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Abstract

This paper examines techniques for a mobile robot to

perform self-localization in natural terrain using stereo

vision. The range map computed from a stereo image

pair is �rst processed to generate a three-dimensional

occupancy map of the terrain. This occupancy map is

then compared to a similar map in a known frame of

reference. The optimal relative position between the

maps with respect to a Hausdor� measure is deter-

mined using e�cient search techniques. These tech-

niques allow the localization of a mobile robot to be

performed robustly in natural terrain, even in the pres-

ence of noise, scene clutter, and missing data.
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1 Introduction

In this paper, we consider the problem of determin-
ing the position of a mobile robot with respect to a
known frame of reference by comparing a range map
computed from a stereo pair of images taken at the
robot's current location to a range map from a previ-
ous location or to a composite range map of the envi-
ronment that has been previously generated.
Our motivation for studying this problem is to in-

crease the autonomy of the Rocky 7 Mars rover [14].
See Figure 1. While the position of the rover is con-
tinuously updated through dead-reckoning using wheel
encoders and an angular-rate sensor, wheel slippage
and sensor drift cause an accumulation of error in this
estimated position [8]. It is thus desirable to have ad-
ditional means for periodically localizing the rover to
correct this accumulated error. Previous techniques
that have been used to localize Rocky 7 have concen-
trated on imaging the rover from the lander that will
carry the rover to the Mars surface [15]. However, this
limits the operable range of the rover to a small area
around the lander. To enable operation of the rover
at distances far from the lander, autonomous localiza-

Figure 1: The Rocky 7 Mars rover prototype.

tion procedures are necessary and we consider the use
of stereo vision for this problem here.
A mast system has been integrated into Rocky 7

that allows (among other operations) stereo pairs to be
taken from a height of approximately 1.5 meters above
the ground, in addition to the stereo pairs that are
taken by the navigation cameras close to the ground.
See Figure 2. Such stereo pairs allow the generation
of a range map of the immediate surroundings of the
robot. The premise of this work is that we can robustly
determine the position of the robot in natural terrain
using iconic matching techniques by comparing this
range map computed at the robot's local position with
a range map encompassing the same terrain for which
we know the frame of reference.
While other research has also performed matching of

maps to perform localization and/or terrain modeling
(e.g. [1, 2, 6, 10]), previous iconic matching meth-
ods require an initial estimate of the robot's position
and use iterative re�nement techniques that can reach
a sub-optimal local minima. The techniques that we
describe here can operate in a natural environment
using a three-dimensional map, they are guaranteed
to �nd the globally optimal solution with respect to
the matching measure that we use, without requiring
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Figure 2: Rocky 7 with the mast deployed.

an initial estimate of the robot position, and they are
computationally e�cient.
The balance of the paper explores these ideas in

greater detail. Section 2 discusses the process by which
the range maps of the robot's surroundings are com-
puted and describes the techniques that we use to
transform these range maps into a voxel representa-
tion that allows robust and e�cient matching. Sec-
tion 3 discusses our use of Hausdor� matching tech-
niques [4, 5, 11, 13] to �nd the relative position be-
tween the maps such that the maximum number of
voxels are matched up to a given error bound. Sec-
tion 4 describes results that have been obtained using
this method. Finally, Section 5 summarizes this work.

2 Computing range maps

We compute range maps from image pairs using pas-
sive stereo vision [7]. It is assumed that the robot cam-
eras have been calibrated o�-line. Rocky 7 uses a cam-
era model that allows arbitrary a�ne transformations
of the image plane [16] and that has been extended to
include radial lens distortion [3]. The images are �rst

warped to remove the lens distortion and the images
are recti�ed so that the corresponding scan-lines yield
corresponding epipolar lines in the image. The image
disparity at each pixel is measured by minimizing the
sum-of-squared-di�erence (SSD) measure of a window
around the pixel over a �nite disparity range. Subpixel
disparity estimates are computed using parabolic in-
terpolation. Smoothing is performed over a 3�3 win-
dow to reduce noise. Incorrect matches are �ltered out
in this process using both a left-right-line-of-sight con-
sistency check and a process to remove small patches
where the disparities do not agree with surrounding
values. Given the disparities, the coordinates of each
pixel are computed by triangulation. Details of these
techniques can be found in [7, 9].

Once a range map has been computed from the
stereo imagery, we convert it into a voxel-based map
representation. We �rst rotate the data such that it
has the same relative orientation as the map we are
comparing it to. Here we operate under the assump-
tion that the orientation of the robot is known through
sensors other than vision (for example, a sun sensor,
accelerometer, and gyrocompass have been incorpo-
rated into Rocky 7). For testing, and in case the ac-
curacy of the sensors is lower than desired, we have
used a simple technique for determining the orienta-
tion of the ground plane, assuming that the ground is
relatively at. This technique simply determines the
two principal components of the range points that are
detected in the image and rotates them such that they
are parallel to the xy-plane.

The next step is to bin the range points in a two-
dimensional grid covering the xy-plane at some spec-
i�ed scale. We approximate the terrain as a single-
valued function of the position in the xy-plane (i.e.
z = f(x; y)). We thus take the average of the heights
of the range points that fall into each of the bins as
the height of the surface at this location. Now, we can
eliminate the need to search over the possible transla-
tions of the robot in the z-direction by subtracting a
local average of the terrain height from each cell (i.e.
a high-pass �lter). This step is not strictly necessary,
and it reduces our ability to determine height changes
in the position of the robot, but it also reduces the
computation time that is required to perform local-
ization. Finally, we perform smoothing on this two-
dimensional grid. This smoothing allows small areas
that were not hit by any range pixel (e.g. due to
sparseness of the range pixels) to be given values, but
does not �ll in large areas (such as range shadows).
The un�lled pixels do not otherwise contribute to the
smoothing.

To facilitate matching using a Hausdor� measure,
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Figure 3: Range maps are computed using stereo vision. (a) Left image of a stereo pair. (b) Height of pixels determined
using stereo triangulation. (Black pixels indicate no data.) (c) Surface extracted from the pixel heights.

we transform this two-dimensional map into a three-
dimensional occupancy map, where the z-axis is dis-
cretized at the same scale as the x- and y-axes. For
each column in the map, the cell corresponding to the
height of the surface at this (x; y)-position is said to
be occupied, and the others are said to be unoccupied.
Figure 3 shows intermediate steps of this process.

3 Matching range maps

Once the occupancy map has been computed for the
current position of the robot, we need to �nd the best
relative position between this map and a map for which
we know the frame of reference (which we call the
global map). For example, we may compare against
the map for a previous position of the robot, or a com-
posite map that has been generated for the robot's
operating environment (possibly through combining
maps taken from the robot's previous locations). Al-
ternatively, this map may be generated from descent
or orbital imagery or from an image panorama from
the rover or lander. To perform this matching, we use
an image matching technique based on the Hausdor�
distance [4].

3.1 The Hausdor� distance

For two sets of points, A and B, the directed Haus-
dor� distance from A to B is:

h(A;B) = max
a2A

min
b2B

jja� bjj ;

where jj�jj is any norm. This yields the maximum dis-
tance from a point in set A to the nearest point in set
B. However, this is not robust to outliers in A or miss-
ing points in B. For image matching, we wish to allow

at least a small fraction of outliers that do not match
well. We thus use the partial Hausdor� distance [4]:

hK(A;B) = Kth

a2A

min
b2B

jja � bjj

This measures the Hausdor� distance among the K

points in A that best match points in B (we thus al-
low jAj � K outliers in the set A). This measure is
asymmetric, as it does not consider how well each of
the points in B is �t by A. This allows matching to be
performed against a large global map, where the map
generated at the local robot position is contained as a
subset of the global map.
A variation on this measure is to determine the max-

imum number of points, K, such that the measure is
below a given error threshold:

hK(A;B) � �

This formulation is easy to work with, since, to com-
pute this number, we must only count the number of
points in A that match some point in B up to the
error, �. We thus use this formulation in this work.

3.2 Search strategy

While previous Hausdor� matching methods [4, 5,
11, 13] have been applied to matching two-dimensional
image edge maps, we can apply similar techniques to
the matching of three-dimensional image surface maps.
In this method, each occupied cell in the maps is

represented by the single point at the center of the
cell. The space of possible relative positions between
the maps is also discretized. Since we search over
only translation in the x- and y-directions, an obvious
discretization exists such that each discrete position
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aligns the centers of various grid cells between the two
maps (assuming that the maps have the same scale).
This discretization is guaranteed to �nd the optimal
solution if we use the l1 or l1 norm in our matching
measure with an error, �, that is an integral number
of pixels.
We could now examine each possible relative po-

sition between the maps in this discretization to de-
termine which is optimal, but this method would be
computationally expensive. We instead use a multi-
resolution search technique that has proven useful in
object recognition applications [5, 11, 13]. The basic
idea is to consider the space of possible relative posi-
tions as a set of rectilinear cells, each of which cov-
ers many positions. Each cell is tested to determine
whether it could contain a position that satis�es some
matching criterion. If it is determined that the cell
cannot contain such a position, then it is pruned. Oth-
erwise, the cell is divided into subcells and the process
is repeated recursively. When a cell is reached that
contains a single position in the discretization, this
position is tested explicitly. Note that, since we are
seeking the single best relative position between the
maps, our matching criterion is adaptive. The crite-
rion becomes stricter as we �nd positions of increasing
quality in the search.

3.3 Pruning mechanism

The key to this method of searching the parameter
space is a fast method to conservatively test whether
a cell can contain a position satisfying the matching
criterion. The test can fail to rule out a cell that does
not contain such a position, but it should never rule
out a cell that does contain one. To accomplish this,
we examine a distance transform [12] of the global oc-
cupancy map.
First, the occupancy map is dilated with a cubic

structuring element centered at the origin that has
2� + 1 pixels on each edge. This operation ensures
that each cell within � in each direction of an occu-
pied cell in the original map is also occupied. Next,
a distance transform of this map is computed. This
distance transform measures the distance from each
cell in the map to the closest occupied cell that lies in
the same horizontal plane (since we search only in x

and y). Let M be the set of occupied pixels in a map.
The distance transform of the map can be de�ned as
follows:

DM (X) = min
Y2M

jjX�Yjj

We are interested in the digital distance transform of
the map, and this can be computed e�ciently using

a two-pass algorithm [12]. Now, a probe into the dis-
tance transform of our dilated map yields zero if the
cell is within � of an occupied cell in the undilated
map, and otherwise yields the distance to the closest
occupied cell in the dilated map.
Consider the set of distances, fd1; :::; dng, that are

obtained by probing the distance transform at the po-
sition of each of the occupied cells in the robot's local
map with respect to some relative position between
the maps. If this set has K zero values, then at least
K cells in the local map are within � of occupied cells
in the global map. Otherwise, the Kth largest value
in the set yields a bound on the distance from the ex-
amined relative position to a position that could yield
K zero values [4].
We can use these ideas to formulate an e�cient

test for a cell in the parameter space in the follow-
ing manner. Let us say that the best position that
has been found so far yields B cells in the local map
that match the global map up to the allowed error (i.e.
B probes into the distance transform for this position
yield zero). To test a cell, we �rst determine the dis-
crete position closest to the center of the parameter
space cell. We then determine the distance between
this position and the furthest corner of the cell. De-
note this distance Dc. This is the maximum distance
between the location that the center position maps a
local voxel into the global map and the location any
other position in the cell maps the same voxel.
We now probe the distance transform at the loca-

tions of the occupied pixels in the local map with re-
spect to the relative position at the center of the cell.
If these probes, fd1; :::; dng, yield no more than B val-
ues that are not greater than Dc, then we can prune
this cell of the parameter space, since it cannot yield a
position at which more than B cells in the local map
match occupied cells in the global map up to an error
of �. Our test is thus whether the following expression
is satis�ed:

B �

nX
i=1

�
1; if di � Dc

0; otherwise

For any cell that cannot be pruned, we divide the
cell into subcells of approximately the same size by
dividing along each axis and repeat the process recur-
sively on these subcells. When a cell is reached that
contains a single position in the discretized pose space,
we test this position explicitly. If the position yields
more than B matches, then we store this position as
the best found so far, increase B to the new value, and
resume the search. This continues until all of the cells
have been exhausted, at which point we are guaran-
teed to have found the best relative position between
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Figure 4: A sequence of images used for testing the localization techniques.

the maps according to the variation of the Hausdor�
measure that we use.

4 Results

We have tested these techniques with images taken
in the JPL Mars Yard1 using cameras mounted on a
tripod at approximately the Rocky 7 mast height. Fig-
ure 4 shows a set of images that was used in testing the
localization techniques. The set consists of 12 stereo
pairs acquired at one meter intervals along a straight
line with approximately the same heading.
In these tests, we determined the estimated position

changes by �nding the relative position between each
pair of consecutive images. These relative positions
were determined by matching occupancy maps cre-
ated as described above. The localization techniques
yielded a qualitatively correct position between each
pair of consecutive images. The average absolute er-
ror in the position estimates was 0.0342 meters in the
downrange direction and 0.0367 meters in the cross-
range direction from the position measured by hand.
It is likely that further accuracy could be obtained by
using this position as the starting position for an iter-
ative hill-climbing technique.
Additional tests were performed on imagery where

the camera system was panned 25 degrees left and
right. Figure 5 shows an example. In these tests, occu-
pancy maps from the panned images were matched to
occupancy maps for the unpanned images. All 24 tri-
als yielded the correct qualitative result. The average
absolute error was 0.0138 meters in the downrange di-
rection and 0.0225 meters in the crossrange direction.
In these tests, the average number of positions ex-

amined was 18.45% of the total number of positions
in the discretized search space. A speedup of greater

1See http://robotics.jpl.nasa.gov/tasks/scirover/marsyard

than 5 was thus achieved through the use of the e�-
cient search techniques.
While these tests were performed on a workstation,

the code has recently been ported to the Rocky 7 hard-
ware for full testing. Both implementations require
only a few seconds to perform all of the computation,
including stereo triangulation.

5 Summary

This paper has considered self-localization tech-
niques for a mobile robot in natural terrain through
the use of stereo vision. The robot's position is deter-
mined by comparing a terrain map computed at the
robot's current location to a terrain map in a known
frame of reference. We �rst generate a dense range
map from stereo imagery and then process this data
to create an occupancy map of the terrain surface. The
best relative position between this occupancy map and
the occupancy map in the known frame of reference is
determined with respect to a Hausdor� measure us-
ing iconic matching techniques. The optimal position
is found using a search strategy that recursively di-
vides and prunes the space of possible relative posi-
tions. This yields a method that is robust to noise,
scene clutter, and missing data. Unlike previous iconic
matching techniques for comparing range maps, this
technique does not require an initial estimate of the
position of the robot, and the globally optimal posi-
tion of the robot is found with respect to the matching
measure that is used.
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Figure 5: Test case with rotation. (a) Position 10 with heading -25 degrees. (b) Position 10 with heading straight ahead.
(c) Position 10 with heading +25 degrees.
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