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Abstract

We have developed a wide-baseline stereo vision
technique for Mars rovers in order to map terrain dis-
tant from the rover and allow localization and navi-
gation over large areas. This technique uses two im-
ages captured by the same camera at different rover
positions as a virtual stereo pair. The larger base-
line yields better accuracy for distant terrain, but
makes stereo matching more difficult. In addition,
calibration of the relative camera positions in ad-
vance is no longer possible and odometry errors re-
sult in uncertainty in the camera positions in prac-
tice. Our methodology addresses these problems. We
have tested these techniques in several locations con-
taining natural terrain (mostly desert). This paper
describes the experiments and discusses the successes
and failures of the wide-baseline stereo technique.

1 Introduction

Autonomous navigation over large distances has
been a longstanding goal for Mars rovers. A rover
that is able to traverse to a distant science target in
a single command cycle could greatly increase the
amount of scientific data that the rover could obtain
in a fixed lifespan. One of the barriers to this goal
has been the inability to perform mapping and lo-
calization over significant distances, since the con-
ventional stereo vision techniques used by current
rovers have a limited range of usefulness.

We have studied several methods for improving
rover localization and mapping capabilities [4, 5, 8,
9]. Recently, we have implemented a wide-baseline
stereo vision technique for Mars rovers that com-
bines motion estimation and robust image match-

ing in order to map distant terrains [7].
Stereo error generally increases with the square of

the distance to the terrain, but decreases with the
baseline distance (the distance between the cam-
eras). Wide-baseline stereo [11, 12, 13] is based on
the idea that an arbitrarily large baseline can be
achieved using two images from the same camera,
but at different positions. While this improves the
quality of the stereo range estimates for distant ter-
rain, it introduces two new problems. Stereo calibra-
tion can no longer be performed in advance, since
the relative positions and orientations of the cam-
eras are not fixed. Furthermore, the poses where the
images are taken are not known with high accuracy
owing to odometry errors. In addition, performing
stereo matching between the images is more diffi-
cult, since the terrain is seen from different view-
points.

Our methodology is able to address these issues.
To accomplish this, we perform the following steps:

1. Motion refinement. We use an estimate of the
relative camera positions from odometry, but
this estimate is refined using matches detected
between the images. This process uses several
substeps:

(a) Feature selection. Features in one of the
images are selected using the Förstner in-
terest operator [1].

(b) Feature matching. Matches for the se-
lected features are detected using a hierar-
chical search over the entire image. Note
that both images are high-pass filtered to
remove some illumination effects.

(c) Outlier rejection. Outliers are rejected by
finding matches where the vertical and/or
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horizontal disparity is not in agreement
with nearby points.

(d) Nonlinear motion estimation. We op-
timize the motion parameters using the
Levenberg-Marquardt method [10] with a
robust objective function that minimizes
the distances between the matched point
locations and the locations backprojected
using the estimated motion parameters.

2. Image rectification. The images are rectified
so that the stereo match for each point lies on
the same scanline [3]. This reduces the search
space for each point to one dimension.

3. Stereo matching. Dense stereo matches are
detected using a maximum-likelihood image
matching formulation [6]. Efficient stereo
search techniques are used to reduce the search
time. Finally, subpixel disparities are computed
and outliers are rejected using a technique that
eliminates small regions of nonconformity.

4. Triangulation. The position of each pixel rela-
tive to the camera is computed from the dispar-
ity using standard triangulation techniques.

The following sections summarize the steps
above and discuss experiments performed with this
technique in natural, desert terrain.

2 Feature selection and matching

Motion estimation requires a set of features
matches between the images. To accomplish this,
we first select up to 256 features that appear to
be matchable from one of the images using the
Förstner interest operator [1]. For each image win-
dow, this operator considers both the strength and
the isotropy of the gradients in the window. The
features are selected in subregions of the image, to
ensure that the features are well distributed in the
image. They are also subject to a threshold, so that
completely featureless regions do not contribute.

For each selected feature, we use a hierarchical
multi-resolution search to locate the feature in the
second image. This search first selects candidate
matches at a low resolution. Each candidate match
is then refined at a higher resolution. Optionally,
affine matching is performed to further improve the
quality of the matches. Finally, the best candidate is
selected according to the scoring function (sum-of-
absolute-differences in our implementation).

After matching has been performed, we prune
some matches from consideration. Two tests are
used. First, if there is another candidate with a sim-
ilar score the top candidate, we prune the match,
since either could be correct. Second, we estimate
the standard deviation of the match position by ex-
amining how quickly the score changes as the match
is moved. If the standard deviation is large, we prune
the match. We also remove outliers by comparing
the disparities of the nearby points.

3 Motion refinement

Once matches have been determined between
the images, we can refine the estimated motion be-
tween the camera positions by enforcing geomet-
rical constraints. We create a state vector consist-
ing of the five recoverable motion parameters (the
scale is not recoverable from this information) and
the depth to each of the feature points with respect
to the first camera position. Our objective function
uses the distance from each matched feature po-
sition to the backprojected position using the mo-
tion parameters and feature depth. The distances
are combined in an M-estimator, such as described
by Forsyth and Ponce [2], although we have found
that a larger estimate for the scale more often yields
convergence to the correct result. Given the state
vector and object function, we use a variation of
Levenberg-Marquardt optimization in order to re-
fine the input motion estimate.

4 Disparity estimation

Subsequent to the motion estimation, we rectify
the images using the method of Fusiello et al. [3]. Af-
ter rectification, the correspondences between the
images will lie on the same scanline, so that the
search for each match can be performed in one di-
mension. We find dense matches between the im-
ages using a robust template matching method [6].
This method has two advantages over typical match-
ing methods, such as normalized correlation or the
sum-of-squared-differences (SSD). Given a poten-
tially matching location, many template matching
methods assume that the mapping between pixels
in the template and the search image is simply a
translation, with no warping or nonlinearity, such
as caused by occlusion. Our method is more gen-
eral and allows pixels in the template to match the
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Figure 1: Image sequence from the JPL Mars Yard. The images were taken at intervals of approximately 20 cm.

search image at locations other than the implicit
translation given by the relative position of the tem-
plate. We use a measure that combines distance in
the image with distance in intensity using a linear
relationship.

The second improvement is that this measure
explicitly accounts for the possibility of a pixel in
the template with no corresponding match in the
other image (for example, due to occlusion, which
is common in wide-baseline stereo pairs.) We ac-
complish this using a maximum-likelihood measure
that incorporates the probability distribution func-
tion of both pixels with matches and pixels without
matches.

Matching is performed efficiently using this mea-
sure by adapting a common stereo search strat-
egy. This strategy prevents redundant computations
from being performed for adjacent templates at the
same displacement in the search image by saving in-
formation. The cost is a small amount of memory.

We estimate the subpixel disparity and standard
deviation by fitting the scores near the maximum in
the most likely match [5]. Pixels are pruned from the
output if the likelihood of the best match is low, the
standard deviation is too large, or if the surrounding
pixels do not form a large enough coherent block.

5 Experiments

We have tested this technique on many real im-
ages of natural terrain. Most of these tests used im-
ages that simulated terrain on Mars, that is, sandy
and rocky terrain. Some tests used actual images of
Mars from the Spirit or Opportunity rovers.

Our first experiment was performed using data
collected in the Mars Yard at the Jet Propulsion Lab-
oratory (JPL) using the Rocky 8 rover prototype.
A sequence of 11 images captured using the rover
mast navigation cameras was collected at roughly
20 cm intervals, so that we could consider wide-
baseline stereo pairs with baseline distances ranging
from 20 centimeters to 2 meters. The camera ori-
entation remained roughly constant over this image
sequence. See Figure 1.

The results of this sequence were interesting. Fig-
ure 2 shows the disparity maps that were created by
using the first image in the sequence as one image in
the wide-baseline pair and each other image as the
second image in the pair. The disparities are shown
relative to the pixel in the first image. Clearly the
density of the stereo coverage is better with a smaller
baseline. The reason for this is twofold. First, the
region in the first image that is not visible in the
second image grows leading to a triangular shaped
area in the lower left that cannot be matched. In
addition, matching between nearby terrain that was
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Figure 2: Disparity maps generated from Mars Yard sequence. Each disparity map was created using the wide-baseline
stereo algorithm with image 1 as the first image and image n+1 as the second image. The baseline distance ranges from 20
cm for the first disparity map to 2 m for the last disparity map.

present in both images was of a lower quality ow-
ing to the difference in appearance between the im-
ages. This is expected. In fact, the goal of wide-
baseline stereo is to map the more distant terrain.
Note, however, that the current pruning techniques
are not perfect. Some regions with good data are
pruned and some outliers (on the left side) remain
unpruned.

We can get an idea as to the quality of the range
data for terrain at a greater distance by examin-
ing the shape and accuracy of the data for the wall
present at the top of each image in the sequence.
This wall was approximately 20 meters from the
rover. Conventional stereo techniques with a 20 cen-
timeter baseline did not yield highly accurate data
of the wall owing to the distance. Similarly, the data
using our techniques with a baseline of 20 centime-
ters produced range data, but without high accu-
racy. The estimated shape of wall (i.e. planarity)
improved considerably as the baseline increased.
However, quantitative error was present in the dis-
tance to the wall in some cases. The reason for the
quantitative error appears to be that a few feature
matching errors caused the motion estimation to
converge incorrectly. Most of the mistracked fea-
tures correspond to artificial objects (for example,
the poles rising beyond the wall.) We expect this is-

sue to be less of a problem in completely natural ter-
rain.

Figure 3 shows rectified images for both a good
case and a bad case for this data. When the motion
estimation is correct, the wall is level in the rectified
image. The reason for this is that when the camera
axes are parallel to each other and perpendicular to
the baseline, the correct rectification rotates the im-
ages so that the scanlines are parallel to the baseline.
With an incorrect motion estimation, an error in the
baseline direction causes a deviation from this ge-
ometry.

One drawback to this sequence is that none of
the terrain is truly distant, so that the use of a
wide baseline was not necessarily the best case.
The following tests used more distant terrain. Fig-
ure 4 shows a wide-baseline stereo pair captured by
Rocky 8 in the California desert during field testing.
The foreground of these images has been cropped,
since wide-baseline stereo was not successful on the
nearby terrain. The second row of images shows the
matches that were detected and used for motion es-
timation. The final row shows the left image after
rectification and a disparity map corresponding to
the rectified left image. In this case the baseline dis-
tance was 5 meters and the cameras had a narrow
field-of-view producing high resolution in the im-
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Figure 3: Rectified images from the JPL Mars Yard. The left image shows a good result and the right image shows a lower
quality result. Note that the wall in the background is level in the good result.

ages. The range results to the ridge show very high
qualitative accuracy, even though the ridge was over
1 kilometer from the cameras. Note that the mo-
tion of the rover was not perpendicular to the cam-
era pointing angle and this has resulted in a small
rotation of the terrain in the rectified image.

Figures 5 and 6 show two wide-baseline stereo
pairs of the Endurance crater on Mars acquired by
the Opportunity rover in April 2004. In these cases,
good results were obtained on the distant side of the
crater, but no results were obtained on the closer
terrain that varied significantly between the images.
While the primary goal of wide-baseline stereo is to
compute range data for the distant points, advanced
matching techniques that are not based on template
matching may allow us to compute range data for
this type of close terrain. It is interesting to note that
there are some regions where the sparse matching
was successful, but the dense matching either failed
or was pruned. This is an area for future improve-
ment.

6 Summary

We have developed a wide-baseline stereo vision
technology for Mars rovers. The techniques are
able to handle inaccurate motion estimates and im-
ages captured from different viewpoints. This al-
lows distant terrain to be mapped for localization
and navigation. We have tested these techniques
using images of natural, desert terrain from Earth
and Mars. The tests indicate that we can achieve
high-quality qualitative results. The quantitative ac-
curacy is still under investigation. We have seen

that incorrect feature tracking does sometimes ad-
versely affect the motion estimate. The incorrect
tracking has occurred primarily for artificial objects,
rather than natural terrain. We believe this can be
addressed through the use of a random sampling
technique, such as RANSAC, to eliminate incorrect
matches prior to the iterative estimation step.
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Figure 5: Wide-baseline stereo pair of the Endurance crater on Mars. The images were captured by the Opportunity rover.
The middle row shows the features that were matched between the images. The bottom row shows the left rectified image
and disparity map computed from the images.
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Figure 6: Wide-baseline stereo pair of the Endurance crater on Mars. The images were captured by the Opportunity rover.
The middle row shows the features that were matched between the images. The bottom row shows the left rectified image
and disparity map computed from the images.
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