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Abstract

It is typical in edge detection applications to exam-

ine a single scale or to consider some space of scales in

the image without knowing which scale is appropriate

for each location in the image. However, many images

contain a wide variation in the distance to the scene

points, and thus objects of the same size can appear

at greatly di�ering scales in the image. We present a

method where the scale of the smoothing and edge de-

tection is varied locally according to the distance to the

scene point, which we estimate through stereoscopy.

The edges that are detected are thus at the same scale

in the world, rather than at the same scale in the im-

age. This method has been implemented e�ciently by

smoothing the image at a discrete set of scales and per-

forming interpolation to estimate the response at the

correct scale for each pixel. The application of this

technique to an ordnance recognition problem has re-

sulted in a considerable improvement in performance.

1 Introduction

Image smoothing and edge detection have been in-
tensely studied subjects in computer vision and image
processing. The selection of an appropriate scale for
these processes is a problem that has received less at-
tention. It is well known that using a single �xed
scale over the entire image produces undesirable re-
sults, since edge phenomena occur at a multitude of
scales. To alleviate this problem, techniques that ex-
amine the entire space of scales [6, 7, 15] or that adap-
tively select a scale based on local image properties
[5, 8, 11] have been developed. However, the optimal
method for combining the information from the scale-
space is unclear and the scale selection methods base
their decisions on image properties, rather than the
true scale at which the phenomena occur.

In many applications it is desirable to detect edges
that are at the same scale in the world, which we call

the true scale, rather than at the same scale in the im-
age or by selecting a scale based on local image prop-
erties. Consider, for example, an image containing a
textured surface in the foreground and an object of in-
terest further from the camera. Techniques based on
local image properties consider the textured surface at
the scale it appears in the image. At this scale, the
edges may appear signi�cant, while this appearance
is due only to perspective e�ects. If a method (such
as stereoscopy) is available to determine the distance
of the scene points from the camera, we can safely
smooth these phenomena, while preserving the signif-
icant edges. Furthermore, if we seek objects of known
size, the smoothing and edge detection process can be
tuned to detect edges at the appropriate scale, regard-
less of their distance from the camera.

In addition to its value for scale selection, the range
data is also useful for determining edge salience with
respect to the scene characteristics. For example, edge
salience measures such as length and straightness have
been used [14]. However, the values these measures
take are highly dependent on the distance of the edge
from the camera. The stereo range information can
be used to normalize these measures with respect to
scene size and it is thus possible to determine edge
salience with respect to the true scale rather than the
image scale.

We have implemented these techniques as a varia-
tion of the Canny edge detector [1], but they can be
applied to most edge detection methods. A mapping
function between the distance to the pixel and the im-
age scale is �rst determined. We next smooth and
di�erentiate the image at a discrete set of scales using
Gaussian derivative �lters. The response at each pixel
at the appropriate scale is then interpolated from the
discrete set of �lter responses (similar to idea of steer-
able �lters [2] or deformable kernels [13]). These re-
sponses are next normalized, since the overall response
to a Gaussian derivative �lter is a function of the scale
of the �lter. Edge detection then proceeds normally,
extracting edge chains using non-maxima suppression
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Figure 1: Range data extracted from a stereo pair. (a) Left image of a stereo pair. (b) Distance from the camera mapped
into gray values. Black pixels indicate no valid range data. (c) Distances after �lling pixels with no range data.

and hysteresis thresholding. These edge chains are �-
nally passed to a stage that determines edge salience
with the help of the stereo range map.

We describe results that indicate that these tech-
niques result in a signi�cant improvement in perfor-
mance for an application in which unexploded ord-
nance is detected using the image edge map.

2 Depth acquisition

While any method that can associate range values
with image pixels could be used with this method,
we concentrate on the use of stereoscopy to compute
dense range maps of the scene. The techniques that
we use to compute the stereo range data have been
described elsewhere [9, 10]. We briey summarize this
method here.

An o�-line step, where the stereo camera rig is cal-
ibrated, is �rst performed. We use a camera model
that allows arbitrary a�ne transformations of the im-
age plane [16] and that has been extended to include
radial lens distortion [3]. The remainder of the method
is performed on-line.

At run-time, each image is �rst warped to remove
the lens distortion and the images are recti�ed so
that the corresponding scan-lines yield corresponding
epipolar lines in the image. The disparity between
the left and right images is measured for each pixel by
minimizing the sum-of-squared-di�erence (SSD) mea-
sure of windows around the pixel in the Laplacian of
the image. Subpixel disparity estimates are computed
using parabolic interpolation on the SSD values neigh-
boring the minimum. Outliers are removed through
consistency checking and smoothing is performed over
a 3�3 window to reduce noise. Finally, the coordi-
nates of each pixel are computed using triangulation.

Note that not every pixel is assigned a range with
this method. There are a number of factors that result

in various pixels not being assigned a range, including
occlusion, window e�ects, �nite disparity limits, low
texture, and outliers. Despite this problem, we must
have a range estimate at each point in the image in
order to estimate the scale that should be used for
smoothing at that point. To resolve this dilemma,
we propagate the range values from neighboring pix-
els using a simple method that approximates nearest
neighbor search.

Figure 1 shows an example of the range data com-
puted using these techniques. In this case, we fail to
get range data at the left edge of the image, since
this is the left image of a stereo pair, and there are
signi�cant areas over the rest of the image where the
range data is discarded as not reliable. These values
are �lled with good estimates using the propagation
techniques.

3 Smoothing with variable scale

We perform variable-scale smoothing using the
stereo range data to select the appropriate scale at
each pixel. The �rst step is to specify a mapping be-
tween the range data that has been computed for the
scene and the scale at which the smoothing should be
performed. We specify this mapping o�-line prior to
the smoothing. However, this mapping could be easily
constructed on-line in order to allow it to vary with
scene parameters.

We use the following mapping function:

�(x; y) =
K

R(x; y)
;

where R(x; y) is the range computed at the image
point (x; y), �(x; y) is the scale to be used at (x; y),
and K is a pre-determined constant.

The constant, K, in this function can be deter-
mined using several methods. One possibility is to
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modify an automatic scale selection method (see, for
example, [4]) to examine the image scale normalized
by the depth values. A second possibility is to not
limit ourselves to a single scale, but to consider the
scale-space [15]. In this case, the scale-space can be
warped such that the scale levels correspond to the
true scale rather than the image scale. We use a third
alternative. Since our primary application for these
techniques is in detecting objects of known size, we
select K based on the size of the objects.

In accordance with Canny's edge detection method
[1], we use Gaussian �lters to perform image smooth-
ing. However, since we vary the scale at each pixel,
the responses that we desire are governed by:

Sx(x; y) =

WX
i=�W

WX
j=�W

I(x+ i; y + j)N�(x;y)(i; j);

where I(x; y) is the image brightness at (x; y),

N�(X;Y ) = 1
�
p
2�
e�

X2+Y 2

2�2 , and 2W + 1 is the �l-

ter window size. Unfortunately, it is not e�cient to
compute this exactly for each image pixel. We per-
form this unconventional operation by convolving the
image with a discrete set of Gaussian �lters of various
scales and interpolating the result at the appropriate
scale for each pixel. This method for approximating
a continuum of parameterized �lters is similar to the
techniques of steerable �lters [2] and deformable ker-
nels [13]. However, we have chosen parabolic inter-
polation rather than the linear combinations of the
deformable kernels technique for simplicity and ease
of implementation.

Since the range of scales that we are concerned with
may be very large and Koenderink [6] has shown that a
logarithmic sampling of the scale space is stable and in
accordance with the principle that no scale should be
preferred above others, we work in the log2 � domain.
We have found that using discrete scales related by
factors of two (�n = 2n�0) is both convenient and
e�ective.

The result of smoothing at each pixel with a �lter of
scale �(x; y) can be estimated through parabolic inter-
polation using the response of the discrete �lter that
is closest to the desired scale, F�k (x; y), and its two
neighbors, F�k�1 (x; y) and F�k+1(x; y). In determin-
ing an equation that yields the appropriate response,
it is useful to perform a coordinate transform such

that z = log2
�(x;y)
�k

. For �k�1 = 1
2�k = 1

4�k+1, this
yields zk�1 = �1, zk = 0, and zk+1 = 1. With this
transformation it is simple to show that the response
we want is given by:

F (x; y) � az2 + bz + c (1)

a =
1

2
(F�k�1 � 2F�k + F�k+1) (2)

b =
1

2
(F�k+1 � F�k�1) (3)

c = F�k (4)

z = log2
�(x; y)

�k
(5)

4 Edge detection

Following the variable-scale smoothing described
above, we proceed with Canny's edge detection
method [1] on the smoothed image. This technique
computes the image gradients over the image in the
x- and y-directions in order to determine the orien-
tation and magnitude of the gradient at each pixel.
Note, however, that if the gradient magnitudes are to
be comparable, we must normalize them. This can
be easily be seen by noticing that the response of a
step edge to a Gaussian derivative �lter varies with
the scale of the �lter. A Gaussian derivative aligned
with a step edge yields a response proportional to 1

�
.

The gradient magnitudes will thus be stronger in the
image regions that are smoothed at smaller scales if
we do not normalize them. To correct this problem,
we normalize the gradient magnitude at each pixel by
multiplying by �(x; y).

Finally, non-maxima suppression is performed and
the edges are detected using hysteresis threshold-
ing. We determine the hysteresis thresholds adap-
tively through examination of the histogram of gra-
dient magnitudes.

Figure 2 shows an example of edge detection with
and without stereo-guided scale selection. The orig-
inal image has 750 � 500 pixels and can be found in
Figure 1. In this example, the edges were detected at
three scales (� = 1:0; 2:0; 4:0) without the help of scale
selection. Also given is the result with scale selection,
where the response at each pixel was interpolated from
the same three scales.

It can be seen that when a small scale (� = 1:0) is
used, many of the edges due to phenomena close to the
camera are rough and a number of extraneous edges
are detected due to the small scale, even though there
is little image texture. However, when the scale is
increased, we lose the details at the further phenomena
(see, for example, the trees in the background and
the end of the railing). On the other hand, when the
scale is selected adaptively using the stereo range map,
we have good performance at both close and far edge
phenomena. In this case, the edges that are detected
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(a) (b)

(c) (d)

Figure 2: Edge detection results for the image in Figure 1. (a) Edges detected with � = 1:0. (b) Edges detected with
� = 2:0. (c) Edges detected with � = 4:0. (d) Edges detected with stereo-guided scale selection.

are at the same scale in world, rather than the same
scale in the image.

5 Adaptive edge salience evaluation

In addition to its use in performing edge detection,
range data is also helpful in determining edge salience.
Shorter edges that are detected at a larger distance are
more likely to correspond to salient world edges than
edges at close range that appear to be long due to
perspective e�ects. We have primarily examined the
summed gradient magnitude over the length of the
edge and the local straightness of the edge as salience
criteria, although many other salience measures could
be used [14].

Consider, for example, a saliency measure where
the gradient magnitude is summed along the length
of the edge. The range data can be used to weight
the gradient magnitude by the true edge length rather

than the image edge length.1 Alternatively, we could
sum the ranges to the pixels (normalized appropriately
for the �eld-of-view and edge direction) to estimate
the length of the edge in the world coordinates.

As a second example, we may consider the local
straightness of an edge at each of its edge pixels by
examining the di�erence in the gradient direction at
neighboring edge pixels along the edge. However, we
would not expect identical edge phenomena appearing
at di�erent ranges to yield the same di�erences in the
gradient direction between neighboring edges pixels.
Edges closer to the camera will appear to be straighter,
since the gradient di�erences will be smaller. To allow
for this e�ect, the di�erences in gradient direction can
be weighted by the range to the edge.

We have implemented both of these techniques, and
they have resulted in a substantial improvement in our
target application.

1Note that, for non-frontal scenery, the orientation of the
edge also a�ects the edge length. This e�ect can be accounted
for if we estimate the three-dimensional orientation of the edge.
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6 Relation to previous work

Our method for variable-scale smoothing can be in-
terpreted as a technique to select, for each pixel in the
image, a particular scale from the scale-space [15]:

S(x; y; �) = I(x; y) � g(x; y; �) =
Z 1
�1

Z 1
�1

I(u; v)
1p
2��

e
� (x�u)2+(y�v)2

2�2 dudv

We search for edges that appear at the appropriate
scale given by the stereo data and disregard the other
scales.

Alternative methods for selecting a local scale from
the scale-space have been given by several authors.
Jeong and Kim [5] select the local scales through the
minimization of an energy functional over the scale-
space using a regularization approach. The functional
includes terms that encourage a large scale in uniform
intensity areas, a small scale where intensities change
signi�cantly, and a smoothly varying scale over the
image. Morrone et al. [11] suggest that the local scale
should be a monotonically decreasing function of the
gradient magnitude. They argue that this results in
good localization through the use of a small scale when
the contrast is high and good sensitivity using a large
scale with the contrast is low. Lindeberg [8] notes
that edge detection procedures seek to �nd maxima
in the gradient magnitude in the spatial variables and
that this principal can also be applied to the scale
variable. He thus seeks the edge position in the scale-
space where gradient magnitude is maximized.

Unlike these methods, we select the local scale of
examination based on an estimate of the true scale,
rather than trying to determine an appropriate scale
through examination of the image. Our method is
thus likely to yield better results when the real-world
scale is the important one.

As an alternative to selecting a single scale, these
techniques can be used to complement scale-space
techniques [15]. In this case, the stereo range data
would be used to transform the scale-space such that
each scale plane was level with respect to the true scale
rather than the image scale.

7 Results

Our target application for these techniques is to rec-
ognize surface-lying ordnance in military test ranges
using a stereo system mounted on an unmanned
ground vehicle for the purpose of autonomous reme-
diation. One method to evaluate the edge detection

(a) (b)

Figure 3: Ordnance recognition examples. (a) Correct de-
tection at close range. (b) Correct detection at medium
range and a false positive.

techniques is by the performance of this application
when using the stereo-guided smoothing and edge de-
tection versus the performance when it is not used. We
have tested the techniques on a set of 48 gray-scale im-
ages consisting of barren terrain with an inert piece of
ordnance present at various distances and orientations
(see Figure 3).

In this experiment, we tested three scales individ-
ually (� = 0:8; 1:6; 3:2), and the result with stereo-
guided scale selection using the same three scales to
interpolate from. After edge detection was performed,
an algorithm to detect the ordnance using geometric
cues was used to �nd candidate ordnance positions
[12]. We also considered the combination of all of the
candidates found at the three discrete scales (with du-
plicates removed).

Table 1 summarizes the results of this experiment.
When the variable-scale smoothing and edge detec-
tion was performed, we achieved 40 correct recogni-
tions out of the 48 cases. The eight failures occurred
due to cases where the ordnance was at a signi�cant
distance from the camera and at an orientation nearly
aligned with the camera axis. In addition, 18 false
positives were detected in the images. Figure 3 shows
two examples, one of which contains a false positive.

For each individual scale that was examined, we
had more cases where the ordnance was missed than
with stereo-guided scale selection and, in two of them,
we also found more false positives. While � = 4:0
found 4 less false positives, the detection performance
was signi�cantly degraded, since 5 additional ordnance
instances were missed. When all of the candidates
from the three scales were combined, there was one
less false negative, but in this case the number of false
positives rose sharply to 45.

Overall, the use of the stereo-guided scale selection
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Scale False negatives False positives
1.0 12 28
2.0 11 28
4.0 13 14
all 7 45

variable 8 18

Table 1: Results in ordnance recognition application.

techniques resulted in performance that was signi�-
cantly superior to any of the individual scales or the
combination of the scales.

8 Summary

We have described techniques that perform smooth-
ing and edge detection adaptively using the results of
stereoscopy to vary the scale at each pixel. This allows
processing of the image to be performed with respect
to the true scale of objects rather than the scale ob-
served in the image. Stereoscopy has also been applied
to evaluating the edge salience with respect to the true
scale.

These techniques have been implemented as a vari-
ation of the Canny edge detector. We �rst convolve
the image with Gaussian derivatives at a discrete set
of scales. The correct response at each image pixel
is then estimated through parabolic interpolation of
the known responses and normalization is performed
so that the results are comparable across the image.

We have shown that these techniques yield desir-
able results on an image containing a wide range of
scales. Furthermore, the application of this method
to a data set for our target application of detecting
unexploded ordnance in test ranges resulted in a con-
siderable improvement in performance.
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