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Abstract

Robust navigation through rocky terrain by small mobile
robots is important for maximizing science return from up-
coming missions to Mars. We are addressing this problem
at multiple levels through the development of intelligent se-
quencing, sensor constrained path planning, natural terrain
visual localization, and real-time state estimation. Each of
these techniques will be described, and their complementary
aspects discussed. Experimental results are provided from im-
plementation on our Mars rover prototype operating in real-
istic scenarios.

1 Introduction

Launching in 2003 and again in 2005, NASA’s Mars Sample
Return (MSR) spacecraft will place two science rovers on the
surface of the planet. Each rover will be the primary sample
acquisition system for the mission, venturing out from the lan-
der to core rocks and place instruments against them. Mission
constraints will restrict these surface operations to less than 90
days, with communication only twice per day. Therefore, au-
tonomous operations are required to image, navigate, sample,
and return to the lander. Obviously, the complexity and ac-
curacy of these autonomous operations directly influence the
amount of science operations that will be performed.

For this reason, it has been the objective of the Long Range
Science Rover research project to introduce new functionality
and features into Mars rovers to enable greater science return
from upcoming missions. This paper reports on advances in
four areas of rover systems:dynamic sequence generation,
autonomous path planning, visual localization, and state esti-
mation.

On-board planning with dynamic sequence generation al-
lows much higher level commands to be provided by ground
controllers, while increasing the optimality and robustness
of rover operations on the surface. For instance, during the
Pathfinder Mission, the Sojourner rover [7] was provided ex-
tremely detailed sequences on a daily basis, which fatigued
operators, and disallowed contingency operations when the
flow of execution was non-nominal. Contrary to this, we
have been experimenting with on-board replanning which can
change the execution of daily activities based on unanticipated
variations in quantities such as position, terrain, power, and
time.

For the longer traverses required of upcoming missions, au-
tonomous path planning is desirable since operators will not
be able to see three-dimensional terrain features out to the
more distant goal locations. Whereas Sojourner drove a to-
tal of 84 meters during its entire mission, MSR rovers will
be capable of driving this distance in a single day. But stereo
imagery of the terrain provided to operators will only have
an envelope of 20 meters at best resolution. Therefore, the
path planning advances described here, will allow the rover to
be its own operator. It can image the terrain from periscopic
cameras, select a path through the terrain to the edge of the
effective stereo range, and repeat the process until the goal is
achieved.

Visual localization is a technique for using the changing
view imaged by the rover to accurately determine its change
in position in the environment. It utilizes the same terrain
imagery as path planning, but for the purpose of monitoring
the apparent motion of three dimensional ground features af-
ter the rover has completed a move. In this way, the on-board
position estimate of the rover can be updated to compensate
for errors caused by wheel slippage or rock bumping. On
Pathfinder, this localization functionality was performed man-
ually by operators viewing Sojourner from the fixed position
lander cameras, restricting the update to once a day and per-
mitting operations only within the stereo envelope of the lan-
der. In contrast, the terrain-based localization described here
can be applied to many forms of landerless operations: incre-
mental long traverses, local operations within range of a prior
stereo panorama, localization in descent imagery, and closed
chain rover moves with estimate smoothing.

In addition to periodic visual localization of the rover, we
have developed real-time position and heading estimation us-
ing all other sensors on the vehicle: angular rate, accelerom-
eter, sun sensor, and mobility system linkage (rocker-bogey)
configuration. This technique moves far beyond the simple
dead-reckoning of Sojourner, and improves upon our previous
advances in position estimation with sun sensing [11]. The
results aid navigation during path execution, provide better
input to localization, and replace both in visually featureless
terrain such as sand dunes.

In the next section we describe a typical scenario in which
these techniques are employed for a rover long traverse. This
is followed by sections describing each of the techniques in
greater detail. All have been implemented in our research sys-
tem, Rocky 7 [12], and experimental validation is in progress.
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Figure 1: Aerial view of the Arroyo Seco test site.

2 Long Range Traverse Scenario

To better understand the utility and sequence of operation for
these techniques, this section describes a typical long range
traverse scenario. Figure 1 shows an aerial view of the Arroyo
Seco next to JPL, where we conduct tests requiring traverses
longer than our MarsYard outdoor test facility. This view sim-
ulates imagery that will be obtained during lander descent in
future Mars missions. It is assumed that the actual landing
location is contained in the scene (which is 100 meters, top
to bottom). Therefore, from this view operators and scientists
may select goal locations that are outside of the stereo ranging
envelope of the rover cameras.

We have conducted previous tests in the upper portion of
the image, where the goal location, though distant, was visible
from the start position of the rover. Ongoing tests use the large
hill in the center of the image to obscure the goal from a start
location in the lower left corner of the image.

As an aid to the rover, an intermediate waypoint may be
selected above and to the left of the hill. In addition, science
targets may be specified along the way. When such a list is
provided to the sequence planner, it will generate a set of sub-
goals for the path planner.

Before moving toward each subgoal, mast stereo imagery
is obtained and processed to form a partial panorama and ele-
vation map of the terrain in the desired direction, as shown in
Figure 2. The elevation map is used to select a path through
the local terrain, out to a distance of approximately five me-
ters in the direction of the subgoal. After a path is determined,
the rover moves along it using hazard cameras to avoid previ-
ously unseen obstacles, while position and heading estimation
are used to maintain its course.

Once the envelope of the previous panorama is reached, the
rover raises the mast again for more imaging. First, it looks
back from its new vantage point to perform a localization op-
eration. Then, it images forward in the direction of the current
subgoal, repeating the path planning process. If panoramic
imagery cannot discern a path around a large obstacle, the
rover will move to the obstacle and begin to follow its bound-
ary until a straight line path is possible.

After reaching the subgoal, the sequence planner provides
the rover with the next subgoal. Modification of this subgoal
is possible, and some targets may be discarded if constraints

dictate. Based on the sequencer’s decision, path planning pro-
ceeds to the next subgoal it is provided. Details of this se-
quencer are provided next.

3 Planning and Sequencing

To sequence and prioritize activities during the rover tra-
verse, we have employed a dynamic on-board planning sys-
tem named CASPER (Continuous Activity Scheduling, Plan-
ning, Execution, and Replanning) [2, 3]. CASPER uses tech-
niques from Artificial Intelligence planning and scheduling
to generate rover command sequences and to dynamically
modify those sequences in response to changing operating
context. Generated sequences satisfy the input goals while
obeying each of the rover’s resource constraints and opera-
tions rules. Through dynamic planning, CASPER can au-
tonomously modify planned activities when unexpected or un-
predictable events occur.

Plans are produced for the rover by utilizing an iterative re-
pair algorithm [13] which classifies plan conflicts and resolves
them by performing one or more plan modifications. Con-
flicts occur when a plan constraint has been violated, where
this constraint could be temporal (e.g., a science activity must
occur at a certain time) or involve a rover resource (e.g., the
rover has a limited amount of power) or state (e.g., the rover
must be at a certain position). If orbital or descent imagery
is available to provide global information, CASPER uses a
tangent graph path planner [4] to estimate traversal lengths
and to determine intermediate waypoints that are needed to
navigate around any known obstacles. In addition, optimiza-
tion heuristics can be utilized within CASPER to improve plan
quality. For the scenario discussed below, heuristics based on
the Traveling Salesman Problem were used to reduce overall
traversal distance and execution time.

As the rover moves sequentially through the plan, CASPER
monitors feedback from the rover sensors and control systems.
Examples of this information are: command execution sta-
tus, current position estimate and its uncertainty, and current
power reserves. From these updates, new conflicts and/or op-
portunities may arise, requiring the planner to re-plan in or-
der to accommodate the unexpected events. For example, an
update may cause an immediate plan change. If the wheel
slippage has caused the position estimate uncertainty to grow
too large, the planner can command the rover to stop and per-
form localization earlier than originally scheduled. An update
may also affect activities scheduled much later in the plan. If
a particular traversal has used more battery power than ex-
pected, the planner may need to discard one of the remaining
science goals. Plan updates can also cause a re-ordering of
plan activities.

Figure 3 shows an example scenario in a map, where dark
shapes represent obstacles known a priori (e.g. from lander
descent imagery). In this case, the initial plan for the traverse
will bring the rover to an unexpected obstacle near the first
goal, represented as a lightly shaded shape. Circumnavigation
around this obstacle will move the rover closer to other goals,
triggering CASPER to recognize the situation and re-plan to
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Figure 2: Steps of on-board terrain sensing: panoramic mosaic view from rover mast stereo imager, composite of heights
extracted from stereo views, and terrain elevation map.

Re-planned path

Original planned path

Figure 3: After encountering a previously unknown obstacle
shown in light grey, CASPER replans the sequence of targets.

visit the closest goal first. We are currently evaluating this and
similar scenarios experimentally.

4 Path Planning

While moving to global waypoints selected by CASPER, it
is assumed that previously undetected obstacles may be en-
countered. Therefore, to navigate to the target waypoint, we
have developed an iterative, sensor-based path planner called
RoverBug[5, 6]. It was developed specifically for vehicles
with a limited field-of-view (FOV), and constraints on com-
putational resources. It comprises two operational modes,
motion-to-goalandboundary-following, which interact to en-
sure global convergence. In addition, a “virtual” submode
of boundary-followingimproves efficiency and handles the
limited FOV of the vehicle’s sensors: stereo camera pairs,
mounted on the chassis and on a 1.2 m mast. The visible
region ranged by each stereo pair is roughly a wedge of the

ground plane, with limited downrange radiusR and half-angle
�. For the chassis(R;�) = (1:5m; 45�), and for the mast
(7m; 15�).

The RoverBug motion planner identifies the minimal num-
ber of sensor scans needed to proceed at each step, while
specifying the area to scan and avoiding unnecessary rover
motion. The planner uses a streamlined local model of con-
vex polygons enveloping detected obstacles. This is renewed
at every step to avoid global map maintenance issues. Other
than recorded points and parameters, no information is passed
between steps. However, the algorithm does require good lo-
calization to track the goal position and to determine whether
the rover has executed a loop around an obstacle. Therefore,
the planner has been paired with an on-board localization al-
gorithm described in Section 5.

The RoverBug algorithm relies upon the construction of a
local tangent graph within the visible wedge. The tangent
graph consists of all line segments in freespace connecting the
initial position, the goal, and all obstacle vertices, such that the
segments are tangent to any obstacles they encounter. A linel
is tangentto an obstacleO at a vertexx iff in a neighborhood
of x, the interior ofO lies entirely on one side ofl [4]. The
local tangent graph(LTG) is the tangent graph restricted to
the visible region.

Typically, motion-to-goalis the dominant behavior. Its ob-
jective is monotonic progress toward the goal,T , along the
LTG. After executing the resultant subpath from a given
wedge,motion-to-goalbegins anew. This cycle repeats until
either the rover reaches the goal, or no clear path toT exists
within the visible region. If the planner detects that the rover
cannot make forward progress through the current wedge, the
rover must skirt an obstacle to reach the goal. In this case,
RoverBug then switches to itsboundary-followingmode.

Upon detecting the obstacleO, it is clear that the rover must
circumvent it in order to resume progress towardT . The ob-
jective of theboundary-followingmode is to skirt the bound-
ary of the obstacle, finding shortcuts where possible. Upon
first detecting the obstacle, and on each subsequent imag-
ing step along the obstacle boundary, the algorithm “virtually
slides” along the boundary using “gaze control”, avoiding un-
necessary motion toward the obstacle while progressing as far
as is locally possible around the border.Boundary-following
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Figure 4: Experimental results from a multi-step run using
Roverbug in the JPL MarsYard.

continues until the rover either completes a loop, in which
caseT is unreachable and the algorithm halts, or the locally
visible region contains a new subpath toward the goal. In the
latter case, the mode switches back tomotion-to-goal.

It can be shown that with the two simple operational modes
of motion-to-goalandboundary-following, the RoverBug al-
gorithm is guaranteed to reach the goal or halt if the goal is
unreachable [5]. The algorithm completes in finite time, is
correct, and produces locally optimal paths (that is, shortest
length paths given local knowledge of obstacles). Further-
more, RoverBug deals with the limited FOV of typical all-
terrain rovers in a manner which is made efficient by the use
of autonomous gaze control to reduce the need to sense and
store data.

Experimental data from the use of RoverBug on Rocky 7 is
shown in Figure 4. The path begins in the lower right corner
of the image, toward a goal approximately 21 m distant, in the
upper left. Each wedge depicts a rangemap produced from
mast imagery, and extends roughly 5m from the imaging po-
sition. The obstacles are marked by a black convex hull, and
a grey silhouette. Each subpath ends with an apparent side-
step in the path, which is a position correction. At these spots,
rover localization is performed and the result is used to update
the current estimate of the rover position. This localization
technique is described next.

5 Localization

Automatic visual localization is performed by Rocky 7 in or-
der to correct errors that have accumulated in the rover posi-
tion during traverses, as described in Section 6. It is accom-
plished by imaging the terrain near the rover and comparing
it to a previously generated elevation map. The imaging di-
rection is guided by on-board analysis of the previous map.
Both terrain maps are generated using stereo vision on-board
the rover, as shown in Figure 2.

The problem is formulated in terms of maximum-likelihood

estimation, using the distances from the occupied cells in the
local map to their closest occupied cells in the global map as
measurements. In order to accurately model the sensor un-
certainty, we use a probability density function for the mea-
surements that is the weighted sum of two terms representing
the cases where the measurement is an inlier (in the sense that
the terrain position under consideration in the local map also
exists in the global map) or an outlier [9].

The robot position is determined by a multi-resolution
search strategy which is guaranteed to locate the optimal po-
sition in the discretized search space [10]. The pose space is
first discretized at the same resolution as the occupancy grids
so that neighboring positions in the pose space move the rel-
ative positions of the grids by one grid cell. We then test the
nominal position of the robot given by dead-reckoning so that
we have an initial position and likelihood to compare against.
Next, the pose space is divided into rectilinear cells. Each cell
is tested to determine whether it could contain a position that
is better than the best position found so far. Cells that cannot
be pruned are divided into smaller cells, which are examined
recursively. When a cell is reached that contains a single po-
sition in the discretized pose space, then this position is tested
explicitly.

The uncertainty in the localization is estimated in terms of
both the variance of the estimated positions and the proba-
bility that a qualitative failure has occurred. Since the likeli-
hood function measures the probability that each position in
the pose space is the actual robot position, the uncertainty in
the localization is measured by the rate at which the likeli-
hood function falls off from the peak. In addition, subpixel
localization is performed in the discretized pose space by fit-
ting a surface to the peak which occurs at the most likely robot
position.

Prior to performing localization, the rover analyzes the ter-
rain in the map generated at the initial rover position in order
to select alocalization target. This target is the position in the
terrain that the rover images from its final position in order
to generate a match against the global map. It is important to
select a location that has very distinctive terrain to enable the
localization to be performed with the smallest uncertainty.

The localization target is determined by estimating the
amount of error present in the map computed at the initial
rover position as well as the amount of error that would be
generated by imaging the terrain from the final rover position.
These errors are encoded in a probability map of the terrain
expected to be seen from the final rover position. Each cell
in this map contains an estimate of the probability that the
cell will be seen as occupied by the rover. By treating this
probability map as a terrain map and comparing it to the map
generated at the initial rover position, we can predict the un-
certainty that will occur in the localization for any target that
the rover may view for use in terrain matching. The location
with the lowest predicted uncertainty is selected as the local-
ization target.

Figure 5 shows an example of a target selected using
Rocky 7. The rover was initially located at the bottom corner
of the map facing to the right. Six stereo pairs were used to
build an elevation map of the terrain between nine and twelve
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Figure 5: Example of target selection for localization.

o’clock, out to a distance of five meters. Given the goal lo-
cation three meters in front of the rover, a localization target
at eleven o’clock was selected automatically. After moving to
the goal location, the rover imaged the target again, establish-
ing its new position and replacing the on-board estimate with
the corrected position. In this example the initial estimate er-
ror was made large by using odometry only. Typically, this
localization procedure results in decreasing the error to one
one-percent of the distance traveled.

6 State Estimation

In between visual localization operations, non-visual methods
of state estimation are called for. Such methods are important
in their own right since they serve as backup to vision-based
methods in regions of low visual content and also allow bet-
ter initialization of the vision methods. This section describes
a method to improve the precision of the odometry estimate
by using the full kinematics of the rocker-bogey mechanisms
of the rover as it traverses undulating, bumpy terrain. The
Kalman filtering framework adopted also provides a natural
Bayesian means of combining any visually based motion es-
timates into the full state estimate.

6.1 Rover Model For Estimation

The process model used in the filter is chosen so that the sen-
sor data is used as an input to drive the process equation. This
avoids the difficulty of modeling the detailed process dynam-
ics. Since details are discussed elsewhere [1], we only out-
line some features of the rover contact and kinematics models
here.

The contact point vector is modeled very simply as a set of
one parameter contacts about the equator of each wheel. In
reality there is an additional off-equatorial coordinate for the
contact point at each wheel, a contact rotation angle, and two
parameters that describe the point on the ground [8]. However
the one parameter model suffices to capture and couple the
rotational and translational velocities.

Instead of attempting to formulate an explicit inverse kine-
matics relation for the articulated rover, we choose to embed
the easily established forward kinematics within aconstraint
that is treated as ameasurementin the filter. This exploits the

0 2 4 6 8 10
−10

0

10

20

 ξ
1 

(d
eg

) EST
SIM

0 2 4 6 8 10
−10

−5

0

5

10

 ξ
2 

(d
eg

) EST
SIM

0 2 4 6 8 10
−10

−5

0

5

10

 t   (s)

 ξ
3 

(d
eg

) EST
SIM

0 2 4 6 8 10
−20

−10

0

10

 ξ
4 

(d
eg

) EST
SIM

0 2 4 6 8 10
−10

−5

0

5

 ξ
5 

(d
eg

) EST
SIM

0 2 4 6 8 10
−5

0

5

10

 t   (s)

 ξ
6 

(d
eg

) EST
SIM

Figure 6: Simulation results showing true values and esti-
mates for wheel contact positions.

ability of the Kalman filter to perform the appropriate least-
squares averaging of the action of each kinematic chain in the
rover. Each such forward kinematic chain has a component
defined by sequence of links joining the rover frame to each
wheel contact point, and a component given by the slip be-
tween the wheel and the ground.

We introduce the notion of a slip measurement or con-
straint, that defines the relative 6-DOF motion of the contact
frame on the wheel with respect to the ground. This slip is
a function of the vehicle configuration, the 6-DOF vehicle
velocity, the wheel-to-ground contact point location, and the
joint rates associated with the kinematic chain emanating from
the rover frame to the contact point.

The slip constraint measurement can be decomposed into a
known deterministic component and a component that is only
known in a statistical sense. The deterministic component of
the slip, indicated by a non-zero nominal value of the slip,
is used to capture the effects of a known steering action or a
known average slip rate over different kinds of terrain. The
statistically modeled component is due to wheel-ground in-
teraction at each individual wheel. This is a function of the
controller (compliant or stiff) being used, and the terrain cur-
vature. We have selected a simple un-correlated slip model
for our early implementations, with the covariance strengths
determined by experiments.

6.2 Estimation Experiments

Figure 6 shows the results of a simulation for a rover mov-
ing over undulating terrain. Such simulation experiments are
valuable since ground-truth is easily established. Note that
the tracking of the contact points is quite accurate, although
with some lag. By comparing the performance of the kine-
matic estimator with one based upon dead-reckoning, the im-
proved performance is apparent. Specifically, the averaged
wheel odometry obtained by integrating the speed (as indi-
cated at each wheel) results in a2% error over the actual dis-
tance traveled (even when compensated for the instantaneous
vehicle pitch angle). Using the kinematic estimator, the error
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Figure 7: Experimental results from Rocky 7 showing the es-
timate for wheel contact angles.

in distance traveled is then estimated to within the much im-
proved value of0:3%. This is due to the corrections for the
effects of the nonlinear internal kinematics and the variations
in contact angles at all of the wheels.

We have also conducted experiments with Rocky 7 travers-
ing an obstacle on the right-side of the vehicle. Estimated
contact states are shown in Figure 7. Note that the contact an-
gle variations are quite large under the right wheels as would
be expected by the traversal of those wheels over the obstacle.
Since the final configuration of the rover is such that the right-
side bogey wheels are in the middle of traversing the obstacle,
the corresponding contact points are significantly displaced
from zero at the end of the motion. However, the contact point
for the right front wheel returns to near zero as it proceeds on
level ground after climbing over the obstacle. As expected
the wheels on the left side of the vehicle experience very lit-
tle change in contact angles. The estimated position values are
within 1 cm of the ground-truth data and the estimated contact
angles are within 5 degrees.

7 Summary

This paper has provided an overview of four new techniques
developed to enhance the functionality of autonomous long
range Mars rover navigation: intelligent sequencing, sensor
constrained path planning, natural terrain visual localization,
and Kalman Filter state estimation. While integration and
tests continue, initial results indicate a dramatic improvement
in both knowledge of the rover’s position in the terrain and
navigation decision making based on that knowledge.

8 Acknowledgments

Large systems like ours require the support of many people
beyond the authors. We would like to recognize the follow-
ing individuals for their invaluable contribution to the work
described in this paper: Richard Petras, Darren Mutz, Greg
Rabideau, Mark Maimone, and Samad Hayati.

The research described in this paper was carried out by the
Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space Ad-
ministration. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manu-
facturer, or otherwise, does not constitute or imply its endorse-
ment by the United States Government or the Jet Propulsion
Laboratory, California Institute of Technology.

References
[1] J. Balaram. Kinematic State Estimation for a Mars Rover.

Robotica, Special Issue on Intelligent Autonomous Vehicles,
Accepted for publication, 1999.

[2] S. Chien, R. Knight, R. Sherwood, and G. Rabideau. Integrated
Planning and Execution for Autonomous Spacecraft. InIEEE
Aerospace Conference, Aspen CO, March 1999.

[3] T. Estlin, G. Rabideau, D. Mutz, and S. Chien. Using Con-
tinuous Planning Techniques to Coordinate Multiple Rovers.
In IJCAI Workshop on Scheduling and Planning, Stockholm,
Sweden, August 1999.

[4] J. Latombe.Robot Motion Planning. Kluwer Academic Pub-
lishers, Boston, 1991.

[5] S. Laubach.Theory and Experiments in Autonomous Sensor-
Based Motion Planning with Applications for Flight Planetary
Microrovers. PhD thesis, California Institute of Technology,
May 1999.

[6] S. Laubach and J. Burdick. An Autonomous Sensor-Based
Path-Planner for Planetary Microrovers. InIEEE International
Conference on Robotics and Automation, Detroit MI, 1999.

[7] J. Matijevic et al. Characterization of the Martian Surface
Deposits by the Mars Pathfinder Rover, Sojourner.Science,
278:1765–1768, December 5 1997.

[8] D. Montana. The kinematics of contact and grasp.Interna-
tional Journal of Robotics Research, 7(3):17–32, 1988.

[9] C. Olson. Subpixel Localization and Uncertainty Estimation
Using Occupancy Grids. InIEEE International Conference on
Robotics and Automation, pages 1987–1992, Detroit, Michi-
gan, May 1999.

[10] C. Olson and L. Matthies. Maximum-likelihood Rover Local-
ization by Matching Range Maps. InIEEE International Con-
ference on Robotics and Automation, pages 272–277, Leuven,
Belgium, May 1998.

[11] R. Volpe. Navigation Results from Desert Field Tests of the
Rocky 7 Mars Rover Prototype.International Journal of
Robotics Research, 18(7), 1999.

[12] R. Volpe et al. Rocky 7: A Next Generation Mars Rover Pro-
totype.Journal of Advanced Robotics, 11(4):341–358, 1997.

[13] M. Zweben, B. Daun, E. Davis, and M. Deale. Scheduling and
Rescheduling with Iterative Repair. In J. Zweben and M. Fox,
editors,Intelligent Scheduling, pages 241–256. Morgan Kauf-
man, 1994.

6


