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Abstract

We describe techniques to optimally select land-

marks in order to perform mobile robot localization by

matching terrain maps. The method is based upon a

maximum-likelihood robot localization algorithm that

eÆciently searches the space of possible robot posi-

tions. We use a sensor error model to estimate the

probability distribution of the terrain expected to be

seen from the current robot position. The estimated

distribution is compared to a previously generated map

of the terrain and the optimal landmark is selected by

minimizing the predicted uncertainty in the localiza-

tion. This approach can be used to generate a sensor

uncertainty �eld for use by the robot's planning com-

ponent. Experiments indicate that landmark selection

improves not only the localization uncertainty, but also

the likelihood of success.

1 Introduction

In the localization process, a robot must decide
what landmarks to use in order to determine where
it is. Robots that use sensors with a limited �eld-of-
view (for example, a rover with stereo cameras) must
decide how to position the sensor(s) in order to opti-
mize the ability of the robot to perform localization.

Several recent papers have discussed strategies for
sensor placement or landmark selection for use in nav-
igation or localization. A common approach is to
consider which landmarks, from a pre-determined set
of landmarks, will yield the best localization result.
Sutherland and Thompson [11] developed one of the
earliest methods for landmark selection. They applied
heuristic functions to select a landmark triple, from
the set of such triples, that is likely to yield a good
localization result. Greiner and Isukapalli [2] learn
a function to select landmarks that minimize the ex-
pected localization error. A related technique is given
by Thrun [13], who trains a neural network to learn
landmarks that optimize the localization uncertainty.

Yeh and Kriegman [14] select the subset of fea-
tures from a set of possible features that minimizes

a Bayesian cost of localization. Deng et al. [1] select
a set of landmarks in order to minimize the cost of
sensing over a path segment. Murphy et al. [6] �rst se-
lect candidate landmark triples using heuristics. The
highest ranked candidate (and others, if necessary)
are tested using experimentation with a robot. Sim
and Dudek [9] consider image locations with high edge
density as possible landmarks, which are represented
using an appearance-based method. Landmarks are
detected by matching in the image subspace and the
resulting estimates are combined in a robust manner.
Little et al. [4] �nd stable landmarks by �rst detecting
image corners. The corners that lie on depth discon-
tinuities are eliminated using stereo vision.

Each of these papers considers a problem where
landmarks are selected from a pre-determined set of
possible landmarks. Research that does not assume
a pre-determined set of landmarks includes work by
Simhon and Dudek [10]. They choose regions in which
good metric maps can be established according to
a distinctiveness measure. Grudic and Lawrence [3]
learn a mapping between an image and the robot lo-
cation, but they do not address the problem of where
to best place the camera to obtain the image.

Little of the research to date can be successfully ap-
plied to localization in unstructured outdoor terrain,
which is the problem that we address. We describe a
technique that selects the best landmark to view for lo-
calization knowing only an elevation map of the terrain
and an estimate of the robot's position. We assume
that the robot is equipped with a limited �eld-of-view
(FOV) range sensor, such as sonar or stereo cameras.
Our method selects the position to aim the range sen-
sor in order to optimally perform localization in the
unstructured three-dimensional terrain.

The landmark selection technique that we use is
based upon performing uncertainty estimation using a
maximum-likelihood localization method [7, 8]. Prior
to performing localization, the robot analyzes the ter-
rain in the global map to select a localization target,
which is the position in the terrain that the robot
senses in order to generate a local map to compare
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against the global map. We desire a location that has
distinctive terrain and thus allows the localization to
be performed with a low uncertainty. This assumes
that the error in the robot position is not so large
that the localization target will be outside of the view
of the robot when it attempts to sense this location.
Active vision techniques can be used if, after the robot
attempts to sense the localization target, no distinc-
tive terrain is seen.

The �rst step in determining the localization tar-
get is estimating the error present in the global map
and the error expected from sensing the terrain at the
robot's current position. These errors are encoded in a
probability map of the terrain expected to be seen by
the robot. Each cell in this map contains an estimate
of the probability that the cell will be seen as occupied
by the robot if the robot performs sensing with the cell
in the �eld-of-view. By treating this probability map
as a terrain map, we can apply previously developed
uncertainty estimation techniques [7] to predict the
uncertainty that will occur for any target in the prob-
ability map. The location with the lowest predicted
uncertainty is selected as the localization target.

In addition to improving localization, these tech-
niques can be applied to determining a sensory uncer-
tainty �eld for the robot. The sensory uncertainty
�eld is a concept introduced by Takeda et al. [12]
that measures the expected distribution of errors in
the robot position as the robot moves through some
environment, performing sensing at some interval in
order to improve localization. Given the uncertainty
estimation and target selection methods, we can de-
termine the expected localization uncertainty for any
robot position in the environment.

These techniques have been applied to localization
for Rocky 7, which is a research prototype for Mars
exploration and science operations. In addition to
body-mounted stereo cameras on the front and back,
Rocky 7 has a stereo pair of cameras on a retractable
mast that allows it survey the terrain. See Fig. 1.
We thus concentrate on localization using stereo range
data. However, most of this discussion applies equally
well to other range sensors. Experiments on Rocky 7
and with synthetic data indicate that the landmark se-
lection not only decreases the robot's localization un-
certainty, but also increases the probability of achiev-
ing a qualitatively correct localization result.

2 Terrain matching

The basic localization technique that we use is to
compare a map generated at the current robot position

Figure 1: The Rocky 7 Mars rover prototype in the JPL
Mars yard with its mast deployed.

(the local map) to a previously generated map of the
environment (the global map) [8]. This technique is
reviewed here.

We generate both the local map and the global map
(which may be the combined result of previous local
maps) using stereo vision on-board the robot. The
range image is converted into a digital elevation map
under the assumption that we know the robot orien-
tation through other sensors, although this restriction
can be removed, if desired. To further simplify the
problem, we use a high-pass �lter on the heights so
that the search for the robot position needs to be
performed only in the x and y directions. The gen-
erated representation is then converted into a three-
dimensional occupancy grid.

2.1 Map similarity measure

We formulate the map matching problem in terms
of maximum-likelihood estimation. A convenient set
of measurements that can be used for this problem are
the distances from the occupied cells in the local map
to their closest occupied cells in the global map. De-
note these distances DX

1 ; :::; D
X
n for the robot position

X . The likelihood function for the robot position can
be formulated as the product of the probability dis-
tributions of these distances [8]. For convenience, we
work with logarithms:

lnL(X) =

nX
i=1

ln p(DX
i ) (1)

For the uncertainty estimation to be accurate, it is
important that we use a probability distribution func-
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tion (PDF) that closely models the sensor uncertainty.
This can be accomplished using a PDF that is the
weighted sum of two terms [7]:

p(d) = �p1(d) + (1� �)p2(d) (2)

The �rst term describes the error distribution when
the cell is an inlier (in the sense that the terrain po-
sition under consideration in the local map also exists
in the global map). In this case, d is a combination
of the errors in the local and global maps at this po-
sition. In the absence of additional information with
respect to the sensor error, we approximate p1(d) as a
normal distribution:

p1(d) =
1

�
p
2�

e�(d)
2=2�2 (3)

The second term describes the error distribution
when the cell is an outlier. In this case the position
represented by the cell in the local map does not ap-
pear in the global map (e.g. due to range shadows or
stereo outliers). In practice, we have found that mod-
eling this term as a constant is both convenient and
e�ective [7].

p2(d) = K (4)

Although, p2(d) is not a probability distribution (it
does not integrate to one), using the expected proba-
bility density for a measurement generated by a ran-
dom outlier point yields excellent results:

K =

Z
1

�1

Z
1

�1

p(d)2dxdy (5)

This value can be estimated quickly through examina-
tion of the Euclidean distance transform of the map.

In Equation (2), � is the probability that any par-
ticular cell in the local map is an inlier. For our oc-
cupancy grids, we assume that this value is relatively
large (� = 0:95). In practice, the localization is in-
sensitive to the value of this variable. Finally, � is
the standard deviation of the measurements that are
inliers. This value can be determined from the char-
acteristics of the sensor, or it can be estimated em-
pirically by examining real data, which is the method
that we have used for localization on Rocky 7.

2.2 Uncertainty estimation

We determine the uncertainty in the localization es-
timate by �tting a parameterized surface to the likeli-
hood function in the neighborhood of the highest peak
[7]. Since the likelihood function measures the proba-
bility that each position in the pose space is the actual

robot position, the uncertainty in the localization is
measured by the rate at which the likelihood function
falls o� from the peak.

We assume that the likelihood function can be ap-
proximated as a normal distribution in the neighbor-
hood around the peak location. Fitting such a normal
distribution to the computed likelihoods yields both
an estimated variance in the localization estimate and
a subpixel estimate of the peak location. While the
approximation of the likelihood function as a normal
distribution may not always be ideal, it yields a good
�t to the local neighborhood around the peak and our
experimental results indicate that very accurate re-
sults can be achieved under this assumption.

We �t the peak in the likelihood function with:

ke
�

1

2(1��2)

h
( x��x

�x
)2�2�( x��x

�x
)
�
y��y

�y

�
+
�
y��y

�y

�2i
; (6)

where k = 1

2��x�y
p
1��2

; �x and �y represent the sub-

pixel position estimate, �x and �y are the standard
deviations along the axes, and � describes the orienta-
tion of the axes with respect to the global coordinate
frame. The function is �t using the peak value and the
eight neighboring values using a least-squares criterion
in the log-likelihood domain.

In addition to estimating the uncertainty in the lo-
calization estimate, we can use the likelihood scores
to estimate the probability of a failure to detect the
correct position of the robot [7]. This is particularly
useful when the terrain yields few landmarks or other
references for localization and thus many positions ap-
pear similar to the robot.

3 Probability mapping

In order to predict the uncertainty achievable by
sensing some location (or combination of locations),
we make a probabilistic prediction of the appearance
of the terrain to the sensor. Each cell in this proba-
bilistic map stores a probability estimate that the cell
will be seen as occupied in the sensed map. We call
this the probability mapping of the terrain. This map-
ping should encompass the errors present both in the
generation of the global map and the expected errors
in the new local map.

For the case of stereo vision, Matthies [5] has
found that the errors are well approximated by a two-
dimensional normal distribution with the major axis
aligned away from the cameras. We thus convolve the
global map with two normal distributions, one repre-
senting the error in the global map and one represent-

1449



N(x; y; i; j) =
1
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(7)

�1 = E�1 [x+ i; y + j] �2 = E�2 [x+ i; y + j] � =

�
�1

�2

�
tan �[x+ i; y + j]

ing the error in the local map. Note, however, that
the error in the map is a function of the location be-
ing sensed. The expected error grows with the square
of the distance to the camera. We thus allow the width
of the normal distributions to vary with the position
in the environment.

Our position-variant spreading function is given by
Equation (7) above. In this equation, E�1 [x+ i; y+ j]
and E�2 [x+ i; y+ j] are the expected standard devia-
tions at the location (x+ i; y+ j), and �[x+ i; y+ j] is
the orientation of the distribution (i.e. the direction of
the sensor position with respect to (x+ i; y+ j) when
the map is created).

To estimate the error in the global map, we use:

PG(i; j) =

WX
x=�W

WX
y=�W

M(x+i; y+j)N(x; y; i; j); (8)

where M(x; y) is the global map, 2W +1 is the size of
the convolution window, and N(x; y; i; j) is the distri-
bution described above. Incorporating the expected
error in the local map, we get:

P (i; j) =

WX
x=�W

WX
y=�W

PG(x+i; y+j)N(x; y; i; j): (9)

Of course, the instances of N(x; y; i; j) in (8) and
(9) will be somewhat di�erent since the expected stan-
dard deviations and orientations will be di�erent for
the points in the global map versus the local map.

4 Landmark selection

Given the probability mapping of the terrain, we
can now estimate the uncertainty that will result from
pointing the range sensor at some location in the envi-
ronment and performing localization using the visible
terrain. This is performed by treating the correspond-
ing terrain patch in the probability mapping as the
local map and using the uncertainty estimation equa-
tions described above.

In our implementation, we approximate the general
normal distributions used to model the sensor error
as rotationally symmetric 2-D normal distributions.
While the error due to stereo vision is much greater

along the direction parallel to the camera axes, error in
the robot's knowledge of its orientation will yield addi-
tional errors in the perpendicular direction. Further-
more, our experiments indicate that the precise shape
of the distribution does not have a large e�ect on the
landmark selected. The use of rotationally symmet-
ric normal distributions makes the function separable
and we can thus perform the convolutions eÆciently
by treating the x and y directions sequentially. On
the other hand, it is crucial to use a wider and at-
ter distribution at locations further from the sensor,
in order to model the increase in error with distance.
We must thus continue to vary the distribution as a
function of the location in the space.

We can make the computation even more eÆcient
by discretizing the space of allowable standard devia-
tions and pre-computing the normal distributions cor-
responding to them. In our implementation, we select
ten standard deviations (related by powers of

p
2).

For each position in the space, we select the distribu-
tion with the closest standard deviation to the desired
value. This approximation allows the probability map
to be computed quickly upon demand for a region of
the terrain map.

Finally, we use dynamic programming to compute
the likelihood function from Section 2.1 for each of
the terrain regions considered as a possible landmark
for performing localization. This is performed at the
optimal localization position and the neighboring lo-
cations in the pose space in order to apply the un-
certainty estimation techniques from Section 2.2. The
terrain landmark yielding the lowest localization un-
certainty is selected as the localization target.

5 Results

We have tested these techniques in several experi-
ments using real and synthetic data. An example us-
ing a synthetically generated elevation map is shown
in Fig. 2. This case models a scenario where the robot
is moving in a terrain consisting of rocks of various
sizes, like the terrain a rover would encounter on the
surface of Mars. The positions near large rocks are
considered to be good targets, as shown by the un-
certainty scores represented by Fig. 2(b). The target
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(a)

(b)

Start Target Finish

(c)

Figure 2: Landmark selection example. The boxed �'s
are the (interchangeable) robot beginning and ending po-
sitions. The selected target region is marked by a larger
box. (a) Digital elevation map. (b) Estimated uncertain-
ties for landmarks centered at each location. (c) Three-
dimensional map.

that is chosen is a position that contains not only a
large rock, but also smaller rocks that are also useful
in performing the localization.

In order to test the localization performance when
using the target selection techniques, we simulated lo-
calization problems by sampling local maps from the
distribution speci�ed by the probability map of the
terrain and then performing localization against the
global map. Our experiment selected robot positions
at random from the terrain. We next performed target
selection and, �nally, localization using the selected
target. In addition, we tested localization using the
target at the position directly between the robot start-
ing and ending positions, and eight other targets on
an evenly space grid around this position.

The results of this experiment are dramatic. When
target selection was used in 1000 trials using the ter-
rain shown in Fig. 2, localization found the qualita-
tively correct position in 97.8% of the trials. However,
when target selection was not used, the localization
succeeded in only 29.5% of the trials, since much of
the terrain provides little useful information for local-
ization. In addition, the successful cases were 15.3%
more accurate when target selection is used. This ex-
periment thus demonstrates a case where target se-
lection is not only useful in reducing the localization
uncertainty, but also critical in obtaining the correct
qualitative position.

6 Sensor uncertainty �eld

Our approach can be used to generate a sensor un-
certainty �eld [12] for a known terrain map. This �eld
is the expected distribution of error in the sensed robot
position as a function of the robot location. While,
in general, the uncertainty will depend on the path
taken to each position, we consider the uncertainty as
a function of only the robot position.

We can, of course, compute the sensor uncertainty
�eld using a brute-force method, where the best land-
mark is selected for each location of the robot and the
resulting expected uncertainty is stored for each. Un-
fortunately, this process requires much computation.
Note, however, that the uncertainties change slowly
as the robot position that is examined is moved in
the pose space. Our strategy is to �rst sample the
pose space at a coarse resolution and then examine
locations of interest, such as those that yield low un-
certainties, subsequently at a �ner resolution.

Figure 3 shows an example where a sensor uncer-
tainty �eld was generated for the terrain shown in
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Figure 3: Sensor uncertainty �eld generated for the terrain
in Fig. 2. Bright values correspond to low uncertainties.

Fig. 2. As expected, lower uncertainties occur near
large rocks. However, the uncertainty is increased at
the location of the rocks, since we use a method where
the rock is not useful for localization if the robot is di-
rectly on top it.

7 Summary

We have described a method to select the sens-
ing location for performing mobile robot localization
through matching terrain maps. The localization
method that we use constructs a likelihood function
in the space of possible robot positions. The uncer-
tainty is estimated for localization using a local map
by �tting a normal distribution to the likelihood func-
tion generated. We select the best landmark for lo-
calization by minimizing the expected uncertainty in
the robot localization. In order to predict the un-
certainty obtained by localization using various land-
marks, our method constructs a probabilistic repre-
sentation of the terrain expected to be sensed at any
position in the global map. Treating the patches of
this \probability mapping" of the terrain as a local
map allows the uncertainty expected by sensing the
terrain patch to be estimated using the surface �tting
techniques. We have applied this technique to robot
localization in rocky terrain with excellent results.
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