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ABSTRACT 

We examine the use of visual navigation techniques for 
improving human navigation and localization in GPS-
denied environments. While many advances have been 
made in navigation techniques using stereo and monocular 
motion estimation, significant hurdles exist for a practical 
system, including size, weight, power, and cost limitations. 
Humans often move and rotate faster and with more 
complex motions than robots, therefore requiring increased 
processing speed and robustness and the use of specialized 
algorithms.  Systems for long-range navigation in 
previously unmapped environments must deal with error 
drift. Monocular systems face the additional issue of scale 
drift, since the relative scale must be estimated repeatedly. 
Furthermore, the orientation of the system relative to the 
frame-of-reference must be initialized accurately. We have 
evaluated these issues using a simulator and discuss 
possible solutions.  
 

Index Terms— Navigation, camera, motion estimation 
 

1. INTRODUCTION 
 

We investigate the development of a camera-based system 
to facilitate human navigation and localization in the GPS-
denied environments. Accurate location information is 
crucial for performing tracking, providing situational 
awareness, and for providing accurate navigational 
guidance. However, there are numerous contexts in which 
GPS information is not available, including indoors, in 
caves, and in the presence of large buildings or GPS 
jamming technology.  

Recent advances in computer vision technology have 
opened up the possibility of using camera-based systems to 
accurately perform localization in GPS-denied areas. Such 
systems can track the motion of the surroundings in the field 
of view of the camera(s), offering the promise of a compact, 
low-cost, low-power, light-weight solution. In order to be a 
practical solution, the vision-based system must not only 
satisfy size, weight, power, and cost considerations, but it 
must be accurate and capable of running in real-time. It 
must also be capable of operating in the presence of realistic 
human motions, and be robust to changes in lighting 
conditions or the presence of dynamic moving objects in the 
field of view. 

We examine vision-based autonomous navigation 
systems using human-mounted cameras in both monocular 
and stereo scenarios. A monocular version offers 
substantially lower size, weight, power, and cost. On the 
other hand, a stereo version provides higher accuracy. Our 
simulations indicate that monocular odometry can be highly 
effective when combined with algorithms for extracting 
even relatively noisy scale information.  

In order to test the efficacy of such a system, we 
performed simulations comparing monocular and stereo 
odometry errors in various configurations. Simulations were 
also performed to assess the feasibility of addressing the 
difficult problem of scale drift in monocular odometry, as 
well as to determine the impact of incorporating an 
orientation sensor into an otherwise purely vision-based 
system. For the stereo simulation experiments, visual 
odometry code was applied to randomly generated 
simulated visual features over various test trajectories to 
assess localization errors.  

For the monocular simulations, we combined the 
simulator code for randomly generating and sampling 
simulated visual features with routines from the OpenCV 
library [1]. Despite issues with scale-drift, the monocular 
approach remains quite promising because our results 
indicate that with periodic scale updates, the monocular 
errors can be brought on par with stereo errors, even when 
the scale estimates are noisy and infrequent.  
 

2. STEREO NAVIGATION 
 

In stereo range estimation, the error varies with the distance 
to the landmark [2]. The crossrange (lateral) error is linear 
in the distance, while the downrange (forward) error varies 
quadratically in the distance. While this implies that nearby 
features are the best for instantaneous localization, such 
features are also the most difficult to match owing to the 
difference in viewpoint. It is important that the uncertainty 
in the location estimate is used in any motion estimation 
procedure. 

Previous work has resulted in a method that is capable 
of accurate rover navigation over long distances using 
incremental stereo ego-motion [3], [4]. The use of stereo 
information in this method was crucial in both outlier 
rejection and reducing random errors that occur due to 
feature localization and drift in each frame. A maximum-
likelihood formulation of motion estimation was used that 
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models the error in the positions more accurately than a 
least-squares formulation and, thus, yields better results [5]. 

For long-range navigation, we must examine the rate of 
error growth as a function of distance travelled. The 
cumulative position error grows as the sum of terms 
corresponding to accumulating individual position errors 
and accumulating orientation errors. The first term grows 
slowly (on average with the square root of the distance 
travelled). However, the second term grows with the 
integral of the orientation error (which is also growing with 
the square root of the distance). Overall, the term 
corresponding to the orientation error dominates the error 
and yields an expected growth rate that is O(d1.5) asymptotic 
growth, where d is the distance travelled [3]. This is 
illustrated in Fig. 1, which uses results from our simulator. 

In order to eliminate the super-linear error growth, we 
have examined the use of an absolute orientation sensor to 
provide periodic updates to the orientation estimate. This 
information can be obtained from sensors such as 
compasses, gyros, or accelerometers. Orientation updates 
can greatly improve the long-range performance, reducing 
the accumulated error to a linear function of the distance 
traveled. However, magnetic interference may disrupt an 
orientation sensor. Closing the loop with previously 
encountered landmarks can also provide data that can be 
used to update the orientation. 

The super-linear error growth is potentially a 
disadvantage with respect to techniques for simultaneous 
localization and mapping (SLAM) [6], [7]. However, 
SLAM techniques also suffer from such error unless they 
can close the loop by recognizing landmarks seen 

previously. Note that tracking a landmark through a few 
frames (as is also done with visual odometry) is not 
sufficient if the cameras are traveling on a path in which 
landmarks go out of view. They must return and recognize 
the landmarks to correct the accumulating error to the level 
when the re-imaged landmarks were first seen. 

In contrast to robotic applications, human motions are 
complex and significant camera roll can be present in some 
cases. This would defeat a straightforward template 
matching approach for feature tracking, such as used on the 
Mars Exploration Rovers [4]. The use of a rotation invariant 
method for feature matching, such as SIFT [8], may be 
necessary in this case at the cost of additional computation 
time. 
 

3. SIMULATIONS 
 

In analyzing these techniques, we have built upon a 
previously constructed simulator that is able to predict how 
changes in the system and the algorithm are likely to affect 
the navigation performance [9]. For most experiments, 
purely vision-based errors were assessed, without 
augmenting sensors. Additional runs were also performed to 
assess the impact of adding an orientation sensor to the 
system. 

The stereo simulation generates motion estimates by 
performing an iterative, non-linear optimization to improve 
on an initial closed-form solution [5]. For purposes of the 
simulation, 3d visual features are generated randomly along 
the selected trajectory, and a Gaussian model is used to add 
noise to the 2d projected locations, as well as the feature 
tracking estimates, both tracking over time and between the 
left and right cameras. These noisy 2d feature positions are 
then fed into the odometry code to generate motion 
estimates. Due to random variation, 100 runs over a given 
trajectory are averaged to produce the error estimates. There 
are, of course, also real-world issues that are not accounted 
for. For instance, in a human application the user may 
move/turn extremely rapidly causing motion blur and 
outpacing the ability of the processor to keep up with 
sufficient frames, and these issues are not currently 
accounted for by the simulation. The simulation also does 
not account for true outliers in the matching process. 
Typically, these are removed using a sampling process such 
as RANSAC [10]. 

Simulation suggests that without additional information 
the error in the stereo ego-motion technique is likely to rise 
beyond desired levels. With an orientation sensor, low error 
growths can be achieved (perhaps on the order of 0.5% 
growth with distance traveled, although this will vary 
according to system parameters). The simulations also 
indicate that: 

Fig. 1. Errors have superlinear growth unless orientation 
updates are provided. 
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 With respect to the camera field-of-view, there is a 
trade-off between inter-frame localization accuracy 
and the possibility of failure owing to insufficient 
features being tracked for large rotational motions. 

 A larger baseline between the stereo cameras will 
generally yield improved accuracy. Of course, 
there is also a tradeoff with the size that is feasible 
for a human-mounted system. 

 Frequent incremental updates are not necessarily 
optimal, since each update can introduce additional 
error.  
 

4. MONOCULAR NAVIGATION 
 

Accurate monocular navigation is more difficult than stereo 
navigation. In particular, a calibrated stereo rig provides 
scale information that is important to metric navigation. A 
monocular application requires the relative scale between 
the frames to be estimated [11], [12]. Drift in the scale 
estimate causes super-linear error growth in the same 
manner that drift in the orientation estimate does. 

We implemented a monocular algorithm simulation 
using the 8-point algorithm [13] to solve for the 
fundamental matrix based on the motion of tracked 2d 
simulated features. The camera motion is then extracted 
using the intrinsic camera parameters. Next, the 3d locations 
of the feature points are triangulated based on the estimated 
camera motion. This sparse 3d model can then be used to 
maintain consistent scale between frames by enforcing 
constant distance between pairs of features over time. The 
major challenge in the monocular case is that the scale of 
the environment cannot in general be directly assessed 
(without assumptions) from a monocular camera view. This 
means that even if the initial scale is known, the scale 
estimate will gradually drift over time. This is a problem 
even for systems that provide localization relative to a 
SLAM map, since it is still crucial in such a system to 
maintain internal consistency in the scale estimate over 
time. 

In addition to the baseline monocular odometry 
simulation runs, further tests were performed in which 
periodic approximate scale estimates were provided to 
system, with varying degrees of noise. This was done to 
estimate the required quality of scale updates which would 
be necessary in order maintain reasonable monocular error 
drift. One approach for performing these scale estimates in a 
pure vision system would involve extracting the ground 
plane (when visible) [14] and estimating the vertical 
distance from the camera to the features on the ground 
plane. Also, in theory, scale could be periodically measured 
and updated by using object recognition techniques to detect 
objects of roughly predictable size in the field of view, 
though we see this as a higher risk approach than ground 
plane extraction. 

Several experiments were performed with the simulator 
in both straight courses and those containing rotation. In 

these experiments, the relative scale was estimated using a 
simple method that forces the median distance between each 
pair of estimated features to remain the same (considering 
only pairs that are found in both images). In cases where 
scale and/or orientation updates were provided to the 
system, they were provided every 0.5m. Figure 2 shows an 
example track for the case of circular motion. When no 
scale or orientation updates were provided to the system, the 
estimated track diverges quickly from the correct path. 
Orientation updates, by themselves, were not sufficient to 
yield accurate results. However, even noisy scale estimates 
resulted in a significant improvement. When both updates 
were used the resulting error was less than 1% over the 500 
meter course. Fig. 2 uses orientation updates with σ = 1 
degree and scale updates with σ = 5%. (Increasing to σ = 
10% yields 9.8% more error and σ = 20% yields 39.2% 
more error for scale updates only.) 
 

5. CHALLENGES 
 

5.1. Scale updates 
 
In our simulations, drift in the scale estimate over time is 
the largest source of error for monocular odometry. 
(Artificially eliminating this drift sharply reduces the error.) 
Periodic updates (even intermittently with considerable 
noise) yield significant improvements. However, current 
methods other than non-vision sensors are speculative.  

One approach for estimating the true scale would be to 
recognize the ground plane. With the assumption that the 
camera stays at roughly the same height, this would provide 
an estimate of the true scale. While the user may crouch or 
otherwise change the height of the camera, such cases can 
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Fig. 2. Experiment comparing scale and orientation errors
for monocular navigation. (Units are in meters.) 
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be detected using the motion estimate and removed from 
consideration since the updates may be intermittent. 

Another potential approach is to use object recognition 
to detect object of roughly known size (for example, 
doorways, people, and cars). The known size of the object 
could be used to reset the drift in the scale. 

 
5.2. Pose initialization 
 
For geo-referenced localization, it is necessary to initialize 
the pose upon entry into a GPS-denied environment. The 
position can be determined directly from GPS, but the 
camera orientation must be estimated. This can be 
performed, for example, by comparing the trajectory 
estimation by visual navigation with a GPS-derived 
trajectory. The visual trajectory would be rotated to the best 
fit of the GPS trajectory. The rotation would be ill-defined 
in the unlikely case that the trajectory is a perfectly straight 
line. Ground plane extraction could be used to resolve this 
ambiguity. The technique of comparing the estimated 
trajectory to a GPS-derived trajectory can also be used to 
initialize the scale for monocular navigation.  
 
5.3. Fast rotation 
 
One failure mode of this methodology occurs when the 
camera rotates (or translates) so quickly that there is motion 
blur or that the system is unable to process frames at a rate 
that keeps a significant portion of the previous frame in 
view. In this case, it is possible that no features are matched 
and the motion estimation fails. However, recovery from 
this situation is possible. If the camera rotates back to a 
previously viewed location, frames can be dropped to allow 
motion estimation to continue. Turning corners will present 
a more difficult case, since the camera would not return to 
the previous orientation. In this case, an orientation sensor 
would provide useful redundancy. Alternatively, the system 
may spend extra time processing frames during fast rotation 
and catch up after the rotation is completed or process 
frames in the background as the user continues to travel. 
 

6. CONCLUSIONS 
 

We have examined techniques for camera-aided human 
navigation. A successful system will need to combine 
robust feature matching with outlier rejection. An 
orientation sensor or gyro may need to be included to 
reduce localization error over long-distance navigation and 
provide redundancy. In addition, a monocular system may 
need to periodically update the scale using absolute, rather 
than relative scale estimation. The system should 
incorporate intelligence to recover from failures, such as 
might be caused by fast rotation of the camera. While 
challenges remain for a robust system, these initial results 

suggest that potential solutions show promise for addressing 
the key issues. 
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