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Abstract

Feature indexing techniques are promising for object
recognition since they can quickly reduce the set of pos-
sible matches for a set of image features. This work ex-
ploits another property of such techniques. They have
inherently parallel structure and connectionist network
formulations are easy to develop. Once indexing has
been performed, a voting scheme such as geometric
hashing [10] can be used to generate object hypotheses
in parallel. We describe a framework for the connec-
tionist implementation of such indexing and recogni-
tion techniques. With su�cient processing elements,
recognition can be performed in a small number of time
steps. The number of processing elements necessary to
achieve peak performance and the fan-in/fan-out re-
quired for the processing elements is examined. These
techniques have been simulated on a conventional ar-
chitecture with good results.

1 Introduction

Techniques that use sets of image features to in-
dex sets of model features that may match them (e.g.
[3, 4, 6, 9, 10, 11, 12, 16]) are promising for object
recognition because of their ability to quickly reduce
the set of possible matches for a set of image features.
In this work, we exploit another bene�cial property of
such indexing systems. They have inherently paral-
lel structure and can be implemented using very �ne
grain parallelism. To this end, we give a framework for
the connectionist implementation of feature set index-
ing and object recognition techniques. This framework
uses a very large number of simple processing elements
communicating in a �xed pattern. In such a connec-
tionist framework, eliminating groups from consider-
ation is not necessary for fast recognition, since the

work on separate feature sets can be performed in
parallel. Matches can simply be given varying levels
of likelihood, as in Bayesian formulations of indexing
[5, 15], which are then used to determine which objects
are likely to be present in the image.

In this work, we assume that features have already
been extracted from the image, and we use these fea-
tures as the primary tool for recognition. Most feature
detection techniques can be implemented without dif-
�culty in a connectionist manner, but the examination
of such techniques is outside the scope of this work.

Once features have been extracted from the image,
recognition can be performed in a small number of
time steps in this framework. When we have su�cient
processing elements (with �xed fan-in and fan-out) to
achieve maximum parallelization, the time required is
O(logn). If the processing elements can broadcast a
value on O(n) dedicated connections in O(1) time and
maximize and sum O(n) inputs on dedicated connec-
tions in O(1) time, then the running time is O(1).

If we use randomization concepts to limit the
number of image feature sets that must be consid-
ered, maximum parallelization can be achieved with
O(mnk) processing elements, where m is the number
of features in the object model, n is the maximum
number of image features at which high accuracy is
maintained, and k is the number of matches between
model and image features necessary to perform index-
ing. Note that this number of processing elements
is not required, but processing time and/or accuracy
will su�er as the number of processing elements is de-
creased. Alternatively, we can use O(nk + I) process-
ing elements and achieve maximum parallelization,
where I is the number of processing elements neces-
sary to cover the indexing space.

Simulation of this system on sequential hardware
has yielded good results.

It should be noted that parallel implementations
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of indexing systems (particularly geometric hashing)
have been previously studied (e.g., [2, 14, 15]), but
these works have primarily considered general-purpose
parallel-processing systems and have not achieved full
parallelization since they retain sequential examina-
tion of image feature sets.

2 Object recognition using an election

Feature set indexing systems (e.g. [4, 10, 12, 16])
attempt to quickly determine which sets of object fea-
tures could have projected to speci�c sets of image fea-
tures under certain noise assumptions. Such systems
consist of two phases. First, a preprocessing phase
is performed in which an index table (or some other
indexing data structure) is created. In this phase,
the feature sets of some predetermined cardinality are
stored in one or more locations in the index table ac-
cording to parameters describing their geometry (and
possibly other attributes). Ideally, these parameters
are invariant to the transformations and projections
that may be applied to the object in forming its image.
Recognition is performed during the second phase. In
this phase, the parameters of the sets of image fea-
tures are used to index the sets of object features in
the index table that may match them.

One of the uses of indexing has been in voting
schemes like the geometric hashing system of Lamdan
et al. [10]. This system uses indexing to determine the
number of additional feature matches that are brought
into alignment by the same transformation that aligns
various basis sets of matches and is thus conceptually
similar to the alignment method [8]. The geometric
hashing method allows much of the work to be moved
o�-line and uses randomization to achieve improved
e�ciency. This shift of work o�-line and the natural
parallelism of the technique make such methods excel-
lent for connectionist implementation, since we wish
to keep our parallel processing elements as simple as
possible.

Let k be the number of feature matches necessary to
perform indexing. We'll call a set of k image features
an image group and a set of k object features an object
group. Similarly, a set of k�1 features will be called an
object basis or an image basis. If we restrict ourselves
to conventional indexing methods using point features,
then k = 2 for two-dimensional translation only, k = 3
for two-dimensional translation, rotation, and scale,
and k = 4 for full three dimensional transformations
under weak-perspective.

The basic procedure for recognizing an object using
an election is as follows:

1. Generate an index table storing the relevant in-
formation from each possible object group.

2. Detect the features in the image.

3. Choose a random image basis.

4. Form all image groups comprised of the image
basis and one additional feature.

5. Index possible matches for each image group that
was formed in step 4.

6. For each model group that is indexed, record a
vote for the model basis that is matched to the
random image basis.

7. If some model basis receives enough votes, then
an object hypothesis has been found. Otherwise,
Steps 3-7 are repeated until enough image bases
have been examined to rule out the presence of
the object in the image with high probability.

Step 1 is a preprocessing step and is performed prior
to run-time. Step 2 is performed once per image. This
step will not be examined in this paper. Steps 3-7 form
the recognition phase of the algorithm. The criteria
for stopping the procedure will be discussed further in
Section 4.

3 Connectionist framework

Feature set indexing and object recognition by elec-
tion translate naturally into a connectionist frame-
work, where we can use massive parallelism to exam-
ine possible matches simultaneously. Our framework
breaks the process into layers of processing elements
that correspond to the following conceptual entities:

Layer 1: Image features.
Layer 2: Image feature groups.
Layer 3: Matches between image and model groups.
Layer 4: Matches between image and model bases.
Layer 5: Model hypotheses.

The �rst three layers perform the indexing and the
�nal two layers perform the election. Here we as-
sume that the preprocessing has already been per-
formed and that the model group parameters have
been loaded into the appropriate processing elements.
The computations that take place in each of these lay-
ers and the communication pattern between them are
as follows:

Layer 1: Image features. The parameters of the
image features comprise the input layer. This layer
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does not perform any computation. The parameters
are simply fed to the appropriate processing elements
in the following layer.

Layer 2: Image feature groups. The processing
elements in the second layer correspond to the image
groups (feature sets of size k). These processing el-
ements generate the indexing parameters, which are
typically easily computed functions of the feature pa-
rameters. Each of the processing elements in this layer
receives input from the processing elements in the pre-
vious layer corresponding to the k features that make
up the image group, and sends output to each of the
group matches that contain this image group.

Layer 3: Group matches. The processing el-
ements in the third layer represent matches between
image groups and model groups. They take input from
the processing element corresponding to a particular
image group and they are tuned to the indexing pa-
rameters of a particular model group such that they
output a high value if the indexing parameters of the
input image group are close to the parameters of the
model group. This value is ideally some likelihood
function of the group match being correct. These pro-
cessing elements send output to the processing ele-
ments corresponding to the basis matches contained
in the group match.

Layer 4: Basis matches. The fourth layer per-
forms the voting for each possible match between a
model basis and an image basis. Each processing el-
ement at this layer receives output from each of the
processing elements at the previous layer that matches
the given image basis and model basis. The sum (or
some other combination) of these likelihoods is used
as the score for the basis match. A large score at this
stage indicates that the basis match is likely to be
correct.

Layer 5: Model hypotheses. The �nal layer
determines which objects are present in the image by
considering the information from the model bases for
each object. These processing elements receive input
from each of the basis matches for some object model
and output the maximum of the inputs. If more than
one instance of an object model may be present in
the image, this layer may be omitted and the basis
matches can be used to indicate where the objects are
present in the image.

It should be noted that we do not select a subset
of the possible matches for a particular image group
to be indexed in this framework. Each possible match
is assigned a score, which is then propagated through
the network. This is similar to Bayesian formulations

[5, 15], except that we do not eliminate matches in the
connectionist framework even if they have a small like-
lihood of being correct in the Bayesian formulation. In
addition, we note that the pattern of connections does
not change for di�erent images. We need only feed the
feature parameters into the processing elements in the
�rst layer.

4 Ideal number of processing elements

For any object that has at least some fraction, f ,
of its features appearing in the image, it is possible to
achieve any �xed probability of examining a correct
image basis while examining far less than each of the
O(nk�1) image bases. If we choose some number, x,
of image bases with cardinality k � 1 at random and
examine only those bases, the probability of not ex-
amining any correct bases for any particular object is
bounded approximately by:

p �
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This is true since the probability of any particular im-
age feature being from the object is at least fm

n
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this case. If we require this probability to be less than
some small constant, �, we can solve for the minimum
number of trials, x, necessary:
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We can thus examine O( n
k�1

mk�1 ) image bases and
achieve high accuracy (f and � are constants). For
each image basis, we consider each of the ( m

k�1) ob-
ject bases as possible matches and for each possible
match, we examine each of the (n� k+ 1)(m� k+ 1)
additional feature matches to determine if the match
between the bases is correct. In total, we examine

O( n
k�1

mk�1
) �O(mk�1) �O(mn) = O(mnk) group matches

and achieve probability 1�� that a correct image basis
is examined for a particular object.

In the connectionist implementation, we can simply
select the appropriate number of random image bases
to examine in parallel and achieve probability 1� � of
examining a correct image basis. The processing ele-
ments corresponding to the remainder of the matches
are unnecessary. We thus gain maximum paralleliza-
tion when we use O(mnk) processing elements in this
case. Of course, in practice, the number of processing
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Layer Description Number Fan-In Fan-Out

1 Image features n 1 (n�1

k�1)
2 Image groups (nk) k � �m

3 Group matches � �mnk 1 1
4 Basis matches � �nk�1 � mn 1
5 Models 1 � �nk�1 1

Table 1: The number of processing elements and fan-in/fan-out necessary per object model at each layer.

elements available will set some limit on the number of
image features that can be handled with rate of failure
�. Performance will be good on images of this com-
plexity or less and will degrade gracefully as the image
complexity rises past this level. Alternatively, we can
let processing elements perform more than one task to
maintain a high performance at the cost of additional
processing time.

Note that perceptual organization can be used to
determine sets of features that are likely to come from
the same object. In this case, we can use these sets as
the image bases that we examine. This will not only
result in better performance in �nding objects, but it
will allow the number of image bases that we need to
examine to be reduced.

We can now consider the ideal number of processing
elements at each level, as well as the fan-in and fan-
out required for each processing element. We need to
examine approximately �nk�1 basis matches (where

� =
ln

1

�

fk�1
, and thus is constant when f , �, and k

are set), since for each image basis we must examine
each of the (k� 1)! permutations of each of the ( m

k�1)
model bases that may match it. This implies that
the number of group matches that must be examined
is approximately �(m � k + 1)(n � k + 1)nk�1. The
required fan-in and fan-out of the processing elements
in each level can be determined from the connection
pattern described in the previous section. See Table 1.
If we don't have individual processing elements with
this fan-in/fan-out capability, we can build up the fan-
in/fan-out using a tree of simple elements.

It is possible to reduce the ideal number of process-
ing elements at the group match stage by combining
processing elements for matches that share the same
(or very similar) indexing parameters. These process-
ing elements perform the same function, since they are
matching image groups against the same set of param-
eters. This would then require O(nk + I) processing
elements, where I is the number of processing elements
necessary to cover the space of indexing parameters.

This analysis of the ideal number of processing el-

ements is on a per object basis. As the number of
objects in the database increases, the ideal number of
processing elements increases linearly. Alternatively,
we can process the objects sequentially, using the same
processing elements for each object.

5 Results

We describe techniques for implementing several
indexing schemes in this framework in [13]. These
techniques have been simulated using a conventional
computer architecture. In these experiments, we use
a variant of the transformation metric described by
Weinshall and Basri [17] to perform an indexing-like
function. These techniques determine how well a set of
point correspondences can be brought into alignment
by a rigid transformation under weak-perspective and,
in this case, k = 4. The transformation metric is:

Ntr =
1

2
(xTBx+yTBy�2

q
xTBx � ytBy � (xTBy)2)

where x and y are vectors of the x- and y-coordinates
of the image points after translating them such that
their center of mass is at the origin and B is what
Basri and Weinshall call the characteristic matrix of
the model points. The transformation metric, Ntr,
will yield a distance of zero if the points can be brought
into alignment exactly by a rigid transformation and
otherwise measures how far the optimal a�ne trans-
formation is from rigid. This value is normalized and
inverted to yield an appropriate score for each group
match. See [13] for additional details.

In experiments on random object groups that
were projected using the perspective projection with
bounded noise added (error radius � = 1:0), correct
matches received an average score of .701, while in-
correct matches received an average score of .0036.
This procedure thus performs well in discriminating
between correct and incorrect matches.
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(a) (b)

Figure 1: Two examples recognizing a three-dimensional object in a real image.

The entire system has been simulated on recogni-
tion problems consisting of 20 models points projected
onto the image using the perspective projection and
30 noise points. Once again bounded noise was added
(� = 1:0) to the locations of the projected object
points. In these experiments, an average of 6.16 cor-
rect basis matches were found for each correct object,
thus objects were detected when they were present in
the image. In addition, out of the 1.3 million incorrect
basis matches examined per object, an average of 3.13
false positives were found that required veri�cation to
discard (a false alarm rate of 2:41 � 10�6).

Figure 1 shows the results of using these techniques
to recognize a stapler in two real images. In this case,
feature points were determined using an interest oper-
ator [7] and their locations were used in the recognition
process.

6 Discussion

Let's �rst consider the running time required for
recognition in this framework. Note that we must have
n � fm to recognize a model in an image, so we can
assume m = O(n). If we have su�cient processing
elements with O(n) fan-in and fan-out capabilities1,
then the running time is O(1), since the computation
required at each layer can be computed in constant
time and there are a constant number of layers. (The
O(nk�1) fan-in and fan-out capabilities can be sim-

1This assumes the ability to �nd the sum and maximum of
the inputs on these dedicated connections in O(1) time.

ulated using a tree of processing elements of a con-
stant height proportional to k.) For processing ele-
ments with limited fan-in and fan-out capabilities, we
can chain processing elements in a tree with O(logn)
height to provide the necessary capability. Thus, in
this case, the running time of the system is O(logn).
Such a system would be fast in practice, in either case,
since the computations performed by each processing
element are simple.

In the framework described above, we have assumed
that the necessary indexing parameters are loaded into
the correct processing elements prior to recognition
time. An interesting possibility to consider is whether
these parameters could be learned in a supervised or
unsupervised manner through the examination of ex-
amples.

Note that this system does not use weights associ-
ated with the connections. Given the number of ob-
ject and image features that we wish to handle, the
communication pattern is completely �xed, regard-
less of the speci�c object and image. The parame-
ters that vary in this system are the indexing param-
eters stored at the processing elements corresponding
to group matches. These parameters could be trained
by a learning algorithm.

While it is conceivable that the indexing parame-
ters for an entire object could be learned concurrently,
a superior learning strategy is to train each of the pro-
cessing elements corresponding to the group matches
separately. Beis and Lowe [1] describe such a system
using radial basis functions or Parzen windows to learn
indexing functions for three-dimensional objects. At
this time, we have made no attempt to train a system
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to learn indexing parameters in this framework.

7 Summary

This paper has considered connectionist methods
for performing feature set indexing and object recog-
nition. We �rst summarized the basic algorithm for
performing object recognition using an election. Such
systems use indexing to determine which sets of model
features could have projected to the sets of image fea-
tures that contain a basis set of features. Votes are
recorded for each of the basis sets of model features
that are indexed and such basis sets that accumulate
many votes are considered recognition hypotheses.

We then described a connectionist framework for
the implementation of indexing and voting techniques
to perform object recognition. This framework uses a
large number of simple processing elements performing
in parallel and communicating on a �xed connection
network. The ideal number of processing elements was
determined to be O(mnk), where m is the number of
model features, n is the number of image features,
and k is the number of feature matches necessary to
perform indexing. When the ideal number of process-
ing elements are present, the system can perform ob-
ject recognition in O(logn) time, even when the fan-
in/fan-out of the processing elements is limited. If
the processing elements can broadcast on O(n) con-
nections and select the maximum and sum of O(n)
inputs on dedicated connections in O(1) time, then
object recognition can be performed in O(1) time.

Finally, we have described the results of simulat-
ing the performance of these techniques on a conven-
tional architecture using real and synthetic images.
These simulations used a transformation metric to de-
termine which sets of features were good matches and
the propagation of these values through the network
yielded good recognition performance.
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