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Abstract

The alignment method [4] is a model-based object
recognition technique that determines possible object
transformations from three hypothesized matches of
model and image points. For images and/or models
with many features, the running time of the alignment
method can be large. This paper presents methods of
reducing the number of matches that must be exam-
ined. The techniques we describe are: Using the proba-
bilistic peaking e�ect [1] to eliminate unlikely matches
(implemented in a probabilistic indexing system [6])
and eliminating groups of model points that produce
large errors in the transformation determined by the
alignment method. Results are presented that show we
can achieve a speedup of over two orders of magnitude
while still �nding a correct alignment.

1 Introduction

The alignment method [4] is a model-based ob-
ject recognition technique for recognizing three-dimen-
sional objects from a single view in two-dimensional
images. For each model in the database, triples
of image points are matched with triples of model
points. For each possible match, the transformation
that brings them into alignment is determined, and
each of these transformations must be tested to de-
termine if it is correct. For complex object models or
images the running time of the alignment method can
be large.

This paper addresses techniques for reducing the
number of matches between triples of model and im-
age features that must be examined. This is accom-
plished by eliminating model triples and matches be-
tween image and model triples that are unlikely to
produce correct transformations. The techniques that
we present are based on the following two principles:

1. The probability density functions of angles and
distance ratios in images peak strongly at the pre-
projection (model) value [1, 2, 3]. This principle
has been used to build an indexing system that
determines groups of model points likely to match
groups of image points of size three [6].

2. Matches that produce a transformation with a
large uncertainty are unlikely to result in a good
alignment of the model.

These techniques have been implemented for the
alignment method and a speedup of over two orders
of magnitude has been achieved while still �nding a
correct alignment. Additional details of the techniques
presented in this paper can be found in [5] and [6].

2 The Alignment Method

The premise of the alignment method is that a
unique (up to a reection) a�ne transformation be-
tween the model and image of the model can be found
by matching three model points with three image
points. Huttenlocher and Ullman describe how to de-
termine this transformation [4].

Let us call the triple of model points being matched
the model group and the image points hypothetically
matched to them the image group. If each of the points
in the image group is the result of the projection of its
corresponding model group point then we will say the
two groups are in actual correspondence. For the rest
of this paper we will consider a single object model.
In practice, each model must be examined separately
in the alignment method.

It is not desirable to examine each combination of
three image points and three model points, since, if
there are n image points and m model points, the en-
tire algorithm requires O(m4n3 logn) operations, due
to a O(m logn) veri�cation step. If a model object
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is present in the image, it is likely that a substantial
number of triples of model points can be detected.
In the best case, only one of these triples needs to be
found and matched to recognize the object. If all com-
binations are examined to �nd the best scoring match,
then much is being done that is not necessary. Even
if we stop once a adequate match has been found, we
can use information about the likelihood of each match
being correct to determine which matches to examine.
This can reduce the running time considerably.

It is important to note that the a�ne transforma-
tion is used in this algorithm as an approximation to
the full perspective projection and is valid only when
the distance to the object is large compared to the
size of the object in the z-direction in camera-centered
coordinates. Experiments determining when this ap-
proximation is valid are described in Section 5.

Huttenlocher and Ullman have proposed techniques
to lower the complexity of the algorithm. For example,
virtual points found by using the orientations at two
model and image points can be used in some situations
to reduce the complexity to O(m3n2 logn) operations.
The methods presented here can be easily modi�ed to
accommodate such techniques.

3 Probabilistic Indexing

It has been observed that there is a large peak
in the probability density of image angles and ratios
of lengths at the values taken by the features in the
model [1, 2, 3]. This information can be used to dis-
card matches between image points and model points
that have a small likelihood of being in actual corre-
spondence. We have used this e�ect to create a prob-
abilistic indexing system [6].

We use the same features as Ben-Arie [1] to de-
termine which groups are unlikely to match. These
features are easy to determine for sets of three or-
dered points. For model group (p1; p2; p3) and corre-
sponding image group (q1; q2; q3), let � be the angle
6 p1p2p3 and � be the angle 6 q1q2q3. De�ne the seg-
ment lengths as follows: a1 = jp1p2j; a2 = jp2p3j; b1 =
jq1q2j; b2 = jq2q3j. Figure 1 gives an illustration. The
features used are:

1. The angles formed by the points in the model (�)
and in the image (�).

2. The ratios of the lengths of the segments (a1
a2

and
b1
b2
).

Camera

Model Group

Image Group

Image Plane

q2

q1

q3

p1

p2

p3

�

�

a1

a2

b1

b2

Figure 1: Projected Model Group

When integrated over the viewing sphere, the joint
probability density of � and b1

b2
peaks strongly at �

and a1
a2
. We have generated probability histograms de-

scribing this e�ect by sampling the viewing sphere and
numerically integrating in a manner similar to Ben-
Arie. The joint prior probability histogram of � and
b1
b2

has also been generated using similar techniques.
The probabilistic indexing system creates an index

table by discretizing the �-a1
a2

space and placing each
model group into the cell of the table corresponding
to its parameters. Let bi denote the bin that corre-
sponds to the image group features and let h be the
hypothesis that the model group and the image group
are in actual correspondence. We can determine the
probability of h being correct by applying Bayes' rule:

P (h j b = bi) =
P (h)P (b = bi j h)

P (b = bi)

P (b = bi j h) is given by the peaking e�ect joint
probability histograms and P (b = bi) is given by the
prior probability histogram. We assume that the prior
probability of each possible match (and thus each pos-
sible hypothesis h) is the same, so we can drop the
P (h) term without changing the ranking of the hy-
potheses.

When presented with an image group, the system
determines � and b1

b2
and examines the probability his-

tograms to determine the index table cells that con-
tain model groups that have a large enough proba-
bility of generating the image features. The model
groups at those locations are then considered as pos-
sible matches for the image group. So, for a speci�c
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image group k, a model group is eliminated if:

P (b = b
(k)
i j h)

P (b = b
(k)
i )

< p

where b
(k)
i is the bin for the kth image group and p

is an empirically determined constant.

4 Eliminating Groups Using Error
Statistics

Here we will show how model groups that produce
large uncertainty in the computed transformation can
be determined and thus eliminated from considera-
tion. Let the model group be (p1; p2; p3) and the image
group be (q1; q2; q3).

4.1 Condition Number

Huttenlocher and Ullman transform the model
group such that it lies in the x-y plane. Let p�i be
the coordinates of the ith point of the model group
after this transformation and:

p
0

2 = p�2 � p�1 q
0

2 = q2 � q1

p
0

3 = p�3 � p�1 q
0

3 = q3 � q1

They then solve for the a�ne transformationL that
aligns the points in two-dimensions. L is determined
by the following equations:

Lp
0

2 = q
0

2 Lp
0

3 = q
0

3

These equations can be transformed into:

ML1 = I1 ML2 = I2

where

M =

"
p

0

2x p
0
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0
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0

3y

#
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�
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�
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�
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�
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�
q

0

2x

q
0

3x

�
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"
q

0

2y

q
0

3y

#

Our localization of the image points will have some
error, of course. Therefore, our solutions for L1 and
L2 will also have some error. Let I1, I2, L1, and L2

denote the true values of I1, I2, L1, and L2, and let
�I1, �I2, �L1, and �L2 denote their errors such that:

I1 = I1 + �I1 I2 = I2 + �I2

L1 = L1 + �L1 L2 = L2 + �L2

From matrix computations we can bound the error
on �L1 and �L2 as follows [7]:

jj�L1jj
jjL1jj

� �(M ) jj�I1jjjjI1jj
jj�L2jj
jjL2jj

� �(M ) jj�I2jjjjI2jj

where jj � jj is any vector norm (and its induced matrix
norm) and �(M ) = jjM jj � jjM�1jj is the condition
number of M . So, if M has a large condition number
we may have large errors �L1 and �L2. We eliminate
a model group k if the inverse of its' condition number
is less than some percentage of the average:

1

�(M (k))
<

k

N

X
i

1

�(M (i))

where M (i) refers to the model matrix for the ith
model group and k is an empirically determined con-
stant.

4.2 Model Group Area

Even when the model group produces a condition
number of one (the best case), it is possible that the
group leads to a large error in the computation of the
transformation matrix, as can be seen from the follow-
ing analysis. Assuming non-singularity we have:

�
l11
l12

�
=

"
p

0

2x p
0

2y

p
0

3x p
0

3y

#�1 �
q

0

2x

q
0

3x

�

Computing this inverse we get:

l11 =
p

0

3yq
0

2x � p
0

2yq
0

3x

p
0

3yp
0

2x � p
0

2yp
0

3x

Substituting the original model and image values,
this becomes:

l11 =
(p�3y � p�1y )(q2x � q1x)� (p�2y � p�1y )(q3x � q1x)

(p�3y � p�1y )(p
�
2x � p�1x)� (p�2y � p�1y )(p

�
3x � p�1x)

Similar equations (with the same denominator) can
be found for l12, l21, and l22. The denominator is twice
the area of the triangle formed by p1, p2, and p3. If
the denominator is small, this will have the e�ect of
magnifying the errors present in the numerator and
the denominator. So, we eliminate a model group k if
it satis�es:
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area(4p
(k)
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(k)
2 p

(k)
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i
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(i)
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(i)
2 p

(i)
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where p
(i)
1 refers to the �rst point of the ith model

group and a is an empirically determined constant.

5 Experimental Results

The techniques presented above have been tested on
both randomly generated and real data. This section
presents those experiments and results.

5.1 Complete System

We have implemented the alignment method and
used these techniques to eliminate groups and matches
unlikely to produce correct transformations. We used
the following procedure in our experiments: The con-
dition number and area for each model group was de-
termined. If the group was not eliminated then it was
placed in the index table. Each image group was used
to index the table to �nd possibly matching model
groups. For each indexed match, the transformation
aligning the points was found and it's correctness was
determined.

A transformation was considered correct if the clos-
est transformed model point to each correct image
point was the correct match. Thus, a transformation
was considered successful only if each corresponding
model and image point were brought close together.

5.2 Random Data

To determine the e�cacy of the a�ne transforma-
tion as an approximation to the perspective trans-
formation and to determine the best parameters for
eliminating unlikely matches, tests were carried out
on random point sets. Each experiment consisted of
tests on 100 random objects with 10 randomly gen-
erated points each. The models underwent random
transformations and were projected onto the image
using the full perspective transformation. Gaussian
noise was added to each of the feature coordinates.

Figure 2 shows the percentage of actual correspon-
dences which produced successful transformations us-
ing objects at varying ratios of object distance to ob-
ject depth. The three plots are for images with gaus-
sian noise of standard deviation 0.0, 2.0, and 5.0 added
to the image feature coordinates. The x-axis is the
ratio of object distance to approximate depth of the

Figure 2: Percentage of successful transformation with
various object distances. 2: no noise, 4: noise (� =
2:0), +: noise (� = 5:0)

object. We see that for each of the three plots seri-
ous degradation of the percentage successful begins at
approximately a ratio of 8, which we conclude is the
minimum ratio for which the a�ne approximation to
the perspective projection is accurate for use with the
alignment method.

For the remainder of the experiments, we uses gaus-
sian noise with standard deviation 2.0 and objects at
a distance such that the ratio of object distance to ob-
ject depth is 10. Figure 3 shows the percentage of total
matches examined (not eliminated) and the percent-
age of correct matches examined for various values of
each of the elimination parameters when used alone.
The most powerful parameter is the peaking probabil-
ity, as seen by the large di�erence between the per-
centage of correct and total matches examined. The
condition number and model group area parameters
also appear to be useful for elimination.

5.3 Real Images

The techniques were also tested on real images. In
these experiments, model features were selected and
measured by hand. Image features were determined
by hand with the help of an edge detector. Random
extraneous points were added to these images.

Figure 4 shows one of the images that was used
to test the elimination techniques. Using each of the
parameters at reasonable values, we examined 4.2% of
the total matches and 24.9% of the correct matches in
seven real images (compared with 2.5% and 18.2% for
the random points.)
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Figure 3: Percentage of matches examined for each elimination parameter. 2: total, 4: correct.

Figure 4: An image used for testing.

6 Discussion

We will examine the speedup and probability of a
false negative produced by these techniques under two
recognition models:

1. Each possible match between an image group and
a model group that is not eliminated receives a
score from some veri�cation process. The best
scoring match is accepted as correct if the score
meets some criteria.

2. Matches are examined in some order. Matches
that are not eliminated receive a score from the
veri�cation process. As soon as the score for one
of the matches meets some criteria, it is accepted
as correct and the remainder of the matches are
not examined.

The speedup will be de�ned as the expected number of
matches that must be veri�ed by the algorithm with-
out using the elimination techniques, divided by the

expected number when using the techniques. Let n

be the total number of matches examined, p be the
percentage of total matches not eliminated, � be the
total number of matches examined that produce a cor-
rect transformation, and � be the percentage of these
matches not eliminated.

In the �rst model, we examine np matches when
using these techniques and n matches when not using
these techniques, so the speedup is simply 1

p
.

In the second model, if we assume that matches
are examined in random order, we have a hypergeo-
metric distribution. For large values of n, this can be
approximated by the binomial distribution. The ex-
pected number of matches that must be veri�ed when
not using the elimination techniques is then approxi-
mately n

�
. When using the elimination techniques the

expected number of matches that must be veri�ed is
approximately pn

��
. So, we see that the speedup is ap-

proximately �
p
. This analysis assumes that � > 0, that

is, a correct match exists. If � = 0 either because the
model is not present in the image or because none of
the matches in actual correspondence produce a good
enough transformation, then the speedup is the same
as for model 1 (1

p
).

Table 1 shows �, p and the expected speedups for
some values of the elimination parameters. Impressive
speedups are attained for recognition model 1 and for
model 2 when � = 0. The speedups for recognition
model 2 when � > 0 are more modest. We note that
the case � = 0 is the common case, since each model
must be examined and there are usually few of the
models present in the image.

If we assume that the probability of a correct match
being eliminated is independent of whether other cor-
rect matches have been eliminated (this assumption
will be discussed below), the probability of a false
negative as a result of eliminating correct matches is
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p k a � p 1
p

�

p

11.0 1.0 .37 .062 .0069 144.9 8.9
10.0 0.9 .34 .085 .0104 96.2 8.2
8.5 0.8 .30 .124 .0174 57.5 7.1
6.0 0.7 .20 .229 .0418 23.9 5.5

Table 1: Speedups for various elimination parame-
ters.

� � =50 � =100 � =200
.062 4.08x10�2 1.66x10�3 2.76x10�6

.085 1.18x10�2 1.39x10�4 1.92x10�8

.124 1.33x10�3 1.78x10�6 3.17x10�12

.229 2.25x10�6 5.08x10�12 2.58x10�23

Table 2: Probability of a false negative for various
values of � and �.

(1� �)� for both models.

If even 10 points from a model are present in an im-
age, there are 120 correct model groups (for 20 model
points there are 540 model groups.) For moderate val-
ues of noise (� � 2:0) the majority of these will result
in correct transformations, so we expect � to be at
least 50. Table 2 shows the probability of a false neg-
ative resulting from eliminated matches for the values
of � from Table 1 and � =50, 100, and 200.

Even for relatively small values of � and a high
percentage of elimination of matches, there is a small
chance of a false negative. As � increases or the per-
centage of elimination decreases the likelihood of a
false negative becomes negligible.

We now address the question of the independence
of the probability of correct matches being eliminated.
More speci�cally, we want to know if it is possible
for some object to be in an orientation for which all
model groups appear in unlikely con�gurations in an
image. Unlikely con�gurations occur when the view-
ing directions is not within some proximity to perpen-
dicular to the plane of the points in the group. This
means that groups of coplanar points will have occur
in unlikely con�gurations from the same viewing di-
rections. Objects that are not nearly at should not
be a problem since they have groups in all orienta-
tions. A at or nearly at object rotated such that
it is foreshortened in the image may produce angles
and/or distance ratios far from the probability peaks.
Such images would not bene�t much from the elimi-
nation of matches based on these techniques, since too
many correct matches would be eliminated. Problems
with such images are common to most object recogni-
tion systems including the human visual system. It is
possible that special-purpose techniques for recogniz-

ing at or nearly-at objects may be of use in these
cases.

7 Conclusions

We have presented techniques that greatly reduce
the number of matches that must be examined in
the alignment method through use of the probabilistic
peaking e�ect and error criteria, thus greatly increas-
ing the speed at which objects can be recognized. Ex-
perimental results were given that showed that these
techniques work in practice and still result in a correct
transformation being found.
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