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Abstract

Matching images based on a Hausdor� measure

has become popular for computer vision applications.

However, no probabilistic model has been used in these

applications. This limits the formal treatment of sev-

eral issues, such as feature uncertainties and prior

knowledge. In this paper, we develop a probabilis-

tic formulation of image matching in terms of max-

imum likelihood estimation that generalizes a version

of Hausdor� matching. This formulation yields sev-

eral bene�ts with respect to previous Hausdor� match-

ing formulations. In addition, we show that the opti-

mal model position in a discretized pose space can be

located e�ciently in this formation and we apply these

techniques to a mobile robot self-localization problem.

1 Introduction

The use of variants of the Hausdor� distance has
recently become popular for image matching applica-
tions (see, for example, [6, 9, 11, 16, 18, 19]). While
these methods have been largely successful, they have
lacked a probabilistic formulation of the matching pro-
cess and this has made it di�cult to incorporate prob-
abilistic information, such as feature uncertainties and
the prior probability of model positions, into these ap-
plications. This work addresses these issues by intro-
ducing a probabilistic formulation of image matching
that generalizes a version of Hausdor� matching.

After a brief review of Hausdor� matching tech-
niques, we describe a probabilistic formulation of im-
age matching based on the principal of maximum like-
lihood estimation. In this formulation, we seek local
maxima of the likelihood function over the possible
model positions. While this formulation implicitly as-
sumes that the model appears exactly once in the im-
age, it can be applied even when the model does not
appear in the image or appears multiple times. We
must simply set the criterion determining which model
positions are reported as likely hypotheses appropri-

ately. When a particular probability density function
(PDF) is introduced for the distance from each model
feature to the closest matching image feature, this
formulation yields a conventional Hausdor� matching
method. Alternate PDF's yield new and interesting
image matching measures.

This probabilistic formulation of image matching
yields several bene�ts. It allows the incorporation of
prior knowledge, such as the prior probability of model
positions, into the matching process. It also allows for-
mal treatment of feature uncertainties in the search
for likely model positions. Perhaps most importantly,
we can consider arbitrary probability distributions for
the matching error between model and image features.
This allows us to eliminate the sharp distinction be-
tween matched and unmatched model features that is
inherent to previous Hausdor� matching methods.

We discuss techniques for e�ciently searching the
pose space in this formulation and give experimental
evidence that indicates that we achieve improved ac-
curacy in the recognition and localization of objects in
images. Finally, we apply these techniques to a mo-
bile robot self-localization application that performs
matching between terrain occupancy maps to deter-
mine the robot's position.

2 Hausdor� matching

This section reviews a variation of the Hausdor�
distance used to perform image matching, as well as
the application of this measure to matching binary im-
ages and an e�cient search strategy for �nding the rel-
ative image positions where the measure meets some
criterion.

2.1 Hausdor� measure

For two sets of points A and B, the directed Haus-
dor� distance from A to B is:

h(A;B) = max
a2A

min
b2B

jja� bjj ; (1)
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where jj�jj is any norm. This yields the maximum dis-
tance from a point in set A to its nearest point in set
B.

Notice, however, that a single outlier in A can
change this distance by an arbitrary amount. For im-
age matching, where A is usually a set of model points
and B is a set of image points, we wish to allow outliers
(which correspond to occluded or undetected model
features in this case). It is thus common to use the
partial distance [5]:

hK(A;B) = Kth

a2A
min
b2B

jja� bjj (2)

This yields the Hausdor� distance among theK points
in A that best match points in B (and thus allows jAj�
K outliers in the set A). This measure is asymmetric,
since it does not consider how well each of the points
in B is �t by A. Matching can thus be performed
against a large image that contains the model image
as a subset.

A variation on the partial Hausdor� distance is
to determine the maximum number of points in the
model such that the distance is below a given error
threshold:

hK(A;B) � � (3)

Let K�(A;B) denote the maximum K for which (3)

is true. The ratio F�(A;B) = K�(A;B)
jAj is called the

Hausdor� fraction, since it is the fraction of the points
in A that match a point in B up to the error �. This
formulation is easy to work with, since K�(A;B) is
simple to compute, and we examine this variation of
Hausdor� matching in this paper.

Note that pre-setting the maximum allowable error
� and determining the model positions such that F�
is above some threshold T yields equivalent results
to setting the model fraction to T and determining
the model positions with partial Hausdor� distance
no greater than �. This formulation of the Hausdor�
measure does not change the solutions that are found.

It is worth noting that maximizing the Hausdor�
fraction subject to a constant error threshold is es-
sentially the same as performing object recognition
using a bounded error criterion [1, 2], where the best
model positions are those that match the most model
features up to some bounded error. Much of this dis-
cussion applies equally well to this work. However,
we concentrate on matching using a search strategy
associated with the Hausdor� distance [8, 12, 15].

2.2 Application to binary images

We are concerned with the application of these
techniques to binary images (e.g. image edge maps).

Figure 1: A search strategy is used that recursively divides
and prunes cells of the search space.

Each pixel in such an image takes a value of 0 or 1.
We say that the pixels with a value of 1 are occupied

and those with a value of 0 are unoccupied.
Let M be a model image or template and I be

an image that may contain an instance of the model.
Both M and I can be considered to be discrete sets of
points corresponding to the locations of the occupied
pixels in the image or template. Let t be a particular
position of the model with respect to the image. This
model position can be thought of a function that maps
the model points into the image; t(M) is thus the set
of model points after mapping them according to t.

Now, consider the dilation of the image by a struc-
turing element S� that consists of all of the pixels
within � of the origin with respect to some norm.
The dilated image, I� = I � S� (where � denotes the
Minkowski sum or morphological dilation operator),
has an occupied pixel at each location that is within �
of an occupied pixel in the original image. Let I�(m)
denote the value of I� (i.e. 0 or 1) at the position
of some model pixel, m. We can write the Hausdor�
fraction (as a function of the model position) as fol-
lows:

F�(t(M); I) =
1

jM j
X
m2M

I�(t(m)) (4)

2.3 E�cient search strategy

An e�cient search strategy for locating model po-
sitions that satisfy some criterion with respect to the
Hausdor� fraction can be formulated using a multi-
resolution search that examines a hierarchical cell de-
composition of the space of possible model positions
[8, 12, 15]. This method divides the space of model po-
sitions into rectilinear cells and determines which cells
may contain a position satisfying the criterion using
some test. The cells that pass the test are divided into
subcells, which are examined recursively. The rest are
pruned. See Figure 1.

The key to this method of searching the parameter
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space is a quick method to conservatively test whether
a cell can contain a position satisfying the criterion.
This test is allowed to fail to rule out a cell that does
not contain any positions satisfying the criterion, but
it should never rule out a cell that does contain such a
position, since this may result in missing a valid model
position. It is typical in this method to consider only
the model positions in some underlying discretization
of the pose space. When a cell of this space is reached
that contains a single position in the discretization,
this position is tested explicitly.

In order to develop an e�cient testing mechanism
for determining whether a cell can be pruned, it is
useful to consider the distance transform of the im-
age. For a binary image I(x; y), the distance trans-
form DI (x; y) measures the distance from each pixel
in the image to the closest occupied pixel [14].

To test a cell C of possible model positions, the
discrete pose c closest to the center of the cell is �rst
determined. The maximum distance between the loca-
tion to which a model pixel is mapped into the image
by c and by any other pose in the cell is then com-
puted. We call this distance the image-mapped radius

of the cell and denote it �C :

�C = max
p2C

max
m2M

jjp(m)� c(m)jj

Now, if we seek positions at whichK�(t(M); I) is no
less than T , then, to test the cell, we count the number
of model points for which the distance transform at
the appropriate location is no larger than � +�C . If
this number is less than T , then we can prune the cell,
since it cannot contain a model position that matches
T pixels in the model to pixels in the image up to the
error �.

When a cell cannot be pruned, it is divided into
multiple subcells, and the procedure is applied recur-
sively to each of the subcells. This process continues
until all of the cells in the pose space have been ex-
hausted.

3 Probabilistic formulation

We now describe a probabilistic formulation of im-
age matching based on the principal of maximum like-
lihood estimation that retains the avor of Hausdor�
matching. To formalize the problem, let us say that
we have a set of model features,M = f�1; :::; �mg and
a set of image features, I = f�1; :::; �ng. Let t 2 T be
a random variable describing the position of the model
in the image. This makes an implicit assumption that

exactly one instance of the model appears in the im-
age. However, we shall see that cases where the model
does not appear, or that the model appears in multiple
instances, can be easily handled in this formulation.

To formulate the problem in terms of maximum
likelihood estimation of the model position, we must
have some set of measurements that are a function of
the position of the model. We use the distance from
each model pixel (at the position speci�ed by t) to
the closest occupied pixel in the image as our set of
measurements. Call these distances D1; :::; Dm. Each
of these distances can be found by looking up the po-
sition of the model pixel in the distance transform of
the image. Recent work on determining the probabil-
ity of a false positive for Hausdor� matching [3, 12]
has achieved accurate results by treating the model
features independently. We thus treat the distances,
D1; :::; Dm, as being independent.

The likelihood function for t can now be formulated
as the product of the probabilities of these distances:

L(t) =
mY
i=1

p(Di; t); (5)

where p(Di; t) is the probability density function
(PDF) of Di evaluated at the model position t. Tak-
ing the logarithm of (5) yields a measure that preserves
the ordering of the model positions:

lnL(t) =

mX
i=1

ln p(Di; t) (6)

Any PDF, p(Di; t), can be used to yield a matching
criterion in this formulation. Some useful PDFs are
examined in the next section. Here we note that a
measure equivalent to K�(t(M); I) can be obtained
by using:

ln p(Di; t) =

�
k1 + k2; if Di � �

k1; otherwise
(7)

This probability density function is two-valued as
in the conventional Hausdor� matching formulation.
If there is support for the model feature in the image
at this position (i.e. an image feature lies with � of it),
then some constant probability is assigned to p(Di; t)
(a uniform distribution in the distance to nearest fea-
ture). Otherwise, some smaller constant probability
is assigned to p(Di; t) (also uniform, but less likely).
The precise values of k1 and k2 are unimportant in this
equation (they do not change the ranking of model po-
sitions) as long as k2 > 0. In practice, we use k1 = 0
and k2 = 1.
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Now, let us address the implicit assumption in this
formulation that the model appears exactly once in the
image. If we are seeking models that may appear more
than once in an image, or not at all, we must only set
some threshold on (6), as is usually done in Hausdor�
matching formulations. The model positions that sur-
pass the threshold correspond to the likely positions
of the model in the image.

4 Using the probabilistic formulation

This section explores some of the advantages that
can be achieved through the use of the new matching
formulation.

4.1 Prior probabilities of model positions

In some applications, we have prior knowledge of
the likelihood of various model positions being correct.
For example, in tracking applications (e.g. [7]) we may
use the previous position of the object being tracked
and its velocity to predict the next position of the
object.

In the case where the prior probability of each
model position is not uniform, let p(t) be the prior
probability of position t. We now have:

lnL(t) = ln p(t) +
mX
i=1

ln p(Di; t) (8)

It is relatively easy to incorporate this information
into the e�cient search strategy. For each cell, we
must only determine the maximum prior probability of
any position in the cell and add it to the score from the
model features when determining whether to prune
the cell.

The use of this prior information yields the addi-
tional bene�t that we have bounds on the space that
we need to search. We need not examine any position
for which ln p(t) is small enough that the sum with the
best possible score for each of the model pixels could
not surpass the matching threshold.

4.2 Alternative PDFs

This probabilistic formulation of image matching
allows the use of an arbitrary probability distribution
function for the distance from each model feature to
the nearest image feature, p(Di; t). It is common to
model the feature localization error with a normal dis-
tribution. However, using a normal distribution in this
framework yields a least-squares formulation, which

results in poor robustness to outliers. A solution to
this problem is to add a constant term to the normal
distribution, yielding:

p(Di; t) = k1 +
1

�
p
2�

e�Di
2=2�2 (9)

The constant term provides a lower bound on
ln p(Di; t), preventing it from becoming arbitrarily
small for large Di and thus allows unmatched model
points with lower cost.

If we allow the probability density function to vary
with the image location of the model feature (not just
the distance to the nearest image feature), we can al-
low varying levels of uncertainty in the image features.
For example, we may use a feature detector that yields
uncertainty estimates for the position or the existence
of the features. A feature that is less likely to ex-
ist, or for which the position estimate is inaccurate,
may be weighted less in the matching process. For
features with inaccurate position estimates, we may
allow model features that are more distant to match
them (i.e. a wider, atter probability density func-
tion).

Note that the e�cient search strategy discussed
above does not work directly with an arbitrary PDF.
We require some modi�cation to the search strategy
to perform matching with this formulation.

5 Relationship to MAP matching

The formulation of the image matching problem de-
scribed here is similar to the MAP model matching
(MMM) formulation of Wells [17]. In both formula-
tions the best model positions are those that maxi-
mize a score from the prior distribution of model po-
sitions added to the sum of the scores for a set of
features. The MMM formulation is based on a model
with explicit feature correspondences. No such corre-
spondences are necessary in our formulation, although
implicit correspondences are given by the distance to
the nearest image feature.

The primary di�erence between these methods is
that the MMM formulation sums scores over the set
of image features, while our formulation sums scores
over the set of model features. Summing over the im-
age features corresponds to a formulation where we
try to best explain the image features. Multiple im-
age features may contribute to the sum by matching
the same model feature. Summing over the model
features corresponds to a formulation where we try to
best locate instances of the model. Multiple model
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features may contribute to the sum by matching the
same image feature. We argue that summing over the
model features is more appropriate for object recogni-
tion applications since many of the image features are
irrelevant noise or background e�ects. In addition, the
spacing of the model features can be controlled more
easily than the spacing of image features. It is thus
possible to ensure that no duplicate matches occur in
some cases [4].

An additional di�erence is that Wells presents his
work as a method to re�ne hypotheses that have been
generated through indexing or some other hypothesis
generation technique. He thus focuses on iterative op-
timization techniques for determining the best model
positions, assuming that the starting point is not too
far from the optimal position. We are more interested
in global search techniques that can search a (dis-
cretized) pose space and guarantee that the best model
position is found. It should be noted that these search
techniques are complementary. We could generate
the hypotheses using the global search techniques for
re�nement by the iterative optimization techniques.
However, we have found that the global search tech-
niques are usually of su�cient accuracy that re�ne-
ment is not necessary.

6 E�cient algorithm

If we use the alternative probability density func-
tions described in Section 4.2, we must modify the
search strategy to e�ciently �nd the model positions
that satisfy the matching criterion.

Let us �rst note that a brute force method can be
constructed by determining, for each pixel location in
the image, the value of ln p(Di; t), since p(Di; t) is in-
dependent of the particular model feature; only the
position to which t maps �i into the image is impor-
tant. We can thus compute a transform of the image,
PI(X) = p(DI (X)), where X = [x y]T is a pixel loca-
tion in the image and DI(X) is the distance transform
of the image, according to Equation (9) or any other
PDF. We call this the probability transform of the im-
age. Each possible position of the model can be tested
by examining this transform at the location that the
position maps each model feature, summing the re-
sults, and determining if the sum meets the criterion.

Now, to search the space e�ciently, we adapt the
multi-resolution search strategy discussed previously,
where we attempt to prune large cells of the transfor-
mation space. Recall that in this search strategy, we
compute, for each cell that is examined, the discrete
model position closest to the center of the cell and the

image-mapped radius of the cell, called c and �C , re-
spectively. Then, each of the model features is tested
to determine if there could be a position within the
cell where the model feature is matched by an image
feature up to the allowable error.

In the new formulation, we instead want to deter-
mine, for each model feature, the maximum value that
p(Di; t) can achieve with respect to any model posi-
tion in the cell. Call this value pCi . A bound can be
placed on this value as follows:

pCi = max
t2C

p(Di; t) � p(max(dCi ; 0)) (10)

dCi = DI(c(�i))��C (11)

Now, if we sum each pCi and the result does not
satisfy the matching criterion, then we can prune the
entire cell. The remainder of the search strategy re-
mains the same.

If we allow the probability density function to vary
with the image position to which the model feature
is taken by t, this search becomes slightly more com-
plicated. It is not necessarily su�cient to know the
distance to the nearest image feature, since we may
weight the image features di�erently. In this case, we
parameterize the PDF by the image position, and it is
equivalent to the probability transform of the image,
PI(X). We can then bound the maximum likelihood
that can be achieved for some model feature by any
position in C as follows:

pCi = max
t2C

PI (t(�i)) � max
Y 2fc(�i)g�S�C

PI(Y ) (12)

For some structuring elements, S�C
, we can com-

pute these bounds e�ciently at each level of the cell
hierarchy, if all of the cells at the level have the same
dimensions.

7 Results

This section discusses the results of applying these
techniques to both a synthetic problem, where we are
concerned with matching two-dimensional image data,
and a real application, where we localize a mobile
robot by matching three-dimensional range maps.

7.1 Synthetic experiments

We �rst tested these techniques in controlled exper-
iments where exact ground-truth was available, since
the image feature data was generated synthetically.
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Figure 2: Terrain map generated from Mars Path�nder imagery. (a) Annotated image of Sojourner and rocks on Mars.
(b) Terrain map generated from stereo imagery.

We chose a simple problem domain (translation of iso-
lated feature points) under demanding conditions to
demonstrate the superiority of the probabilistic for-
mulation. This experiment generated random model
features (to subpixel accuracy). The model was trans-
lated randomly and placed in the image with consider-
able occlusion, clutter, and noise. We then performed
a search for the model using both conventional Haus-
dor� matching techniques and the probabilistic formu-
lation using a probability distribution similar to (9).

Over 10000 trials, the conventional Hausdor�
matching method yielded 395 instances where an in-
correct match had a higher score than the correct
match, while the probabilistic formulation yielded 278
such failures on the same images. The probabilistic
formulation thus yielded superior recognition of the
feature patterns.

We also tested the localization accuracy of the tech-
niques. Note that a lower bound on the average ac-
curacy of matching of 0.25 pixels in each direction ex-
isted, since matching was performed only to pixel ac-
curacy. In the successful trials, the probabilistic for-
mulation yielded an average localization error of 0.46
pixels in each direction, while the conventional method
yielded an average error of 0.58 pixels. The proba-
bilistic formulation thus had superior performance in
localizing objects as well.

7.2 Mobile robot localization

While the synthetic problem described above yields
positive data with respect to the performance of the
probabilistic formulation of Hausdor� matching, the
real test, of course, is in real applications. We have
previously implemented a mobile robot localization

method using conventional Hausdor� matching meth-
ods [11]. Here we compare this system to a new im-
plementation using the probabilistic formulation.

The motivation for studying this problem is to al-
low the next-generation Mars rover to have greater
autonomy from the lander and from human opera-
tors. The basic method that is used is to generate
a range map of the terrain near the robot through
stereo vision [10]. This range map is transformed into
a three-dimensional occupancy map describing the ter-
rain (see Figure 2) and it is then compared against
a previously generated occupancy map of the terrain
to determine the relative position between the maps.
For example, it can be compared to a map generated
from previous robot positions, or to a map generated
prior to the robot activity by some other means [13].
While the matching techniques described here have
been discussed in terms of two-dimensional edge maps,
the generalization to three-dimensional surface maps
is straightforward.

In an experiment over 13 camera positions, where
the ground-truth was measured by hand, the previ-
ous implementation using the conventional Hausdor�
matching method had an average error of 0.050 me-
ters, while the new implementation yielded an average
error of 0.042 meters. It is likely that human error in
collecting the ground-truth is responsible for a signi�-
cant amount of the remaining error. In similar exper-
iments where the cameras were panned by 25 degrees,
but were not translated, the average error was reduced
from 0.011 meters to 0.004 meters. The probabilistic
formulation of Hausdor� matching thus yielded signif-
icantly improved results in this problem domain.

This method has also been applied to imagery from
the Mars Path�nder mission [13]. While there is no
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ground-truth for this data, the autonomous localiza-
tion results that have been computed are close to the
results generated by a human operator.

8 Summary

The primary contribution of this paper is a new
formulation of image matching in terms of maximum
likelihood estimation. This formulation seeks local
maxima in the likelihood function of position of the
model with respect to the image. While this implicitly
assumes that the model appears in the image, this for-
mulation can be applied equally well when the model
does not appear in the image if an appropriate thresh-
old is used to determine which locations are output as
likely model positions.

This formulation yields several advantages over pre-
vious Hausdor� matching methods. Feature uncer-
tainties, in both the position and existence of the
features, can be treated formally in the framework.
Smoothly varying probability density functions can
be used that eliminate the sharp boundary inherent
in the conventional two-valued support function. In
addition, it is simple to incorporate prior knowledge
about the probability distribution of model positions
in the matching process with this formulation.

We have described new techniques for performing
matching e�ciently with this formulation. Experi-
ments on synthetic data indicate that the new tech-
niques yield performance superior to the standard for-
mulation with respect to both recognition and local-
ization. Finally, we have applied this technique to the
self-localization of a mobile robot in a natural environ-
ment using range maps from stereo vision. Improved
results were also obtained in this domain.
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