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Abstract. In this paper we describe a new recognition method that
uses a subspace representation to approximate the comparison of binary
images (e.g. intensity edges) using the Hausdor� fraction. The technique
is robust to outliers and occlusion, and thus can be used for recogniz-
ing objects that are partly hidden from view and occur in cluttered
backgrounds. We report some simple recognition experiments in which
novel views of objects are classi�ed using both a standard SSD-based
eigenspace method and our Hausdor�-based method. These experiments
illustrate how our method performs better when the background is un-
known or the object is partially occluded. We then consider incorporating
the method into an image search engine, for locating instances of objects
under translation in an image. Results indicate that all but a small per-
centage of image locations can be ruled out using the eigenspace, without
eliminating correct matches. This enables an image to be searched e�-
ciently for any of the objects in an image database.

1 Introduction

Appearance based recognition using subspace methods has proven successful in
a number of visual matching and recognition systems (e.g. [2, 6, 4, 3]). The
central idea underlying these methods is to represent images in terms of their
projection into a relatively low-dimensional space which captures the important
characteristics of the objects to be recognized. The most e�ective applications of
these methods have been to problems in which objects are fully visible, against
a uniform background, and are nearly correctly registered with each other. For
example, a particularly successful application is the recognition of faces from
mugshots, where the head is generally about the same size and location in the
image, and the background is a �xed color [4]. The main reason for these limita-
tions is that when extraneous information from the background of an unknown
image is projected into the subspace, it tends to cause incorrect recognition
results. This is a common problem in any window-based matching technique,
where background pixels included in a matching window can signi�cantly alter
the match.

In this paper we describe a new subspace recognition method that is designed
to handle objects which appear in cluttered images and may be partly hidden
from view, without prior segmentation of the objects from the background or
registration of the image. This method is based on using subspace techniques to
approximate the generalized Hausdor� measure [1], which measures the degree



of resemblance between binary images (bitmaps). We present some simple exper-
iments which demonstrate that the method performs well when the background
is unknown or when the object is partially occluded, including in cases where
methods based on the SSD break down. More importantly, we can detect when
the approximation to the generalized Hausdor� measure is likely to select an
incorrect match. In addition, we need not assume that the location of the un-
known object in the image is known. Instead we can incorporate our eigenspace
matching methods into an image search engine, enabling the vast majority of
image locations to be ruled out for all of the models in a large database.

2 Subspace approximation of SSD

Let I denote a two-dimensional image with N pixels, and let x be its represen-
tation as a (column) vector in scan line order. Given a set of training or model
images, Im, 1 � m �M , de�ne the matrix X = [x1 � c; : : : ; xM � c], where xm
denotes the vector representation of Im, and c is the average of the xm's. The
average image is subtracted from each xm so that the predominant eigenvectors
ofXXT will capture the maximal variation of the original set of images. In many
applications of subspace methods, the xm's are normalized in some fashion prior
to formingX, such as making kxmk = 1, to prevent the overall brightness of the
image from a�ecting the results.

The eigenvectors of XXT are an orthogonal basis in terms of which the xm's
can be rewritten (and other, unknown, images as well). Let �i, 1 � i � N ,
denote the ordered (from largest to smallest) eigenvalues of XXT and let ei
denote each corresponding eigenvector. De�ne E to be the matrix [e1; : : : ; eN ].
Then gm = ET (xm�c) is the rewriting of xm�c in terms of the orthogonal basis
de�ned by the eigenvectors of XXT (the original xm is just the weighted sum of
the eigenvectors). It is straightforward to show that kxm � xnk2 = kgm � gnk2

[3], because distances are preserved under an orthonormal change of basis. That
is, the sum of squared di�erences (SSD) of two images can be computed using
the distance between the eigenspace representations of the two images.

The central idea underlying the use of subspace methods is to approximate
xm using just those eigenvectors corresponding to the few largest eigenvalues,
rather than all N eigenvectors,

xm �
kX

i=1

gmi
ei + c

for k << N (where gmi
denotes the i-th element of the vector gm). This

low-dimensional representation is intended to capture the important charac-
teristics of the set of training images. Let fm = (gm1

; : : : ; gmk
; 0; : : : ; 0) and

rm = (0; : : : ; 0; gmk+1
; : : : ; gmN

), so that gm = fm + rm. That is, fm is the vec-
tor of coe�cients corresponding to the �rst k terms in the sum, and rm is the
vector of remaining coe�cients. The SSD, kxm � xnk

2, is then approximated as
kfm � fnk

2. As this representation uses just the k predominant eigenvectors, it



is not necessary to compute all N eigenvalues and eigenvectors of XXT (which
would be quite impractical as N is usually many thousands).

3 Approximating the Hausdor� Fraction

In this section we describe a subspace method for approximating the generalized
Hausdor� measure. Note that we are now restricting the discussion to binary
images, which can be thought of as representing sets of feature points on a grid
(i.e., a binary image is 1 for points in the set and 0 otherwise). First we review
the generalized Hausdor� measure. Given two point sets P and Q, with m and n
points respectively, and a fraction, 0 � f � 1, the generalized Hausdor� measure
is de�ned in [1, 5] as

hf (P;Q) = f th

p2P
min
q2Q

kp� qk; (1)

where f thp2Pg(p) denotes the f-th quantile value of g(p) over the set P. For exam-

ple, the 1-th quantile value is the maximum (the largest element), and the 1

2
-th

quantile value is the median. Equation (1) generalizes the classical Hausdor�
distance, which maximizes over p 2 P. In other words, the classical distance
uses the maximum element rather than some chosen rank.

The generalized Hausdor� measure is asymmetric (as is the classical dis-
tance). Given a fraction, f , and two point sets, P and Q, hf (P;Q) and hf (Q;P)
can attain very di�erent values. For example, there may be points of P that are
not near any points of Q, or vice versa. We can also use a bidirectional form
of this measure, hfg(P;Q) = max(hf (P;Q); hg(Q;P)). The bidirectional form
is not robust to large amounts of image clutter, but it is useful in uncluttered
images and for veri�cation of hypotheses.

The generalized Hausdor� measure has been used for a number of matching
and recognition problems. One means of using the measure is to specify a �xed
distance, d, and then determine the resulting fraction of points that are within
that distance. In other words, to �nd the largest f such that hf (P;Q) � d.
Intuitively, this measures what portion of P is near Q, for some �xed neighbor-
hood size, d. This has been termed \�nding the fraction for a given distance." It
measures how well two sets match, with larger fractions being better matches.

The subspace method that we present in this paper is based on �nding the
fraction for a given distance. Assume that the points of P and Q have integral
coordinates and let P be a binary image denoting the set P, with a 1 in P
corresponding to a point that is in P and a zero otherwise. Similarly for Q and
Q. We are interested in what fraction of the 1's in P are near (within d of) 1's in
Q. Let Qd be the dilation of Q by a disk of radius d (i.e., each 1 in Q is replaced
by a \disk" of 1's of radius d). The fraction for a given distance d is then

�d(P;Q) =
#(P ^Qd)

#(P )
(2)

where #(S) denotes the number of 1's in a binary image S, and ^ denotes the
logical and (or the product) of two bitmaps. This measure has also been termed



the Hausdor� fraction. It is the fraction of points in P that lie within distance
d of points in Q.

Given two binary images, Im and In, if we let xm be the representation of
Im as a column vector and xn be the representation of Idn (the dilated In) then
�d(Im; In) can be computed as follows,

�d(Im; In) =
xTmxn
kxmk2

The Hausdor� fraction, �d, can be approximated using the subspace approx-
imation to the correlation. First we look at the relation between the correlation
of two images and their representations in eigenspace, where, as above, gm and
gn are the rewriting of xm and xn in the new coordinate system de�ned by the
eigenvectors E of XXT .

xTmxn = (xm � c+ c)T (xn � c+ c)

= (xm � c)T (xn � c) + (xm � c)T c + (xn � c)T c+ kck2

= gTmgn + xTmc+ xTnc� kck
2

The last step follows from gTmgn = (xm � c)TEET (xn � c) = (xm � c)T (xn � c)
(i.e., dot products are preserved under an orthogonal change of basis).

As in the SSD-based eigenspace methods, we approximate gm and gn using
just the �rst k coe�cients, which we denote by fm and fn. Thus we note that
gTmgn = (fm + rm)T (fn + rn) = fTmfn + rTmrn, because all the cross terms are
zero. Hence the error in using fTmfn as an approximation for gTmgn is rTmrn. While
we cannot compute this error term e�ciently we can bound its magnitude by
krmk � krnk which can be computed e�ciently. Therefore the true correlation
xTmxn lies in the range fTmfn + xTmc + xTnc� kck

2 � krmk � krnk.
To construct the Hausdor� eigenspace for a set of binary \model" images,

x1; : : : ; xM , form the matrix X = [x1 � c; : : : ; xM � c], where c is the centroid
of the xm's. Compute and save the �rst k eigenvectors of XXT (i.e., those
corresponding to the k largest eigenvalues). For each of the xm's, compute fm =
(gm1

; : : : ; gmk
), where gmi

= eTi (xm � c). Then compute xTmc and kxmk
2. Save

this vector and two scalars for each xm. This is all the information needed to
match the set of models to each unknown image.

Once the above information has been computed and saved for each model
image, an unknown image is processed by dilating it by d, forming the vector xn
from this dilated image, and computing fn and xTnc. An explicit search of all of
the models can be performed by computing the approximation to the Hausdor�
fraction for each xm and the (dilated) unknown xn,

F̂m =
fTmfn + xTmc + xTnc� kck

2

kxmk2
(3)

Note that each of the terms in this expression was computed and stored in
forming the eigenspace, except for fTmfn. Thus the matching only requires a dot
product of two k length vectors (just as in the traditional eigenspace matching
techniques), plus a division and a few additions.
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Fig. 1. Error introduced by the subspace approximation. (a) The dilated edges of an
unknown image. (b) The edges after they have been projected into the eigenspace and
then reconstructed using only the �rst 76 eigenvectors.

3.1 Error in the Approximation

The amount of error in F̂m as an approximation to �d can be bounded by
"m = (krmk � krnk)=(kxmk2), so �d lies in the interval [F̂m � "m; F̂m + "m] (of
course the true fraction can never be greater than 1).

One issue with approximating the Hausdor� fraction is that the unknown
image is not necessarily well approximated by the eigenspace, because all of
the model images are undilated and the unknown image is dilated. For \thin"
features like intensity edges, the dilated images are quite di�erent in appearance
and thus are not necessarily well represented by the eigenspace. Empirically
we have determined that there is a smaller residual error in the reconstructed
images when the model images are dilated and the unknown image is not dilated
than when the reverse is the case. Thus, we approximate the Hausdor� fraction
�d(P;Q) = #(P ^Qd)=#(P ) by #(P d ^Q)=#(P ). This approximation is quite
good for small d, which is generally the case as we use d = 1 in order to allow
for uncertainty in the edge pixel locations.

In practice, the errors in the estimated fraction are considerably smaller than
the error bound given above would predict. This is because the error bound is
the worst case, which occurs when the two vectors are pointing in exactly the
same direction and all of the errors multiply together. For cases where the true
Hausdor� fraction is not large, the estimated fraction is typically very close
to the true fraction (within �:05). In order to examine the errors in the sub-
space approximation to the Hausdor� fraction, we ran an experiment using a
subset of the image set from [3]. This set of images consists of 20 di�erent
three-dimensional objects. 60 views of each object were created by placing each
object on a turntable and capturing an image at regularly spaced rotations of
the turntable. We downsampled these images to 64 � 64 pixels and used the
even numbered views as the model image set and the odd numbered views as
the unknown image set. In these experiments we used the 76 most signi�cant
eigenvectors to approximate the set of training images. Fig. 1 shows an example
of a dilated image from this data set and the reconstruction of this image after
projecting it into the eigenspace. Fig. 2 shows a plot of the approximate Haus-
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Fig. 2. Plot of the correct fraction versus the estimated fraction in the image subspace
for an experiment with 100 model images and 100 unknown images.

dor� fraction versus the true Hausdor� fraction for 10,000 pairs of model images
with unknown images (that were not part of the training set).

Note that as the true fraction, �d(Im; In), becomes large, the approximate
fraction, F̂m, sometimes underestimates the correct value. The reason for this is
that, in closely correlated images, rm and rn will have similar directions, which
results in F̂m being less than �d(Im; In). In the extreme case, if the dilated model
image was exactly the same as the unknown image, then �d(Im; In) would be

underestimated by krmk
2

kxmk2
since rm and rn would be the same. Of course, we will

never reach this extreme since the model images are dilated and the unknown
images are not.

4 Matching experiments

We now consider some experiments to evaluate the discrimination ability of
these matching techniques. We are particularly interested in comparing the per-
formance of these techniques with previous techniques using grey-level images
(e.g., [3]) when the background is unknown or when the object is partially oc-
cluded. These experiments used the image set from [3], with 30 evenly spaced
views of each of 20 objects as the model set and 30 other evenly spaced views of
each of the same objects as the set of unknown images. The backgrounds in all
the images are dark black.

Each of the 600 unknown views (not used in constructing the eigenspace) was
classi�ed as one of the 20 objects by �nding the closest matching model view
in the eigenspace. That is, a trial was considered successful if the best match
was from the same object as the unknown, regardless of the viewpoint of the
unknown image and the best matching model image. For the grey-level matching
both the model images and unknown images were normalized such that each has
a magnitude of one. We selected as the best match for an unknown image, the
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Fig. 3. An example where the directed Hausdor� fraction yields an incorrect match,
but the bidirectional measure does not. (a) The unknown image. (b) The incorrect
match.

model image with the minimum approximate SSD computed using the method
described in Section 2 For the binary matching we computed edge maps for each
image and selected the model image with the largest approximate Hausdor�
fraction F̂m as the best match for each unknown image.

First it should be noted that using the actual Hausdor� fraction, �d, to select
the best matching view did not exhibit perfect performance in selecting the cor-
rect object. It was successful in 96% of the trials (575 of 600). The reason that
the true Hausdor� fraction was unsuccessful was typically due to unknown im-
ages that had dense edges, such that the fraction of model pixels that were near
image pixels was very high. This is because of the asymmetry of the Hausdor�
distance, which only measures how well the model is accounted for by the image,
and not vice versa. Fig. 3 shows an example. In this case, the sparse edges of the
incorrect match were well matched by the unknown image, but reverse was not
true. The bidirectional Hausdor� measure yields better results for this case (99%
correct), since the images are uncluttered. This is analogous to the SSD perform-
ing better in uncluttered images; both the SSD and the bidirectional Hausdor�
measure take advantage of the excess clutter to rule out possible matches, which
results in neither being robust to signi�cant image clutter.

Using the unperturbed images the grey-level matching techniques have per-
fect performance, while the Hausdor� subspace matching techniques are success-
ful in 551 of 600 trials. Of the 49 unsuccessful trials, 23 were also unsuccessful
when the true Hausdor� fraction was used to �nd the best match. One model ac-
counted for 28 of the unsuccessful trials, with 8 other models accounting for the
remaining unsuccessful trials. It is important to note that we can detect when
the approximate Hausdor� match is likely to be incorrect. For the successful tri-
als, the di�erence between the largest F̂m for a view of the correct object and the
largest F̂m for a view of any other object was .234 on average. In contrast, for the
unsuccessful trials this di�erence was .015 on average, with a maximum value of
.090. We should thus consider not only the match with the largest approximate
Hausdor� fraction, but also any matches with approximate Hausdor� fractions
that are nearly as large. The subspace version of the bidirectional measure was



Directed Bidirectional
Image change Grey-level Hausdor� Hausdor�
Unperturbed 100% (600) 92% (551) 98% (589)
Background=50 94% (564) 93% (556) 97% (580)
Background=100 41% (248) 90% (542) 91% (546)
Shift by 50 95% (568) 92% (551) 98% (589)
Shift by 100 48% (291) 92% (551) 98% (589)
25% occlusion 52% (314) 87% (524) 94% (565)
50% occlusion 49% (291) 83% (501) 85% (507)

Table 1. Summary of results for the subspace image matching experiments using the
normalized correlation of grey-level images and the Hausdor� fraction of edge images.
The results show the percentage (number) of trials out of 600 that were successful.

successful in 589 of 600 trials.
We next considered unknown images where the background had been changed

to a uniform non-zero value. The overall image was still normalized to be a
vector of unit length. When the background of the unknown images was changed
changed to 50, the grey-level techniques were successful in 564 of 600 trials.
When the background value was changed to 100, the grey-level techniques were
successful in only 248 of 600 trials. These changes yielded little di�erence for the
Hausdor� techniques, yielding 556 and 542 successful trials, respectively. When
the grey-levels in the entire image were shifted up by 50 and 100 values, the
grey-level techniques were successful in 568 and 291 trials, respectively. Such a
shift had no e�ect on the the Hausdor� matching techniques.

Finally we returned to images with a uniform background, but in which the
object had been occluded. We occluded 25% of the object by setting the upper,
left quarter of the image to the background color in the grey-level images and
by erasing the edge pixels in this region for the edge images. In this experi-
ment, the grey-level techniques were successful in 314 trials, while the Hausdor�
techniques were successful in 524 trials. When the entire left half of the im-
age was occluded, the grey-level techniques yielded 291 successful trials and the
Hausdor� techniques yielded 501 successful trials.

Table 1 summarizes the subspace results for the grey-level matching tech-
niques and for both the directed and bidirectional Hausdor� matching tech-
niques. The Hausdor� matching techniques have uniformly good performance,
whereas the grey-level techniques break down when the background or the total
brightness is changed and when the object is partially occluded.

5 Image search

In many applications the positions of the object(s) that may be present in an
image are not known. Moreover, current segmentation methods cannot reliably
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Fig. 4. A cluttered image with some occlusion that was used to test the image
search. (a) The original image. (b) The edges detected in the image. (c) The best
matching view of the Anacin box. (d) The edges of the Anacin box overlaid on
the full edge image at the location of the best match.

determine the regions of an image that correspond to separate objects, except
in very simple cases. In this section we consider the simple experiment of using
the eigenspace approximations to rule out those locations (translations) in an
unknown image that are a poor match in the subspace. As long as the vast ma-
jority of the locations and models are eliminated, without eliminating the correct
matches, we can use standard techniques to check the remaining hypotheses. We
depend on the fact that the approximate Hausdor� fraction is nearly always
close to (within �0:05 of) the true fraction to avoid ruling out correct matches
(see Fig. 2).

Fig. 4 shows an example of the kind of image that was searched in these
experiments. The instance present in this image is the Anacin box, which is
partially occluded. In this case the best match shown in the �gure yielded a true
Hausdor� fraction of 0.702 and the subspace methods yield an estimated fraction
of 0.727. When we eliminate all translations that yield a best estimated fraction



below 0.7, 99.3% of the search space is pruned. A number of additional images
yielded similar results. These experiments indicate that the subspace matching
techniques can be used to eliminate most of the possible positions of the model
images in a large unknown image without performing the full correlation at these
positions. We thus expect these techniques to yield a considerable improvement
in the speed of image matching techniques using the Hausdor� fraction.

6 Summary

We have considered a subspace method of approximating the Hausdor� fraction
between two binary images. The use of edge images rather than grey-level im-
ages has yielded robustness to lighting changes and unknown backgrounds and
the Hausdor� fraction is robust to clutter and occlusion. The use of subspace
matching allows individual matches to be processed much faster than a system
that considers the full image space. This combination of techniques thus yields
a system with the speed of subspace methods and the robustness of the Haus-
dor� measure. In addition, we can incorporate these matching techniques into
an image search engine. This allows us to perform matching between a library of
model images and a large unknown image that may have clutter and occlusion
and in which the positions of the model images are unknown.
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