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Abstract

It is common in object recognition algorithms based on
viewpoint consistency to find object poses that align many
of the object features with features extracted from a search
image. Algorithms usually treat these features as having no
information other than location. However, in many applica-
tions, the features are much more distinctive than this. This
distinctiveness can be used to improve recognition with re-
spect to both the search time and the reliability of the recog-
nition. We modify an efficient clustering method for detect-
ing objects using geometry to incorporate short trees that
help prune many of the possible matches between object
features and image features prior to the more expensive
clustering step. The methodology is applied to a problem
of computing a spacecraft position with respect to a celes-
tial body by recognizing the configuration of craters visible
on the surface.

1. Introduction

The recognition of objects using a geometrical model
(for historical reasons, sometimes inaccurately called CAD-
based vision) has fallen out of favor in the computer vision
community. In large part, this is due to the requirement of
an accurate geometrical model of the object. However, there
are still many problems that can be solved using this frame-
work. One example, of particular interest to us, is determin-
ing the position of a spacecraft with respect to a celestial
body through recognizing the configuration of craters visi-
ble on the surface of the body.

Previous work has often assumed that the point features
extracted from a model and an image contain no additional
information. However, this is not usually the case. For ex-
ample, in matching craters to a previously constructed ob-
ject model, the crater position can be augmented with the
radius and orientation in three dimensions. If an elliptical

model for craters is used, the ratio of the major and minor
axes provides additional information. In our work, we have
found that the craters are largely round, although they ap-
pear elliptical from most viewpoints.

We build upon a previous pose clustering technique [6]
that has been generalized for the detection of any param-
eterized model [7], through a combination with interpreta-
tion tree search. Our solution integrates pose clustering with
ideas developed for searching an interpretation tree [4]. The
interpretation tree is a data structure where each node in the
tree represents a set of matches between the object features
and the image features. The set represented by each node is
the union of the set represented by the parent of the node
and one additional match. Branches of the tree are pruned
when a set of geometrically inconsistent matches have been
hypothesized in some node.

Our method starts searching the interpretation tree, but
stops at the third level of the tree and aggregates the match
triples that remain at this level in separate groups that share
pairs of matches. Randomization is used to reduce the over-
all number such pairs that need to be examined, similar to
RANSAC [3] and other hypothesize-and-test methods.

2. Efficient pose clustering

Pose clustering [8] is a method of object recognition that
builds upon the ideas of the Hough transform. A conven-
tional application of the technique considers many hypo-
thetical matches between small sets of model and image fea-
tures. Each set yields a finite set of object poses that bring
the features into alignment. Clusters of such poses in the
pose space yield parameters that (nearly) bring many model
features into alignment with image features and are, thus,
good candidates for positions of the object.

Let � be the minimum number of matches between
model features and image features for which a finite set
of object poses brings them into alignment. Note that � is
three for three-dimensional objects in arbitrary poses. We



will call these minimal sets of matches match sets. A sim-
ple pose clustering method could examine all of the match
sets with cardinality �, determine the poses that bring them
into alignment, and then find clusters among these poses in
the pose space. Randomization can be used to reduce the to-
tal number of poses that must be computed.

We build upon an efficient formulation of pose cluster-
ing that examines constrained subproblems [6]. It is not dif-
ficult to prove that subproblems that examine only match
sets that share � � � of the same matches (called the dis-
tinguished matches) will yield essentially the same results
as the full set of poses, if the distinguished matches are, in
fact, correct matches. This leads to a method that is a hybrid
of hypothesize-and-test methods and pose clustering. The
distinguished matches are hypothesized (using randomiza-
tion to limit the number of hypotheses) and pose clustering
is used to test whether the distinguished matches are cor-
rect. Analysis has shown that this methodology has both a
low complexity and high resistance to noise, occlusion, and
clutter in the image.

3. Pruning using short trees

The pose clustering methodology described above as-
sumes that any set of � matches can be brought into geo-
metrical alignment by some pose of the object, but this is
not the case if the features contain more information than a
point in space. For example, if the points are oriented, then
simply bringing the locations of the points into alignment is
not sufficient for a match, since the orientations should also
be in agreement.

We use a short tree to evaluate the feasibility as each
match is added to the match set, pruning those that can be
shown to be infeasible. See Figure 1. When the third level
of the tree is reached, the method reverts to the pose clus-
tering methodology described above. That is, each feasible
set of three matches that share some pair of distinguished
matches are clustered. The matches that share a pair of dis-
tinguished matches are simply those that are children of the
same node at level two, since the third level is generated by
adding additional matches to the sets at level two.

At this stage, we use the method of Huttenlocher and Ull-
man [5] to compute the poses (under weak-perspective) that
bring the match sets at level three into alignment. Cluster-
ing is performed using a hierarchical binning method that
examines the separate pose parameters in sequence. Each
cluster in the previous parameter is expanded along a new
parameter, keeping only the clusters are present in all of the
parameters examined so far. This continues until the com-
plete set of parameters has been examined.

Note that randomization is easily included in this frame-
work. This corresponds to expanding only the nodes neces-
sary to examine a randomly selected set of the nodes that

Figure 1. A short tree is used to find the
sets of three matches that satisfy geometri-
cal constraints. Pruning is performed at each
level to remove sets that are infeasible. At
level three of the tree, the sets that share
two matches (they have the same parent) are
clustered to determine if a single pose brings
many of the sets into alignment.

would be present at level two of the tree. In this manner,
only a fraction of the possible sets of distinguished matches
need to be considered.

Overall, the average complexity is highly dependent on
how much pruning can be performed at each level of the
tree. With randomization, the worst case complexity is
������, where � is the number of model features and �

is the number of image features. A complete analysis can
be found in [6]. Pruning reduces the number of matches be-
tween model and image features that must be considered.
This reduces the effective values of � and �.

4. Application to crater matching

In order to determine the position of a spacecraft with
respect to a celestial body, we use the techniques described
above to match the craters visible to the spacecraft to a pre-
viously catalog of craters on the body. Each crater is treated
as an attributed point corresponding to the center of the
crater, where the attributes are the radius and orientation
of the crater. The radius and orientation have two dimen-
sions in the image, but three dimensions in the crater cata-
log. The spacecraft pose is computed with the full six de-
grees of freedom.



The crater attributes are used to remove matches that are
incompatible early in the search. In addition, an initial es-
timate of the spacecraft position is used to prune matches
that are not feasible. The following subsections describe the
methods used to prune sets of crater matches.

4.1. Crater pairs

For each crater detected in the image, the major axis of
the ellipse detected corresponds to a cross-section of the
crater. The ratio of the axes between two craters in the im-
age must be the same as ratio of the crater radii in the cat-
alog (modulo image noise and detection error). We elimi-
nate pairs of craters if the ratio is not within 50% of the cor-
rect ratio from the catalog. We set this threshold to prune
only those craters that are clearly wrong, since other tests
will also eliminate many cases.

In addition, each pair of craters must be mutually visible
from some viewpoint. We prune any pair of craters that has
more than a 60 degree difference in orientation. While this
constraint will prune a few more crater pairs than necessary,
those that are pruned are less likely to yield good results,
since at least one crater will be considerably foreshortened
in the image.

4.2. Crater triples

If all three pairs of matches in the triple pass the previous
test, we compute the poses that bring the crater centers into
alignment. We can do further pruning on these poses. For
example, if the pose requires that one or more of the craters
is on the wrong side of the asteroid to be seen, then it can be
pruned. We check to see whether the pose specifies that one
of craters has an orientation greater than 75 degrees away
from the camera. If so, then the pose is pruned, since the
crater would be either on the wrong side of the asteroid or
extremely foreshortened.

The estimated pose also tells us what size the crater
should be in the image, what the ratio of the major and mi-
nor axis lengths should be, and the orientation of the crater
in the image. These values are also used for pruning poses
from consideration.

4.3. Pose filtering

If we have an initial estimate of the spacecraft position
and an error covariance matrix, the pose estimation process
can be made much more efficient by pruning the matches
that are not consistent with the position estimate.

We represent the spacecraft orientation using a quater-
nion � and the position with a 3-vector �, so the overall
spacecraft position is represented by 7 values (4 for the

quaternion and 3 for the position), although only 6 are inde-
pendent. Given the error covariance matrix, with values � �� ,
for � � �	 
 � �, we can use covariance propagation meth-
ods to project the error covariances into an ellipse in the im-
age space centered at the position given by the projection of
the catalog crater according to the estimated spacecraft po-
sition.

Let �� be the vector �� ��, so that we can use quaternion
multiplication to rotate the vector. The equation that takes
points from the asteroid frame of reference to the spacecraft
camera frame of reference is:

�� 	 ����� 
 �� (1)

If we view the point from the spacecraft camera with focal
length  , the image coordinates are:
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The position covariance is propagated into the image co-
ordinates through linearization by taking the partial deriva-
tives of this equations with respect to the pose parameters
(i.e. the Jacobian �).

The error covariance matrix in the image space is given
by �� 	 ����

� , where �� is the covariance matrix in the
pose space. We want to decide if an image crater is close
enough to the estimated position of a catalog crater, so we
calculate the error vector:

� 	 �� � � ����
� 
 �	 (3)

where �� is the center of the crater in the image and �� is
the center of the crater in the catalog. If the errors yield a
multi-variate normal distribution around the estimated point
in the image, then we get a chi-squared test statistic (with 1
degree of freedom) using:

�� 	 �����

� �� (4)

If this test statistic is above a threshold (we use 3.841), then
the crater can be eliminated from consideration.

This test is used every time we consider a match be-
tween a particular image crater and a catalog crater. Over
the course of the algorithm, matches are often considered
several times. We further improve the efficiency by main-
taining a look-up table for matches that have been previ-
ously considered, so that the computations need not be per-
formed again.

5. Results

Figure 2 shows an example of a matching problem
solved using this methodology. This example uses an im-
age of the Eros asteroid captured during the NEAR
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Figure 2. Example result using NEAR im-
agery of the Eros asteroid. (a) Craters de-
tected. (b) Pose of asteroid computed after
crater matching. Matched craters are white.
Unmatched craters are grey.

(Near Earth Asteroid Rendezvous) mission [1]. A cata-
log of 955 major craters on the asteroid was constructed
for the mission. We used this catalog for automatically es-
timating the spacecraft position off-line using images of
Eros.

We, first, detected craters in the images [2]. The crater
detection techniques found 17 craters in the test image
shown. During the matching phase, the best cluster matched
8 of the detected craters to the catalog. The remaining 9
craters were not present in the previously constructed crater
catalog. The algorithm required approximately 2 seconds of

processing on a 333 MHz Sun UltraSPARC.
The techniques have been tested on dozens of additional

images of Eros and Mars.

6. Summary

This work has examined methods to improve the effi-
ciency of object recognition using pose clustering by incor-
porating a short tree search. The tree search examines indi-
vidual matches, as well as pairs and triples of matches, be-
tween object and image features. When an incompatibility
is found, the branch of the tree is pruned. Finally, matches
are clustered in the pose space at the third level of the tree
search. The resulting method is much faster than the orig-
inal pose clustering technique. It has been successfully ap-
plied to spacecraft pose estimation by crater matching.
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