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Abstract

This paper shows that the pose clustering method of

object recognition can be decomposed into small sub-

problems without loss of accuracy. Randomization can

then be used to limit the number of subproblems that

need to be examined to achieve accurate recognition.

These techniques are used to decrease the computa-

tional complexity of pose clustering. The clustering

step is formulated as an e�cient tree search of the

pose space. This method requires little memory since

not many poses are clustered at a time. Analysis shows

that pose clustering is not inherently more sensitive

to noise than other methods of generating hypotheses.

Finally, experiments on real and synthetic data are

presented.

1 Introduction

Model-based object recognition systems determine
which objects appear in images using a catalog of ob-
ject models and estimate their positions and orien-
tations (poses) relative to the camera. This paper
examines methods of improving the e�ciency of the
pose clustering method of object recognition. This
is done by decomposing the pose clustering problem
into many small subproblems, which can be examined
sequentially or in parallel. Only a small fraction of
these subproblems need to be examined in order to
achieve accurate object recognition. In addition, I
present a method of clustering the poses that guaran-
tees time and space e�ciency. The analysis presented
here shows that pose clustering is not inherently more
sensitive to noise than other methods of object recog-
nition.

This paper focuses on the recognition of three-
dimensional objects undergoing unrestricted rigid
transformations from monocular intensity images. To
simplify matters, the only features used for recogni-

tion are feature points in the model and the image,
but the results here can be generalized to any features
fromwhich the pose can be determined. For this prob-
lem, the computational complexity of pose clustering
is reduced from O(m3n3) to O(mn3) and the space re-
quired is shown to be O(mn), where m is the number
of model points and n is the number of image points.

2 Pose Clustering

Pose clustering is a technique that is used to rec-
ognize objects in images from hypothesized matches
between feature groups [10, 12, 13]. The transforma-
tion parameters that align these hypothesized matches
are determined. Under a rigid-body assumption, all
of the correct hypotheses will yield a transformation
close to the correct pose of the object. Objects can
thus be recognized by �nding clusters among these
transformations in the pose space. Since we do not
know which of the hypothesized matches are correct
in advance, pose clustering methods have typically ex-
amined the poses from all possible matches.

To prevent a combinatorial explosion in the number
of poses considered, we want to use as few as possible
matches between image and model points to deter-
mine the pose of the object. It has been shown that
matching three model points to three image points
is su�cient to constrain the pose to a �nite set of
points under the perspective projection and the weak-
perspective approximation [5, 9]. A pose clustering
algorithm can thus use matches between three model
points and image points to determine hypothetical
poses.

Let us call a set of three model features f�1; �2; �3g
a model group and a set of three image points
f�1; �2; �3g an image group. A hypothesized match-
ing of a single model feature to an image feature
� = (�; �) will be called a point match and three
point matches of distinct image and model features
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 = f(�1; �1); (�2; �2); (�3; �3)g will be called a group

match.
If there are m model features and n image fea-

tures then there are 6(m3 )(
n
3 ) distinct group matches

(since each group of three model points may match
any group of three image points in six di�erent ways.)
Each of these group matches yields two or four possi-
ble transformations. A cluster among these poses in
the pose space indicates that there is a pose that very
nearly brings several group matches into alignment.
(The pose takes each of the model points in the group
matches close to its corresponding image point.) We
should therefore recognize this as a possible instance
of the object.

2.1 Clustering Techniques

Ideally, we would �nd exactly those points in pose
space that would bring a large number of model points
into alignment with image points up to some error
boundary. Work in this direction has been undertaken
by Cass [2, 3], but these methods can be time consum-
ing and are di�cult for the case of three-dimensional
objects.

Most pose clustering algorithms perform cluster-
ing less accurately by histograming the poses. In this
method, each pose is represented by a single point in
pose space, rather than the subset of poses that bring
the point matches in the group match into alignment
up to the error bounds. The pose space is discretized
into overlapping bins and the poses are histogramed
in these bins to �nd large clusters. Since pose space
is six-dimensional for three-dimensional rotation and
translation, the discretized pose space is enormous for
the �neness of discretization necessary to perform ac-
curate pose clustering.

Two techniques that have been proposed to reduce
this problem are coarse-to-�ne clustering [12] and de-
composing the pose space into orthogonal subspaces
in which histograming can be performed sequentially
[10, 13]. In coarse-to-�ne clustering, pose space is
quantized in a coarse manner and the large clusters
found in this quantization are then clustered in a more
�nely quantized pose space. Alternately, pose space
can also be decomposed such that clustering is per-
formed in two or more steps, each of which examines
a projection of the transformation parameters onto a
subspace of the pose space. The clusters found in the
projection of the pose space are then examined with
respect to the remaining transformation parameters.

These techniques can lead to additional problems.
The largest clusters in the �rst clustering step do not
necessarily correspond to the largest clusters in the

entire pose space. We could examine all of the bins
in the �rst space that contain some minimum number
of transformations, but Grimson and Huttenlocher [6]
have shown that for cluttered images, an extremely
large number of bins would need to be examined due
to saturation of the coarse or decomposed histogram.

In addition, we must either store with each bin
the group matches that contributed to a cluster there
(so that we can perform the subsequent histograming
steps on them) or we must reexamine all of the group
matches (and redetermine the transformations align-
ing them) for each subsequent histograming step. The
�rst possibility requires an enormous amount of stor-
age and the second requires considerable extra time.

We will see that these problems can be solved
through a decomposition of the pose clustering prob-
lem. Furthermore, randomization can be used to
achieve a low computational complexity while still
achieving high accuracy. Similar techniques in the
context of transformation equivalence analysis can be
found in [4].

3 Decomposition of the Problem

In this section, I show how the pose clustering prob-
lem can be decomposed into much smaller subprob-
lems. Each of these subproblems examines only those
those group matches which contain a basis of two point
matches. If the point matches are correct then equiv-
alent accuracy to the original problem is achieved.

Let � be the space of legal poses. Each p 2 � can
be considered a function p : IR3 ! IR2 that takes a
model point to its corresponding image point. Each
group match 
 = f(�1; �1); (�2; �2); (�3; �3)g deter-
mines some subset of pose space �(
) � � that brings
each of the model points in the group match to within
the error bounds of the corresponding image point. I
will consider a generalization of this function �(
) that
applies to sets of point matches of any size.

Let's assume that the feature points are localized
with error bounded by a circle of radius � (though the
following analysis is not dependent on any choice of
error boundary.) We can de�ne �(
) as follows:

De�nition :

�(
) � fp 2 � : jjp(�i) � �ijj2 � �, for 1 � i � j
jg

The following theorem is the key to showing that
examining the subproblems has equivalent accuracy to
examining the original pose clustering problem.
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Theorem 1:

The following statements are equivalent:

1. There exist g = (x3) distinct group matches that
pose p 2 � brings into alignment up to the error
bounds. Formally,

9
1; :::; 
g s.t. p 2 �(
i) for 1 � i � g

2. There exist x distinct point matches �1; :::; �x
that pose p 2 � brings into alignment up to the
error bounds:

9�1; :::; �x s.t. p 2 �(f�ig) for 1 � i � x

3. There exist x� 2 distinct group matches sharing
some pair of point matches that pose p 2 � brings
into alignment up to the error bounds:

9�1; :::; �x s.t. p 2 �(f�1; �2; �ig) for 3 � i � x

Proof :

The proof of this theorem has three steps. I will
prove (a) statement 1 implies statement 2, (b) state-
ment 2 implies statement 3, and (c) statement 3 im-
plies statement 1. Therefore the three statements
must be equivalent.

(a) Each of the group matches is composed of a
set of three point matches. The fewest point matches
from which we can choose (x3) group matches is clearly
x. The de�nition of �(
) guarantees that each of the
individual point matches of any group match that is
brought into alignment are also brought into align-
ment. Thus each of these x point matches must be
brought into alignment up to the error bounds.

(b) Choose any two of the point matches that are
brought into alignment. Form all of the x � 2 group
matches composed of these two point matches and
each of the additional point matches. Since each of
the point matches is brought into alignment, each of
the group matches composed of them also must be
from the de�nition of �(
).

(c) There are x distinct point matches that com-
pose the x� 2 group matches each of which must be
brought into alignment. Any of the (x3) distinct group
matches that can be formed from them must therefore
also be brought into alignment. 2

This theorem implies that we can achieve accuracy
equivalent to the examining all of the group matches
when we examine subproblems in which only those
group matches that share some basis of two point

Function recognize(input: model-points, image-points)
Repeat:
Choose two random image points �1 and �2.
For all pairs of model points �1 and �2:
For all point matches (�3; �3):
Determine the poses aligning the group
match 
 = f(�1; �1); (�2; �2); (�3; �3)g.

Find and output clusters among these poses.
End

Figure 1: New pose clustering algorithm.

matches are considered. So, instead of �nding a cluster
of size (x3) among all of the group matches, we simply
need to �nd a cluster of size x � 2 within any set of
group matches that all share the same basis of two
point matches. Furthermore, it is clear that any two
correct point matches can be used as this basis. For a
single basis, there are (m � 2)(n� 2) = O(mn) group
matches such that no feature is used more than once.
Of course, examining just one image basis will not be
su�cient to rule out the appearance of an object in an
image. We could simply examine all 2(n2 )(

m
2 ) possible

pairs of basis matches, but we will see in the next sec-
tion that we can examine O(n2) pairs of matches and
achieve as much accuracy as desired.

Figure 1 gives the updated pose clustering algo-
rithm.

4 Computational Complexity

This section discusses the computational complex-
ity necessary to perform pose clustering using the tech-
niques described above. We can use a randomization
technique proposed by Fischler and Bolles [5] to limit
the number of pairs of matches that must be exam-
ined. A random pair of image points is chosen to ex-
amine as the image basis points. All basis matches
using these image points are examined and if one of
them leads to recognition of the object then we may
stop. Otherwise, we continue choosing image basis
points at random until we have reached a su�cient
probability of recognizing the object if it is present in
the image.

If we require fm model points to be present in the
image to ensure recognition, we can determine an up-
per bound on the probability of not choosing a cor-
rect image basis in k tries, where each trial consists
of examining a random pair of point matches. Since
the probability of a single image point being a correct
model point is at least fm

n
, the probability of a basis

253



being incorrect is at most 1� ( fm
n
)2. Thus, the prob-

ability that k random trials will all be unsuccessful
is:

p �

 
1�

�
fm

n

�2
!k

� �

If we solve for the minimum number of trials to
achieve accuracy � we get:

k �
ln �

ln

�
1�

�
fm
n

�2� = O

�
n2

m2

�

(To a �rst-order approximation: kmin = n2

(fm)2 ln
1
�
)

For each image basis, we must examine each of the
2(m2 ) = O(m2) permutations of model points which
may match them. So, in total we must examine

O( n
2

m2 ) �O(m2) = O(n2) basis matches to achieve ac-
curacy 1��. Since we examine O(mn) group matches
for each basis, our method requires O(mn3) time per
object in the database, where previously O(m3n3) was
required. The time bound varies with the logarithm
of the desired accuracy, so very high accuracies can be
achieved without greatly increasing the running time
of the algorithm.

5 Frequency of False Positives

While the above analysis has been interpreted in
terms of the correct clusters so far, it also applies to in-
correct clusters. Let t be our threshold for the number
of model points that must be brought into alignment
for us to output a hypothesis. If a pose clustering sys-
tem that examines all of the poses �nds a false positive
cluster of size ( t3), we would expect the new techniques
to yield a false positive cluster of size t � 2. We will
thus �nd false positives with the same frequency as
previous systems.

Grimson et al. [7] analyze the frequency of this oc-
curring for a pose clustering system that examines all
of the hypotheses simultaneously. This analysis as-
sumes that the locations of the poses in pose space
from each of the group matches are independent, but
this is not quite correct. Consider two group matches
composed of a total of six distinct point matches. If
there is some pose p 2 � that brings both group
matches into alignment up to the error conditions,
then any of the (63) = 20 group matches that can be
formed using these six point matches is also brought
into alignment by this pose. The poses determined

from these group matches are therefore highly cor-
related. Theorem 1 shows that we will �nd a false
positive only in the case where there is a pose that
brings t model points into alignment with correspond-
ing image points. A similar analysis accounting for
this source of correlation [11] shows that the expected
frequency of false positives is actually slightly worse
than previously thought.

It should be noted that this result is a fundamen-
tal limitation of all object recognition systems that
use only point features to recognize objects. Similar
results (although less restrictive) exist for other fea-
tures. Any time there exists a pose that brings a large
number of model features into alignment with corre-
sponding image features, a system dealing with only
such features should recognize this as a possible in-
stance of the object.

The primary implication of this analysis on the
techniques presented here is that, unless we are lim-
ited to simple images or use more descriptive features
than points, we must use pose clustering as a method
of �nding likely hypotheses for further veri�cation, not
as the sole means of recognition. As an additional ver-
i�cation step, we could, for example, verify the pres-
ence of edge information in the image as done by Hut-
tenlocher and Ullman [9].

6 E�cient Clustering

This section discusses how clustering of the poses
can be performed e�ciently with respect to both time
and space. This analysis will assume that we are con-
sidering a single object model. Multiple objects are
handled sequentially by this system.

6.1 Recursive Histograming

This system uses histograming to achieve fast clus-
tering. Each transformation is represented by a single
point in pose space. Overlapping bins that are large
enough to contain most, if not all, of the transforma-
tions consistent with the bounded error are used. This
prevents clusters from being missed due to their falling
on a boundary between bins. This method is able to
�nd most of the correct transformations, but it does
not have optimal accuracy. More accurate techniques
(e.g. [3]) may be used at the cost of lower speed.

My implementation uses the method of Hutten-
locher and Ullman [9] to determine the transforma-
tion parameters that bring the three model points
into alignment with three image points in the weak-
perspective imaging model. Varying levels of image
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noise are accounted for by varying the size of the bins
used in the clustering procedure.

Since histograming is used to �nd clusters, either
coarse-to-�ne techniques or decomposition of the pose
space is required, since the six-dimensional pose space
is immense. I use the decomposition approach. Pose
space can be decomposed into the six orthogonal
spaces corresponding to each of the transformation pa-
rameters. To solve the clustering problem, histogram-
ing can be performed recursively using a single trans-
formational parameter at a time. In the �rst step,
all of the transformations are histogramed in a one-
dimensional array, using just the �rst parameter. Each
bin that contains more than fm � 2 transformations
is retained for further examination, where f is some
predetermined fraction of model features that must
be present in the image for us to recognize the object.
The transformations in each of these bins are then
clustered using the remaining parameters. Since this
procedure continues until all six parameters have been
examined, the bins in the �nal step contain transfor-
mations that agree closely in all six of the transfor-
mational parameters and thus form a cluster in the
complete pose space.

6.2 Formulation as Tree Search

This method can be formulated as a depth-�rst tree
search. The root of the tree corresponds to the entire
pose space, each node corresponds to a volume of the
pose space, and the leaves correspond to individual
bins in the six-dimensional pose space. Each level of
the tree corresponds to examining the transformations
in the bins corresponding to the nodes at the previ-
ous level of the tree using a previously unexamined
transformation parameter. Thus, the tree has height
six. At each level, we can prune every node of the tree
that does not correspond to a volume of transforma-
tion space containing at least fm�2 transformations.

Figure 2 gives an outline of this algorithm. If un-
examined parameters remain at the current branch of
the tree, we histogram the remaining poses using one
of the parameters. Each of the bins that contains at
least fm � 2 poses is then clustered recursively using
the remaining parameters. The other bins are pruned.
When we reach a leaf bin (after all of the parameters
have been examined) that contains enough poses, we
output the location of the cluster.

6.3 E�ciency of Clustering

Although this decomposition of the binning prob-
lem has not previously been formulated as a tree

Function �nd-clusters( input:
P - set of poses,
� - set of pose parameters)

If j�j > 0 then
Choose some � 2 �.
Histogram poses in P by parameter �.
For each bin b in the histogram:
If jbj > fm� 2 then
Find-clusters(fp 2 P : p 2 bg,� n �);

Else
Output the cluster location.

End

Figure 2: Recursive clustering algorithm. (See text.)

search, Grimson and Huttenlocher's analysis [6] im-
plies that previous pose clustering methods saturate
such decomposed transformation spaces at the levels
of the tree near the root, due to the large number of
transformations that need to be clustered. For those
methods, virtually none of the branches near the root
of the tree can be pruned.

Since previous systems would histogram O(m3n3)
transformations there are O(n3) bins that could hold

as many as (fm3 ) transformations at each level of the
tree. Thus, despite binning in a high-dimensional
space, we may have a large number of bins at even
low levels of the tree, since we are clustering so many
transformations. Using the techniques presented here,
we have onlyO(n) bins that contain as many as fm�2
transformations at any level of the tree, since there
are O(mn) transformations clustered at a time. This
means that there can be only O(n) unpruned bins at
each level and these bins contain O(mn) total trans-
formations. Thus, we do not have saturation near the
root of the tree for this system. O(mn) time and space
is required per clustering step, since we must cluster
(m � 2)(n� 2) poses.

Once a cluster is found, I use a method described
by Huttenlocher and Cass [8] to determine an estimate
of the number of consistent matches in each cluster.
They argue that the number of matches in a cluster
is not necessarily a good measure of the quality of
the cluster, since di�erent matches in the cluster may
match the same image point to multiple model points,
or vice versa, which we do not wish to allow. Hut-
tenlocher and Cass recommend counting the lesser of
the number of distinct model points and the number
of distinct image points matched in the cluster, since
they can be determined quickly (as opposed to the
maximal bipartite matching) and is reasonably accu-
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Old method New method
m opt avg pct opt avg pct
10 120 96 .80 8 6.6 .83
20 1140 882 .77 18 15.0 .83
30 4060 3047 .75 28 23.2 .83
40 9880 7401 .75 38 30.8 .81
50 19600 14570 .74 48 40.5 .84

Table 1: Performance �nding correct clusters. m =the
number of object points; opt=the size of optimal clus-
ter; avg=the average size of clusters found; pct=the
average fraction of optimal cluster found.

rate. This estimation requires time linear in the num-
ber of matches in the cluster.

7 Results

This section describes experiments performed on
real and synthetic data to test the system.

7.1 Synthetic Data

For the experiments on synthetic data, models were
generated from random points inside a cube, rotated
and translated randomly, and projected onto the im-
age using the perspective projection. Bounded noise
(� = 1:0) was added to each image point.

The �rst experiment determined whether the cor-
rect clusters were found. Table 1 shows the perfor-
mance of two systems at �nding correct clusters. The
�rst system uses the old method of clustering all of
the poses simultaneously. The second system uses
the new method of clustering only those poses from
group matches sharing a pair of point matches. The
old method �nds much larger clusters, of course, since
it clusters manymore correct transformations, but the
size of the incorrect clusters is expected to rise at the
same rate. The new techniques actually �nd a larger
percentage of the optimal size clusters. This is be-
cause these clusters are smaller. When using a basis
set of two matches, the noise associated with those
two image points stays constant over the entire clus-
ter. This noise may move the cluster from the true
location, but does not increase the size of the cluster,
as it does when we do not use a basis set.

Experiments were run to determine the size of false
hypotheses generated by the new system for models
of 20 random model points and various image com-
plexities. Table 2 shows the average size of the largest

n avg max
20 3.79 6
40 5.32 10
60 6.35 12
80 7.23 12
100 7.91 13
120 8.22 14
140 8.51 14
160 8.68 15

Table 2: Size of false positive clusters found for objects
with 20 feature points. n=the number of image points;
avg=the average size of the largest cluster for each
image basis; max=the largest cluster found for any
image basis.

incorrect cluster found for each image basis and the
size of the largest cluster over all of the image bases.
Since the system found correct clusters of average size
15.0 for models of twenty points and the average size
of the largest false positive cluster for each incorrect
basis is 8.68 for 160 random image points, these levels
of complexity do not appear to cause a large number
of false positives to be found.

To summarize these results, the new pose clustering
method �nds a larger fraction of the optimal cluster
than previous methods and results in few false nega-
tives for images of moderate complexity.

7.2 Real Images

This pose clustering system has also been tested
on several real images from two data sets. The �rst
data set consists entirely of planar �gures, the second
consists of three-dimensional objects. Note that when
applied to the �rst data set, this algorithm makes no
use of the fact that the �gures are planar. No bene�t
is gained from using this data set except that corners
are easy to detect. Furthermore, the only features
used in either data set to generate hypotheses are the
locations of corner points in the image.

In these tests, I do not assume that all of the correct
hypotheses will yield poses that fall in the same bin.
Small modi�cations are thus made to the equations
determining the number of trials that must examined
and the number of poses that a bin must contain not
to be pruned. These modi�cations do not change the
computational complexity of the system.

Figure 3 shows an example of recognizing objects
from the �rst data set in an image. The top image

256



Figure 3: Recognition example for 2D objects. Top:
The corners found in an image. Bottom: The four
best hypotheses found, with edges drawn in. (The
nose of the plane and head of the person do not appear
because they were not in the models.)

shows the 84 feature points found by a corner detec-
tor. The bottom image shows the best hypotheses
found for this image. Figure 4 shows an example of
recognizing a stapler from the second data set. The
top image shows the 70 feature points used to recog-
nize the stapler. The bottom image shows the best
hypothesis found.

The largest source of error in many of the exper-
iments on real images is the use of weak-perspective
as the imaging model. It appears that the assump-
tion that this model is adequate for most problems
may prove incorrect as the accuracy of algorithms im-
proves.

8 Discussion

The decomposition techniques described in this pa-
per can be used with recognition strategies other the
pose clustering. For example, Breuel [1] recursively

Figure 4: Recognition example for a 3D object. Top:
The features found in the image. Bottom: The best
hypothesis found.

subdivides pose space to �nd volumes that intersect
the most consistent matches. These volumes are found
by intersecting the subdivisions of pose space with
bounded constraint regions arising from hypothesized
matches between sets of model and image features.
The expected time was found to be linear in the
number of constraint regions. To recognize three-
dimensional objects from two-dimensional images us-
ing point features, matches of three points are neces-
sary to generate bounded constraint regions. Thus,
there are O(m3n3) such constraint regions for this
case.

Theorem 1 implies that Breuel's algorithm will still
�nd the best match if it examines only the O(mn)
constraint regions associated with a given basis of two
correct matches of feature points. Since we don't know
two correct matches in advance, we must examine
O(n2) of them (using the randomization technique,)
yielding a total time of O(mn3). Of course, this intro-
duces a probability � that a correct basis will not be
chosen, and thus recognition may fail where it would
not in the original system.
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A point worth discussing is that some previous re-
searchers in pose clustering have claimed that �nding
a large enough peak in the pose space is su�cient to
consider the object present in the image. Others have
claimed that pose clustering is more sensitive to noise
and clutter than other algorithms. Grimson et al. [6, 7]
have shown that we should not simply assume large
clusters are instances of the object; additional veri�ca-
tion is needed to ensure against false negatives. While
it is clear that further veri�cation is required for hy-
potheses generated by pose clustering, other methods,
such as alignment, also require this additional veri�-
cation step. The analysis of Section 5 shows that pose
clustering is not inherently more sensitive to noise and
clutter than other algorithms.

9 Conclusion

I have shown that pose clustering for the case
of three-dimensional object recognition from two-
dimensional objects from point features does not re-
quire the clustering of O(m3n3) transformations. Pose
clustering with the same accuracy can be achieved by
clustering O(mn) transformations, if two correct point
matches are known. In the case where we do not know
two correct point matches, O(n2) initial point matches
must be examined to achieve a negligible probability
of a false negative, for a total time requirement of
O(mn3). Since few transformations are clustered at a
time, this method requires little memory. These tech-
niques can be easily generalized to recognize objects
from any features from which the pose can be deter-
mined.

Analysis has shown that a fundamental bound ex-
ists on the accuracy that can be achieved by algo-
rithms that recognize objects by �nding sets of fea-
tures that can be brought into alignment. Within
the limitations of the bound, pose clustering performs
well.
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