-
gests that the examination of these subproblems yields
superior results when an approximation algorithm is
used (Olson, 1997b), owing to failures that occur in the
examination of full problem.

We can also use these techniques with acceptance
criteria other than the bounded-error criterion. With
other criteria, the proposition is not always true,
but if an approximation algorithm is used to detect
good matchings, examination of the subproblems of-
ten yields good results. For example, an application of
these ideas to least-median-of-squares regression has
yielded an approximation algorithm that is provably
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accurate with high probability, while previous approx-
imation algorithms do not have this property (Olson,
1997a).

Example. For our circle detection example, k = 3,
since three points are sufficient to define a circle in the
errorless case. The above analysis implies that, rather
than examining individual image features, or all triples
of features, we should examine trials (or subproblems)
consisting of only the triples that share some distin-
guished pair of features in common. Multiple trials are
examined to prevent missing a circle.

5. Solving the Subproblems

Now, we must use some method to solve each of the
subproblems that are examined. We can use any method
that determines the number of matchings with a given
cardinality can be brought approximately into align-
ment with the model at a particular position. We dis-
cuss histogramming first, which is the simplest method,
but is prone to errors. Pose constraint methods, which
are precise methods for locating good pose subject to
bounded error constraints, are discussed next. Finally,
we describe a middle ground, where errors are prop-
agated into a small subspace and then clustering is
performed.

5.1. Histogramming

The simplest method for solving the subproblems is
to use a multi-dimensional histogramming step in or-
der to locate large clusters in the pose space. In this
method, the parameter space is quantized and a counter
is maintained for each cell in the quantized space. Each
matching is mapped into a manifold in the parameter
space and the counter associated with each parameter
space cell that intersects that manifold is incremented.
Clusters in the parameter space are found by locating
cells with high counts. The primary reason this method
is popular is that it requires linear time in the number of
matchings that are considered, while most other meth-
ods are more complex. While this method is fast if the
parameter space is not too large and yields good results
for many applications, it does not propagate the effects
of error accurately, it introduces quantization effects,
and it is time consuming for large parameter spaces.

To reduce the problem of a large parameter space, hi-
erarchical decompositions of the parameter space have

often been used. This is usually performed through a
coarse-to-fine search of the parameter space or by de-
composing the parameter space along the orthogonal
axes. Such decompositions of the parameter space al-
low the initial steps to be performed using only a few
cells in the transformation space. Those that cannot
lead to a large cluster are eliminated and the rest are
examined in finer detail.

The problem of error propagation is more difficult to
handle with this technique. For complex problems, it
can become problematic to detect the clusters without
also detecting a significant number of false positives
(Grimson and Huttenlocher, 1990). One possibility is to
discretize the pose space finely and then increment the
counter for each cell that is consistent with each mini-
mal matching (Shapiro, 1978). However, this requires
much computation.

5.2. Pose Constraint Methods

Alternatively, pose equivalence analysis techniques
that have been developed by Breuel (1992) and Cass
(1997) can be applied that allow localization error to
be propagated accurately. The basic idea of these meth-
ods is that each match between a model feature and a
data feature yields some constraints on the model po-
sition that must be satisfied in order for the features to
be aligned up to the error boundary. These constraints
divide the pose space into equivalence classes, within
which the same sets of features are brought into corre-
spondence. A search of the pose space is performed to
locate the positions that satisfy the maximum number
of constraints.

Cass (1997) searches the pose space by examining
the arrangement of the constraints using computational
geometry techniques. A significant speedup is achieved
through the use of an approximation algorithm. Breuel
(1992) uses a method that adaptively divides the pose
space, pruning cells that are not consistent with a suffi-
cient number of the constraints. Unpruned cells are di-
vided recursively until they are small enough to accept
as valid model positions. Breuel’s experiments suggest
that his techniques can operate in approximately linear
expected time in the number of matchings, so this step
can be performed efficiently in many cases.

Both of these techniques can be used in conjunction
with our approach to subdividing the problem. In the
method of Cass, much less of the pose space is exam-
ined in each trial, since only a few of the pose equiv-
alence classes are consistent with each distinguished
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matching. In Breuel’s method, k-tuples are used to form
closed constraint regions in the pose space, so our ap-
proach would examine only the k-tuples that contain
the distinguished matching in each trial.

5.3. Subspace Error Propagation

In our method, only a small portion of the parameter
space is examined in each subproblem. If it is assumed
that there is no error in the data features in the dis-
tinguished matching, then each subproblem considers
only a sub-manifold of the parameter space. In gen-
eral, if there are p transformation parameters and each
feature match yields c constraints on the transforma-
tion, then a subproblem where the distinguished match-
ings have cardinality g considers only a ( p − gc)-
dimensional manifold of the transformation space in
the errorless case.2 This allows us to parameterize the
sub-manifold (using p − gc parameters) and perform
analysis in this lower dimensional space. A particularly
useful case is when the resulting manifold has only one
dimension (i.e. it is a curve). In this case, the subprob-
lem can be solved very simply by parameterizing the
curve and finding positions on the curve that are con-
sistent with many minimal matchings.

When localization error in the data features is con-
sidered, the subproblems must (at least implicity) con-
sider a larger space than the manifold described above.
The subproblems are still much easier to solve. A tech-
nique that is useful in this case is to project the set of
transformations that are consistent with each minimal
matching up to the error criterion onto the manifold
that results in the errorless case and then perform clus-
tering only in the parameterization of this manifold as
discussed above (Olson, 1999).

This method slightly overestimates the total number
of consistent matches, since matches that are consistent
in the projections may not be in the full pose space.
However, significant errors are unlikely, because the
regions of the pose space consistent with each minimal
matching do not deviate far from the manifold corre-
sponding the errorless case, except in extreme circum-
stances (cases that are nearly degenerate).

Example. For circle detection, we saw previously that
we should use two distinguished points. The circle po-
sitions that share a pair of points lie on a curve in the
pose space. (The center of the circle is always on the
perpendicular bisector of the two distinguished points.)
For triples of points that contain the two distinguished

points, we parameterize the positions using the signed
distance d from the center of the circle to the midpoint
between the distinguished points (positive if above,
negative if below). This yields a unique descriptor for
every circle passing through the distinguished points.
For each triple that is considered, we can project the
pose space consistent with the triple onto the parameter-
ization by considering which centers are possible given
some error bounds on the point locations (Olson, 1999).
We determine if a circle is present in each trial by finely
discretizing d and performing a simple Hough trans-
form variation in this one-dimensional space, where the
counter for each bin is incremented for each triple that
is consistent with the span represented by the counter.
Peaks in the accumulator are accepted if they surpass
some predetermined threshold. This process is repeated
for several pairs of distinguished points to ensure a low
probability of failure, as described in the next section.

6. Randomization and Complexity

A deterministic implementation of these ideas should
examine each possible distinguished matching with
the appropriate cardinality. This requires O(nk) time,
where n is the number of possible matches between
a data feature and the model. When explicit match-
ings are considered, n = md, where m is the number
of model features and d is the number of data features.
When implicit matchings are considered, n = d. Such
a deterministic implementation performs much redun-
dant work. There are many distinguished matchings
that are part of each of the large consistent matchings
that we are seeking. We thus find each matching that
meets the acceptance criterion many times (once for
each distinguished matching that is contained in the
maximal matching). We can take advantage of this re-
dundancy through the use of a common randomization
technique to limit the number of subproblems that we
must consider while maintaining a low probability of
failure.

Assume that some minimum number of the image
features belong to the model. Denote this number b.
Since our usual acceptance criterion is based on count-
ing the number of image features that belong to the
model, we can allow the procedure to fail when too
few image features belong to the model. Otherwise,
the probability that some set of image features with
cardinality g = k − 1 completely belongs to the model
is bounded by ( b

k−1 )/(
d

k−1 ) ≈ ( b
d )k−1. If we take t tri-

als that select sets of k − 1 image features randomly,
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then the probability that none of them will completely
belong to the model is:

pt ≈
(

1 −
(

b

d

)k−1)t

. (2)

Setting this probability below some arbitrarily small
threshold (pt < γ ) yields:

t ≈ ln γ

ln
(
1 − (

b
d

)k−1) ≈
(

d

b

)k−1

ln
1

γ
. (3)

Now, for explicit matches, we assume that some min-
imum fraction fe of the model features appear in the
image. In this case, the number of trials necessary is
approximately ( d

fem )k−1 ln 1
γ

. For each trial, we must
consider matching the set of image features against
each possible matching set of model features, so the
total number of distinguished matchings that are con-
sidered is approximately ( d

fe
)k−1(k − 1)! ln 1

γ
. Each ex-

plicit distinguished matching requires O(md) time to
process, so the overall time required is O(mdk). Note
that if we use g < k − 1 (that is, a smaller set of distin-
guished points than we have been discussing,) we will
examine O(mk−gnk−g) minimal matchings for each
distinguished matching and the overall complexity in-
creases to O(mk−gdk). For this reason, the use of fewer
than g = k − 1 distinguished points is suboptimal.

For implicit matches, we assume that each signif-
icant model in the image comprises some minimum
fraction fi of the image features. The number of trials
necessary to achieve a probability of failure below γ

is approximately f 1−k
i ln 1

γ
, which is a constant inde-

pendent of the number of image features. Since each
trial can be performed in O(d) time, the overall time re-
quired is O(d). If a smaller distinguished matching was
used, the trials would require O(dk−g) time, since we
consider all minimal matchings that contain the distin-
guished matching. Again we see that the use of a small
distinguished matching yields an increased computa-
tional complexity.

Note that the complexity can be reduced further in
some cases by performing subsampling among the min-
imal matchings considered in each trial. Indeed, O(1)

complexity is possible with some assumptions about
the number of features present and the rate of errors
allowable (Bergen and Shvaytser, 1991). We have not
found this further complexity reduction to be necessary
in our experiments. In fact, in most cases the number of
samples necessary with this technique is large. How-
ever, this technique may be useful when the number of
image features is very large.

Grouping techniques can also be used to improve
the computational complexity of the algorithm. If we
have some method that can determine feature sets that
are more likely to belong to the same model, we can
use these as sets of distinguished features in the image.
Such methods can be used to reduce the likelihood of
a false positive match in addition to reducing the com-
putational complexity (Olson, 1998).

Example. Our circle detection case uses implicit
matchings. If we assume that each circle that we wish
to detect comprises at least fi = 5% of the image data
and require that the probability of failure is below
γ = 0.1%, then the number of trials necessary is 2764.
Each trial considers the remaining d − 2 image fea-
tures. Note that techniques considering all triples will
surpass the number of triples considered here when
d > 53.

7. Comparison with Previous Techniques

This section gives a comparison of the RUDR ap-
proach with previous generate-and-test and Hough-
based techniques.

Deterministic generate-and-test techniques require
O(nk+1) time to perform model extraction in general,
since there are O(nk) minimal matchings and the
testing stage can be implemented O(n) time. This
can often be reduced slightly through the use of effi-
cient geometric searching techniques during the testing
stage. RUDR yields a superior computational com-
plexity requirement. When randomization is applied to
generate-and-test techniques, the computational com-
plexity becomes O(mdk+1) (or slightly better using ef-
ficient geometric search) for explicit matches and O(d)

for implicit matches. RUDR yields a superior compu-
tational complexity for the case of explicit matches
and, while the generate-and-test approach matches the
complexity for the case of implicit matches, RUDR
examines less subproblems by a constant factor (ap-
proximately 1

fi
) and is, thus, faster in practice.

In addition, previous generate-and-test techniques
are inherently less precise in the propagation of local-
ization error. The basic generate-and-test algorithm in-
troduces false positives unless care is taken to propagate
the errors correctly (Alter and Jacobs, 1998; Grimson
et al., 1994), since error in the data features leads to er-
ror in the hypothetical model pose and this error causes
some of the models to be missed as a result of a poor
fit. On the other hand, when error propagation is used,
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false positives are introduced. The error propagation
techniques ensure that each of the undistinguished fea-
tures can be separately brought into alignment (along
with the distinguished set) up to some error bounds by
a single model position, this position may be different
for each such feature match. It does not guarantee that
all of the features can be brought into alignment up to
the error bounds by a single position and thus causes
false positives to be found.

Hough-based methods are capable of propagating
localization error such that neither false positives nor
false negatives occur (in the sense that only matchings
meeting the acceptance criterion are reported) (Breuel,
1992; Cass, 1997). However, previous Hough-based
methods have had large time and space requirements.
Deterministic Hough-based techniques that examine
minimal matchings require O(nk) time and consider-
able memory (Olson, 1997b).

Randomization has been previously applied to
Hough transform techniques (Bergen and Shvaytser,
1991; Kiryati et al., 1991; Leavers, 1992; Xu et al.,
1990). However, in previous methods, randomization
has been used in a different manner than it is used here.
While our approach examines all of the data in each
of the subproblems, previous uses of randomization
in Hough-based methods have subsampled the overall
data examined, causing both false positives and false
negatives to occur as a result. While false negatives can
also occur due to the use of randomization in our ap-
proach, the probability of such an occurrence can be
set arbitrarily low, with a logarithmic dependency on
the failure rate.

Our method draws the ability to propagate local-
ization error accurately from Hough-based methods
and combines it with the ability to subdivide the prob-
lem into many smaller subproblems and thus gain the
full benefit of randomization techniques. The result is
a model extraction algorithm with superior computa-
tional complexity to previous methods that is also ro-
bust with respect to false positives and false negatives.

All of the techniques considered so far have been
model-based methods. The primary drawback to such
techniques is a combinatorial complexity that is poly-
nomial in the number of features, but exponential in
the complexity of the pose space (as measured by k).
This can be subverted in some cases by assuming that
some fraction of the data features arises from the model
(this shifts the base of the exponent to be the required
fraction). An alternative that can be useful in reduc-
ing this problem is the use of grouping or perceptual

organization methods that use data-driven techniques
to determine features that are likely to belong to the
same model (for example, Jacobs, 1996; Lowe, 1985).
In cases where models can be identified by purely data-
driven methods, such techniques may be faster than the
techniques described here. However, we have shown
that even imperfect feature grouping methods can im-
prove both the complexity and lower the rate of false
positives in the RUDR method (Olson, 1998).

There are some situations where RUDR can not be
applied effectively. If a single data feature is sufficient
to constrain the position of the model, the RUDR prob-
lem decomposition will not be useful. In addition, the
techniques we describe will be of less value when there
is a small number of features in the image. In this case,
the randomization may not yield an improvement in the
speed of the algorithm. However, the error propagation
techniques will still be beneficial.

8. Case Studies

We have studied the application of these ideas to several
problems. We review the important aspects of these
applications here and discuss additional areas where
RUDR can be applied. The problems described here
show some of the generality of this method. How-
ever, there remain a wide variety of additional problems
where these techniques have not yet been applied.

8.1. Extraction of Geometric Primitives

As previously discussed, the Hough transform is a well
known technique for geometric primitive extraction
(Illingworth and Kittler, 1988; Leavers, 1993). The ap-
plication of RUDR to this method improves the effi-
ciency of the technique, allows the localization error to
be propagated accurately, and reduces the amount of
memory that is required (Olson, 1999).

Consider the case of detecting curves from feature
points in two-dimensional image data. If we wish to
detect curves with p parameters, then we use distin-
guished matchings consisting of p − 1 feature points,
since, in general, p points are required to solve for the
curve parameters. Each distingusihed matching maps
to a one-dimensional manifold (a curve) in the param-
eter space, if the points are errorless and in general
position. Methods have been developed to map mini-
mal matchings with bounded error into segments of the
curve for the cases of lines and circles (Olson, 1999).
O(d) time and space is required for curve detection
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Figure 1. Circle detection. (a) Engineering drawing. (b) Circles found comprising 4% of the image. (c) Perceptually salient circles found
comprising 0.8% of the image. (d) Insalient circles found comprising 0.8% of the image.

with these techniques, where d is the number of data
points extracted from the image.

The case of circle detection has been discussed in
some detail in the running example. Figure 1 shows
the results of using RUDR to detect circles in a binary
image of an engineering drawing. Note that, when a
low threshold is used, small circles are found that are
not perceptually salient. These circles meet the accep-
tance criterion specified, so this is not a failure of the
algorithm.

The image in Fig. 1 contains 9299 edge pixels. In
order to detect circles comprising 4% of the image,
RUDR examines 4318 trials and considers 4.01 × 107

triples. Contrast this to the 8.04 × 1011 possible triples.
A generate-and-test technique using the same type of
randomization examines 1.08 × 105 trials (1.00 × 109

triples) to achieve the same probability of examining a
correct trial, but will still miss circles due to the error
in the features.

The robustness of this technique for line detection
has been compared against other methods in a large

number of synthetic images. The methodology and an
example synthetic image have been previously pub-
lished (Olson, 1999). This methodology has been ex-
tended to include generate-and-test methods here. Five
methods have been compared:

1. The RUDR paradigm with propagated localization
error.

2. The RUDR paradigm without propagated localiza-
tion error.

3. A method mapping pairs of points into the parameter
space, but without decomposition into subproblems.

4. The standard Hough transform.
5. Generate-and-test line detection. Four times as

many trials were used as in the first and second
methods.

Figure 2 shows the results. For each method, the
probability of detecting the single correct line segment
present in the image is plotted versus the probability of
finding a false positive (curved distractors were added
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Figure 2. Receiver operating characteristic (ROC) curves for line detection generated using synthetic data.

to the images) for varying levels of the threshold used
to determine which lines are detected.

The best performance is achieved by the RUDR
paradigm with propagation of localization error into the
parameter space. It is important to note that the RUDR
paradigm fares much worse when localization error is
not propagated carefully. This reason for this is that
the method without propagation only succeeds when
one of the trials that is examined uses a distinguished
matching that is quite close to the model to be de-
tected. However, when a trial with a significant amount
of error is examined, the method becomes likely to fail
(like generate-and-test methods), due to the poor model
fit. This experiment demonstrates the importance of
propagating the localization error into the parameter
space when using techniques with a generate-and-test
component.

8.2. Robust Regression

RUDR has been applied to the problem of finding the
least-median-of-squares (LMS) regression line. In this
case, a single distinguished point is examined in each
trial (since two points are required to define a line). For
each trial, we determine the line that is optimal with
respect to the median residual, but with the constraint
that the line must pass through the distinguished point.

It can be shown that the solution to this constrained
problem has a median residual that is no more than the

sum of the optimal median residual and the distance of
the distinguished point from the optimal LMS regres-
sion line (Olson, 1997a). Now, at least half of the data
points must lie no farther from the optimal regression
line than the optimal median residual (by definition).
Thus, each trial has a probability of at least 0.5 of ob-
taining a solution with a residual no worse than twice
the optimal median residual. The use of randomization
implies that we need to perform only a constant number
of trials to achieve a good solution with high probability
(approximately − log2 δ trials are necessary to achieve
an error rate of δ).

Each subproblem (corresponding to a distinguished
point) can be solved using a specialized method
based on parametric search techniques (Olson, 1997a).
This allows each subproblem to be solved exactly in
O(n log2 n) time or in O(n log n) time for a fixed pre-
cision solution using numerical techniques. These tech-
niques have also been extended to problems in higher
dimensional spaces.

The complexity of our method is superior to the best
known exact algorithms for this problem (Edelsbrunner
and Souvaine, 1990). The PROGRESS algorithm
(Rousseeuw and Leroy, 1987) is a commonly used ap-
proximation algorithm for LMS regression that uses
the generate-and-test paradigm. It requires O(n) time.
The basic method for line detection is to sample pairs
of points from the data and examine the median resid-
ual of the line that passes through the points. The line
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Figure 3. Robust regression examples. The solid lines are the RUDR LMS estimate. The dashed lines are the PROGRESS LMS estimate. The
dotted lines are the least-squares fit.

with the lowest median residual is kept. Unlike our al-
gorithm, this algorithm yields no lower bounds (with
high probability) on the quality of the solution detected.

Figure 3 shows two examples where RUDR,
PROGRESS, and least-squares estimation were used
to perform linear regression. In these examples, we
used 400 inliers and 100 outliers, both from two-
dimensional normal distributions. For these experi-
ments, 10 trials of the RUDR algorithm were consid-
ered, and 50 trials of the PROGRESS algorithm. For
both examples, RUDR produces the best fit to the in-
liers. The least-squares fit is known to be non-robust, so
it is not surprising that it fairs poorly. The PROGRESS
algorithm also results in lower quality fits, since, even
in 50 trials, it failed generate a solution that was close
enough to the optimal solution.

8.3. Object Recognition

The application of RUDR to object recognition yields
an algorithm with O(mdk) computational complexity,
where m is the number of model features, d is the num-
ber of data featuers, and k is the minimum number of
feature matches necessary to constrain the position of
the model up to a finite ambiguity in the case of error-
less features in general position.

We have examined the recognition of three-
dimensional objects using two-dimensional image

data, for which k = 3 (Olson, 1997b). In each subprob-
lem, we compute the pose for each minimal match-
ing containing the distinguished matching using the
method of Huttenlocher and Ullman (1990). We then
use a multi-dimensional histogramming technique that
examines each axis of the pose space separately. After
finding the clusters along some axis in the pose space,
the clusters of sufficient size are then analyzed recur-
sively in the remainder of the pose space. The poses for
all sets of points sharing a distinguished matching with
cardinality k − 1 lie in a two-dimensional subspace for
this case. Despite this fact, we perform the histogram-
ming in the full six-dimensional space, since this re-
quires little extra time and space with our histogram-
ming method. Feature error has been treated in an ad
hoc manner in this implementation through the exami-
nation of overlapping bins in the pose space. Complex
images may require a more thorough analysis of the
errors.

We can also apply these techniques to images in
which imperfect grouping techniques have determined
sets of points that are likely to derive from the same
object (Olson, 1998). This allows a reduction in both
the computational complexity and the rate of false
positives.

Figure 4 shows an example where this approach has
been applied to the recognition of a three-dimensional
object. Also shown in this figure are poses generated
using the alignment method (Huttenlocher and Ullman,
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Figure 4. Three-dimensional object recognition. (a) Corners detected in the image. (b) Best hypothesis found. (c) Example pose generated
using alignment. (d) Example pose generated using alignment.

1990). Figure 4(c) shows a case where the distingui-
shed points are well distributed across of the object.
Even in this case, the pose is significantly in error, with
the upper right corner of the model off by over eight
pixels due to corner detection error and perspective
distortion. When the distinguished points are not well
distributed, the error can be much worse, as is shown
in Fig. 4(d). These examples illustrate the sensitivity to
error that generate-and-test methods suffer from.

8.4. Motion Segmentation

In addition to the applications that we have previously
studied, RUDR can be used to perform motion seg-
mentation with any technique for determining struc-
ture and motion from corresponding data features in
multiple images. In this problem, we are given sets of
data features in multiple images. We assume that we
know the feature correspondences between images (for
example, from a tracking mechanism), but not which
sets of features belong to rigid objects.

Say that we have an algorithm to determine struc-
ture and motion using k feature correspondences in
i images and that there are d features for which we
know the correspondences between the images. (See
Huang and Netravali, 1994 for a review of such tech-
niques.) We examine distinguished matchings of k − 1
sets of feature correspondences between the images.
Each subproblem is solved by determining the hypo-
thetical structure and motion of each minimal matching
(sets of k feature correspondences) containing the dis-
tinguished matching and then determining how many
of the minimal matchings yield consistent structures
for the distinguished matching and motions that are
consistent with them belonging to a single object. This
is repeated for enough distinguished matchings to find
all of the rigidly moving objects consisting of some
minimum fraction of all image features.

Our analysis for implicit matchings implies that we
must examine approximately ε1−k ln 1

γ
trials to find ob-

jects whose fraction of the total number of data features
is at least ε with a probability of failure for a particular
object no larger than γ .
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9. Summary

This paper has described a technique for solving model
extraction and fitting problems such as recognition and
regression that we have named RUDR. This approach
is very general and can be applied to a wide variety
problems where a model is fit to a set of data features
and it is tolerant to noisy data features, occlusion, and
outliers.

The RUDR method draws advantages from both the
generate-and-test paradigm and from parameter space
methods based on the Hough transform. The key ideas
are:

1. Break down the problem into many small subprob-
lems in which only the model positions consistent
with some distinguished matching of features are
examined.

2. Use randomization techniques to limit the number
of subproblems that need to be examined to guar-
antee a low probability of failure.

3. Use clustering or parameter space analysis tech-
niques to determine the matchings that satisfy the
criteria.

The use of this technique yields two primary advan-
tages over previous methods. First, RUDR is computa-
tionally efficient and has a low memory requirement.
Second, we can use methods by which the localization
error in the data features is propagated precisely, so that
false positives and false negatives do not occur.
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Notes

1. Early Hough transform strategies mapped single features into
manifolds in the parameter space, but further work in Hough
transforms has improved on these techniques by mapping sets

of data features into points in the parameter space (Bergen and
Shvaytser, 1991; Leavers, 1992; Xu et al., 1990).

2. This is not always true. For example, consider the case where the
data and the model consist of sets of three-dimensional points
and the transformation space is the six-dimensional space of rigid
motions. Each individual match between a data point and a model
point yields three constraints on the position of the model. How-
ever, a pair of such matches yields only five constraints, since the
rotation around the segment joining the points is unconstrained.
In this case, the additional constraint lies in the distance between
the points, which must be the same in both the model and the data.
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