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Abstract

This paper describes maximum likelihood estima-

tion techniques for performing rover localization in

natural terrain by matching range maps. An occu-

pancy map of the local terrain is �rst generated us-

ing stereo vision. The position of the rover with re-

spect to a previously generated occupancy map is then

computed by comparing the maps using a probabilistic

formulation of image matching techniques. Our moti-

vation for this work is the desire for greater autonomy

in Mars rovers. These techniques have been applied to

data obtained from the Sojourner Mars rover and run

on-board the Rocky 7 Mars rover prototype.

1 Introduction

Visual sensors can be used to reduce the positional
uncertainty in mobile robots that is accumulated due
to dead-reckoning error [14]. This paper describes a
method for performing self-localization in natural ter-
rain by matching a range map generated from the
robot cameras (the local map) to a range map en-
compassing the same terrain that has been previously
generated (the global map).

To perform localization, we �rst compute an occu-
pancy map of the terrain from stereo imagery. This
local map is then compared to the global map using
a similarity measure derived from the Hausdor� dis-
tance [5]. A probabilistic version of this measure has
been formulated using the principal of maximum like-
lihood estimation. The best relative position between
the maps is located using a hierarchical search that
guarantees that the best position in a discretized pose
space is found.

Our motivation for pursuing this work is the Long
Range Science Rover project at JPL, which has de-
veloped the Rocky 7 Mars rover prototype [4]. There
is a current need for increased self-localization ability
in Mars rovers in order to perform with greater au-
tonomy from both operators on Earth and from the

lander bringing the rover to Mars. For example, the
Sojourner Mars rover was limited to moving short dis-
tances during each downlink cycle due to positional
uncertainty and could not venture far from the lander.
The method by which dead-reckoning errors were cor-
rected for Sojourner was through a human operator
overlaying a model of the rover on stereo range data
that was computed from downlinked imagery of the
rover taken by the lander [13].

Previous work on performing automatic visual lo-
calization for rovers on extra-terrestrial missions [1]
has concentrated on rough localization in a large area
by detecting mountain peaks and maximizing the pos-
terior probability of the position given the directions
to the mountains. The average error in the localiza-
tion of this system is 91 meters in the two experiments
reported. In contrast, we are concerned with �ne lo-
calization in a relatively small area and achieve errors
much smaller than a meter.

The techniques described here are e�ective when-
ever a dense range map can be generated in the robot's
local coordinate frame and we have a range map of the
same terrain in the frame of reference in which we wish
to localize the robot. We can thus use rover imagery,
either from the close-to-the-ground navigation cam-
eras or from a rover mast such as the one on Rocky 7
(see Figure 1) to generate the local map. The global
map might also be created from the rover mast or nav-
igation imagery, but it could also consist of imagery
from the lander (including descent imagery), and it is
possible that orbital imagery could be used, although
we will not have orbital imagery of su�cient resolution
to use for rover localization with sub-meter accuracy
in the near future [8].

These techniques are very useful in the context of
a Mars mission. While operating in a small area con-
taining several science targets (such as the area around
the lander that Sojourner operated in), we may per-
form localization using the panoramic imagery gener-
ated at the center of the area as our global map. While
this is not crucial when the lander can see the rover,
the next-generation Mars rover will venture away from
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Figure 1: Rocky 7 Mars rover prototype in the JPL Mars
yard with mast deployed.

the lander and it will be equipped with a mast with
stereo cameras that will allow it to generate panoramic
imagery of the terrain. This allows localization to
be performed by matching the panoramic range maps
generated using the mast imagery to maps generated
from either the low-to-the-ground navigation cameras,
if possible, or by using the mast to image interesting
terrain, if necessary.

We have tested these techniques by matching ter-
rain on Mars that was imaged with Sojourner's stereo
cameras to a terrain map generated from the stereo
cameras on the Path�nder lander. The results indi-
cate that self-localization can performed with these
techniques approximately as well as a human opera-
tor, without requiring a downlink cycle. These tech-
niques have also been implemented on-board Rocky 7
with good results.

2 Terrain maps

While we could potentially use any method for gen-
erating three-dimensional range data of the terrain, we
concentrate on the use of stereo vision, since this is the
method by which Rocky 7 computes range maps. The

techniques that we use to compute the stereo range
data have been described elsewhere [6, 7]. We sum-
marize the important points here.

An o�-line step, where the stereo camera rig is cal-
ibrated, must �rst be performed. We use a camera
model that allows arbitrary a�ne transformation of
the image plane and that has been extended to in-
clude radial lens distortion [2]. The remainder of the
method is performed on-line.

At run-time, each image is �rst warped to remove
the lens distortion and the images are recti�ed so
that the corresponding scan-lines yield corresponding
epipolar lines in the image. The disparity between the
left and right images is measured for each pixel by min-
imizing the sum-of-squared-di�erence (SSD) measure
of a window around the pixel in the Laplacian of the
image over a �nite disparity range. Subpixel disparity
estimates are computed using parabolic interpolation
on the SSD values neighboring the minimum. Out-
liers are removed through consistency checking and
smoothing is performed over a 3�3 window to reduce
noise. Finally, the coordinates of each pixel are com-
puted using triangulation.

Once a range map has been computed from the
stereo imagery, we convert it into a voxel-based map
representation. We �rst rotate the data such that it
has the same relative orientation as the map we are
comparing it to. Here we operate under the assump-
tion that the orientation of the robot is known through
sensors other than vision (for example, both Sojourner
and Rocky 7 have rate gyros and accelerometers and
Rocky 7 also uses a sun sensor for orientation deter-
mination). The localization techniques can also be
generalized to determine the robot's orientation.

The next step is to bin the range points in a three-
dimensional occupancy map of the surroundings at
some speci�ed scale. We eliminate the need to search
over the possible translations of the robot in the z-
direction by subtracting a local average of the terrain
height from each cell (i.e. a high-pass �lter). This step
is not strictly necessary, and it reduces our ability to
determine height changes in the position of the robot,
but it also reduces the computation time that is re-
quired to perform localization. A subsequent step can
be performed to determine the rover height, if desired.
Each cell in the occupancy map that contains a range
pixel is said to be occupied, and the others are said to
be unoccupied.

Figure 2 gives an example of a terrain map that
was generated using imagery from the Mars Path�nder
mission.
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Figure 2: Terrain map generated from Path�nder imagery. (a) Annotated image of Sojourner and rocks on Mars. (b)
Terrain map generated from stereo imagery.

3 Map similarity measure

We have developed a similarity measure for compar-
ing images and maps by reformulating a conventional
image matching measure based on the Hausdor� dis-
tance [5] in probabilistic terms using the principal of
maximum likelihood estimation [10].

In order to formulate the matching problem in
terms of maximum likelihood estimation, we must
have some set of measurements that are a function of
the rover position. We use the distances from the oc-
cupied voxels in the local occupancy map to the closest
occupied voxels in the global map of the terrain with
respect to some relative position between the maps.
Since we search for the best relative position between
these maps, these distances are variables. Let us say
that we have n occupied voxels in our local map. We
denote the distances for these voxels at some posi-
tion of the rover by D1; :::; Dn. While these distances
are not independent of each other, we model them as
such. Recent work on determining the probability of
a false positive for matching with the Hausdor� dis-
tance [3, 11] provides support for treating these vari-
ables independently. We thus formulate the likelihood
function for the rover position, X , as the product of
the probability distributions of these distances:

L(X) =

nY
i=1

p(Di;X); (1)

For convenience, we work in the lnL(X) domain:

lnL(X) =

nX
i=1

ln p(Di;X) (2)

The position yielding the maximum likelihood is
taken to be the position of the rover. The prob-
ability distribution function (PDF) that is used for
each voxel, p(Di;X), determines the matching mea-
sure that is used between the occupancy maps. A
simple two-valued PDF yields a measure equivalent
to the Hausdor� fraction (which is a commonly used
measure for image matching [10]):

ln p(Di; t) =

�
k1 + k2; if Di � �

k1; otherwise
(3)

The actual values of k1 and k2 do not a�ect the rank-
ing of the positions (as long as k2 > 0). In practice,
we use k1 = 0 and k2 = 1.

Superior results can be achieved by modifying this
probability distribution function [10]. Uncertainties
inherent in the occupancy maps can be incorporated
and we need not use this simple two-valued PDF. For
example, we have found that a normal distribution
with a constant additive term works well:

p(Di; t) = max
g2G

k1 + k2e
�jjt(li)�gjj

2=k3 ; (4)

where G is the set of occupied pixels in the global
map, and t(li) is the location of the ith occupied pixel
in the local map according to some relative position,
t, between the maps. This distribution models the
case where the error in feature localization in the oc-
cupancy map has a normal distribution. The added
constant allows for cases where features are not found
at all (e.g. due to range shadows).
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4 Finding the most likely position

We locate the most likely rover position by adapt-
ing a multi-resolution search strategy that has been
applied to conventional Hausdor� matching applica-
tions [11, 12].

As noted previously, we assume that the orientation
of the rover is known from other sensors. Furthermore,
the application of a high-pass �lter to the occupancy
maps removes the need to search in the z-direction to
determine the position of the robot. We thus search
only in the x- and y-directions. This two-dimensional
pose space is discretized at the same resolution as the
occupancy maps so that neighboring positions in the
pose space move the relative positions of the maps by
one map cell.

We �rst test the nominal position of the rover given
by dead-reckoning so that we have an initial position
and likelihood to compare against. Next, the pose
space is divided into rectilinear cells. Each cell is
tested using conservative testing techniques to deter-
mine whether it could contain a position that is bet-
ter than the best found so far. Cells that cannot be
pruned are divided into smaller cells, which are exam-
ined recursively. When a cell containing a single pose
in the discretized pose space is reached, this pose is
tested explicitly.

The key to this strategy is a quick method to test
the cells. A cell is allowed to pass the test if it does not
contain a good pose, but it should never prune a cell
that contains a pose that should pass the test, since
this could result in the best position being missed.

To determine whether a cell C could contain a pose
that is superior to the best one found so far according
to the similarity measure described above, we examine
the discrete pose c closest to the center of the cell. In
order to place a bound on the best position within the
cell, we compute the maximum distance between the
location to which a cell in the local occupancy map is
transformed into the global occupancy map by c and
by any other pose in the cell. Denote this distance �C .
If we treat poses as functions that transform positions
in the local map into positions in the global map then
�C can be written:

�C = max
p2C

max
l2L

jjp(l)� c(l)jj ; (5)

where L is the set of occupied pixels in the local map.

Let PC
i denote the maximum likelihood that the

ith occupied cell in the local map can achieve with
respect to any pose in cell C:

PC
i � max

jjx�c(li)jj<�C

ln p(DG(x); c); (6)

where li is the ith occupied cell in the local map and
DG(x) is the distance transform of the global map.
The distance transform yields the distance from any
cell in the map to the closest occupied pixel in the
map. This operation determines, for each occupied
cell in the local map, the maximum likelihood that
can be achieved over a radius of �C from the relative
position in the global map to which the local cell is
mapped by c.

A bound on the best overall likelihood that can be
found at a position in the cell is given by:

max
X2C

L(X) �

nX
i=1

PC
i (7)

If this likelihood does not surpass the best that we
have found so far, then we can prune the entire cell
from the search. Otherwise the cell is divided into two
cells of the same size by slicing it along the longest
axis and the process is repeated recursively until cells
at the lowest level are reached.

In order to implement this procedure e�ciently, a
breadth-�rst search of the cell hierarchy is used. We
maintain the invariant that each of the cells at the
same level of the search tree have the same dimensions
and the breadth-�rst search examines all of the cells
at each level before proceeding to the next level. Note
that, when the pose space consists of translations, �C

is a function of only the dimensions of the cell, and
not the position of the cell. Furthermore, each PC

i is
a function of only �C and the position that the center
of the cell maps the local cell into the global map, so
we can compute all of these values e�ciently for each
level of the search tree [10]. This allows each cell to
be processed very quickly. For each occupied cell in
the local map, we must only determine the position to
which it is transformed into the global map, look up
the appropriate PC

i at this position and add it to the
running total.

5 Results

To validate these techniques for use on a Mars
rover, we have tested them using data from the Mars
Path�nder mission. A map of the terrain surrounding
the Path�nder lander was �rst generated using stereo
imagery. For each position of Sojourner at which we
tested the localization techniques, we generated an oc-
cupancy map of the terrain using range data from So-
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Figure 3: Sojourner on sol 21 (near \Sou�e"). (a) Composite image from the lander. (b) Image from Sojourner.

journer's stereo cameras. This local map was then
compared to the global map from the lander.

Unfortunately, this has only been possible at a few
locations due to the limited amount of data returned
to Earth, the lack of interesting terrain in some of
the imagery we do have, and the lack of a compari-
son value for most positions (except where Sojourner
was imaged by the lander cameras). In practice, these
techniques could be exercised much more frequently
since they would not require downlinking image data
to Earth and the comparison value is only necessary
for testing. We envision a scenario where the data
from the rover's navigation cameras, which would be
operating frequently in order to perform obstacle de-
tection, would be used to perform localization when-
ever su�cient terrain was evident in the imagery. In
addition, the imagery from mast cameras could be
used for localization when the positional uncertainty
grows beyond the desired level and the imagery from
the navigation cameras is unsuitable.

As an example of the data, Figure 3 shows the po-
sition of Sojourner as seen from the lander and the
view from Sojourner at the end of sol 211 of the Mars
Path�nder mission. Note that the stereo data ob-
tained from Sojourner is not as good as we hope to
achieve in future missions. Accurate stereo data is
achieved only for the central portion of the Sojourner
imagery due to inaccurate calibration of the �sh-eye
lenses. The �eld-of-view that we have to work with is
thus relatively small. However, we have achieved good
localization results with this data.

Table 1 shows the results of localization using the

1A sol is a Martian day

techniques described in this paper versus the localiza-
tion that was obtained by human operator through
overlaying a rover model on the stereo data obtained
from imaging the rover from the lander. For sol 42,
we have two localization results, one prior to and one
after a turn by the rover. The operator localization
was performed after the turn.

The results show close agreement between our tech-
niques and the operator localization for four of the
sols. For sols 4, 27, and 72, there is some disagreement.
Possible sources of error include inaccurate calibration
of either the rover or lander cameras and operator er-
ror in performing localization. Manual examination
of the maps indicates that the localization techniques
determine the qualitatively correct position in these
cases. While no ground truth exists, the similarity
of the positions estimated by these techniques and by
the human operator indicate that these techniques can
perform localization approximately as well as a hu-
man operator. Experiments with a similar algorithm
on terrestrial data yielded average errors of less than
5 cm [9].

Note that these techniques require only a few sec-
onds to perform localization, both for these tests,
which have been performed on a work-station, and
in our implementation on-board Rocky 7.

6 Summary

We have described a method for performing rover
self-localization by performing maximum likelihood
matching of terrain maps. We �rst generate a lo-
cal map of the terrain using stereo vision. This map
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Operator Localization
Sol x y x y

4 3.28 -2.69 3.01 -2.64
10 4.34 -3.24 4.24 -3.27
21 3.32 -2.60 3.37 -2.65
27 -5.42 2.85 -4.98 2.75
42a -3.00 -1.86 -3.02 -1.87
42b -3.00 -1.86 -3.00 -1.87
72 -8.93 -1.57 -8.99 -1.35

Table 1: Comparison of rover positions determined by a
human operator overlaying a rover model on stereo data
of the rover and by the localization techniques described
in this paper.

is compared to a global map encompassing the same
terrain to determine the optimal relative position be-
tween the maps using a maximum likelihood formu-
lation of image matching techniques. This technique
is guaranteed to �nd the best position in some dis-
cretization of the pose space and does not require an
initial estimate of the rover position.

The goal of this method is to provide greater au-
tonomy for Mars rovers and we have applied these
techniques to data from the Mars Path�nder mission.
While the data that we have is limited, and the quality
is not as high as we expect in future missions, rover
localization with accuracy of approximately the same
quality as that obtained from a human operator has
been demonstrated.

Areas that bear further study are the development
of a localizability measure for terrain maps in order
to plan e�ective localization steps, and the develop-
ment of a probabilistic uncertainty measure so that
these techniques can be combined with other methods
for performing localization. In the future, we plan to
integrate these techniques into an integrated naviga-
tion methodology, in which a Kalman �lter is used to
synthesize a rover position estimate from a variety of
sensors and the rover's path planner interacts with the
Kalman �lter and the localization techniques to plan
when and where localization should be performed.
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