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Abstract

Maximization of mutual information is a powerful
method for registering images (and other data) cap-
tured with di�erent sensors or under varying condi-
tions, since the technique is robust to variations in the
image formation process. On the other hand, the high
level of robustness allows false positives when match-
ing over a large search space and also makes it diÆcult
to formulate an eÆcient search strategy for this case.
We describe techniques to overcome these problems by
aligning image entropies, which are robust to illumina-
tion variation and can be applied to multi-sensor reg-
istration. This results in a lower rate of false positives
and a more eÆcient method to search an image for
the matching position. The techniques are applied to
real imagery and compared to methods based on mu-
tual information and gradients to demonstrate their
e�ectiveness.

1 Introduction

Maximization of mutual information [3, 9] is a tech-
nique commonly used for image registration when the
images are from di�erent modalities, such as in med-
ical imaging. This technique is very robust to the
changes caused through the use of varying sensors, al-
lowing registration even when the images have di�er-
ing appearances, as long the intensities of overlapping
pixels between the images are statistically correlated
when the images are registered.

In some cases, this high level of robustness can be
a drawback, rather than a feature. When the search
space is large, allowing such matches makes false posi-
tives more likely than when additional constraints can
be placed on the relationship between the pixel inten-
sities. An example of such a situation can be seen in
Fig. 1. In this example, we wish to locate the position
of an aerial terrain image in an orbital image encom-
passing the same location. When mutual information

is used, an incorrect location is selected as the best
match, even when the search is restricted to transla-
tion only.

There are two additional areas where the use of
mutual information for image registration is less than
ideal. First, mutual information is not able to match
images that have smooth shading changes due to dif-
ferences in illumination when only one reference image
is used. Matching can be performed in this case with
two reference images [9]. Second, matching using mu-
tual information is computationally expensive. Most
implementations sample the image data in order to
reduce the computation time and use iterative opti-
mization techniques that can fail if a good starting
location is not known [3, 5, 8, 9].

In this paper, we describe an alternative to mu-
tual information that improves upon these areas. The
basic idea of our method is to align the entropy at
each location in a template image to the entropy at
corresponding locations in a reference image accord-
ing to some transformation of the template. An ef-
�cient search strategy has been developed combining
fast search over translations using the FFT, coarse
search over the remaining parameters (similarity or
aÆne), and re�nement using iterative optimization.
Multi-resolution techniques can be used for the coarse
search for additional speed, but are not necessary in
many cases. We have applied this technique to several
applications, including registration of overhead and
forward-looking terrain images captured with di�er-
ent sensors.

Our method is related to previous work based on
matching using image gradients (see, for example, [2]).
We use image entropy, since it retains more of the in-
formation content of the image than gradients, and
has a lower rate of errors in practice. Our search
strategy is not limited to matching entropy images; it
can be used to determine the position that maximizes
the normalized correlation between any template and
reference image. A trivial modi�cation allows match-
ing between vector-valued images, such as entropies or
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Figure 1: Motivating example. (a) Orbital image of the Avawatz Mountains and Silurian Valley in California. (b) Aerial
image showing a detail of (a). (c) Annotated image. The upper right box shows the location of (b) in the orbital image.
The lower left box shows the best matching position found using mutual information.

gradients at multiple resolutions.

2 Entropy alignment

For a discrete random variable A, with marginal
probability distribution pA(a), the entropy is de�ned
as:

H(A) = �

X
a

pA(a) log pA(a): (1)

Note that 0 � log 0 is taken to be zero, since:

lim
x!0

x logx = 0: (2)

We apply an entropy transformation to both the
template and the reference image as follows. For each
image location (x; y), we examine the intensity values
in an image window (with some speci�ed size k � k)
centered (x; y). The intensities are histogrammed and
the entropy for the window is computed according to
Eq. (1) above. In practice, it is useful to smooth the
histograms prior to using Eq. (1). For eÆciency, we
use a histogram with 64 bins (6 bits of information)
and smooth the histogram using a Gaussian (� = 1:0
bins).

Figure 2 shows an example of the entropy images
generated at a variety of scales for the image in Fig. 1.
It can be observed that the entropy transformation
captures the amount of local variation at each loca-
tion in the image. As the size of the window increases,
the local entropies are spread and smoothed over a
larger area. This property is useful in the generation
of a multi-resolution search strategy. While these im-
ages are not invariant to all illumination changes and

sensor characteristics, they are insensitive to many is-
sues in multi-sensor registration while retaining much
image information. The entropy images are invari-
ant to bias in the original images and the correla-
tion peaks are invariant to gain in the entropy images.
Of course, illumination changes and di�erent sensors
cause more complex transformations than these, but
we have found that the locations of the correlation
peaks change relatively little.

Now, we want to maximize the normalized correla-
tion between the entropy images over the search space.
In general, this involves rotating and rescaling the
template entropy image according to the pose param-
eters. The shape and scale of the template will, thus,
vary over the search space and this must be accounted
for in the normalization. In order to deal with this in
the search for the best position, whenever we gener-
ate a rescaled template, we generate another template
of the same shape storing the weight of each position
in the correlation. Most positions will have a weight
of one, but the edges of the template will have lower
values, since bilinear interpolation does not have four
pixels to interpolate from in this case. This template
can be used in the Fast Fourier Transform (FFT) to
quickly determine the normalization values for each
translation of the template in the search strategy de-
scribed below.

3 EÆcient search

In determining the best match between the tem-
plate image and the reference image, there are a num-
ber of strategies that we could use. Most previous
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Figure 2: Entropy images at di�erent scales. (a) Original image. (b) Entropy image for 3�3 window. (c) Entropy image
for 5�5 window. (d) Entropy image for 11�11 window. (e) Entropy image for 21�21 window.

techniques for similar problems using mutual infor-
mation have used iterative search techniques that re-
quire an initial estimate of the template position to
converge to the global minimum. We are interested
in methods that can determine matches in a large
search space without an initial pose estimate. This
is a problem that arises in many situations. For ex-
ample, we are interested in the application of these
techniques to matching imagery from the descent of a
spacecraft onto a planetary surface to orbital imagery
encompassing the landing location. For this case, we
may have initial estimates of the spacecraft orientation
from inertial sensors. However, the precise location for
landing on a planet such as Mars is not known, thus
requiring a search for the correct landing location.

We note that the eÆcient guaranteed search
method of Rucklidge [7] cannot be used for this prob-
lem, since the normalization value depends upon the
location of the template with respect to the reference
image. It is possible to place a bound on this value.
However, in our experiments with a divide-and-prune
search strategy similar to the strategy used by Ruck-
lidge [7] and in our own work [4], we have found that
an insuÆcient amount of pruning can be performed to
decrease the computation time of the search.

Of course, a brute force search is possible, but
the search space has six degrees of freedom for aÆne
matching of planar surfaces. A brute force search
would, thus, require much time. A technique that
is very useful for performing correlation operations
when the search space is restricted to translations is
the FFT, since it is well known that cross-correlation
can be performed eÆciently in the frequency domain.

For a more complex search space (such as similarity
or aÆne transformations), we must have a mechanism
for examining the additional parameters. In this case,
we sample the additional parameters coarsely and con-
sider each sample point separately. (The following sec-
tion examines how coarse the sampling can be and still
achieve good results.) For each sample point, we use

the FFT method to locate peaks in the entropy align-
ment. A peak is then considered further if the score
is at least K standard deviations above the average
value for that sample point. K may be chosen arbi-
trarily, but we have found that values ranging from 2.5
to 3.0 work well. When a peak is selected for further
consideration, we use Powell's iterative optimization
method [6] to converge to the locally optimal solution
in the full, continuous search space. We then select
the best such solution found among those tested, or
all solutions that surpass a pre-determined threshold.

This procedure results in a fast search strategy since
we are able to sample relatively few points from the
non-translational parameters, each of which can be
examined quickly using the FFT. At present, the most
time consuming portion of the search is the iterative
optimization of each peak selected. We believe that
this can be improved considerably through the use of
more advanced techniques.

4 Capture range

It is important in the search strategy described
above to have a good estimate of the capture range of
the method. We want to be able to sample the space
sparsely and still �nd the correct position. Thus, we
must determine how far a sample can be from the
correct position and still �nd a large enough peak to
examine with the iterative method and, furthermore,
the iterative method must converge to the correct loca-
tion. In this section, we study these issues for several
sample problems.

We tested six sample problems using real imagery.
The problems can be seen in Fig. 1 and Fig. 4-8. The
problems using overhead imagery (Fig. 1 and Fig. 6)
used a six-dimensional aÆne transformation space:
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Figure 3: Experiment determining e�ective capture range.
The upper plot is for entropy matching. The lower plot is
for gradient matching.

The other four problems used a four-dimensional
similarity transformation space. This case was treated
the same as the aÆne case, except that we maintained
the following constraints:

a = d (4)

and

b = �c: (5)

For each of the sample problems, we tested initial
sample points that were in error according to some
bounded amount for each of the scaling parameters:
a; b; c; d. We then determined whether the highest
scoring location using our search strategy was the cor-
rect position of the template. Figure 3 shows the re-
sults as a function of the bounded error. The �gure
also shows the results of using the same techniques,
but applied to gradient images rather than entropy
images. Each data point represents 100 trials for each
of the test problems (600 total). It can be observed
that nearly perfect results are obtained up to an error
of 0.05 in the parameters. This represents a 5% scale
change in each parameter. We are thus able to obtain
excellent results by sampling the parameters at every
0.10 interval, since this will result in a sample point
within 0.05 in each dimension of every point in the
space.

Note that the performance of the technique is con-
siderably worse when gradients are used rather than
entropies. While matching with gradient images is
also robust to variations in image formation, the gra-
dient images do not capture as much information
about the original images. For this reason, the best
match found is less likely to be correct. The entropy-

(a)

(b)

Figure 4: Registration between FLIR and CCD camera im-
ages. (a) FLIR image of a military vehicle. (b) Registered
location in a CCD image.

based method performed better than the gradient-
based method for each of the test problems.

5 Results

Figures 4-8 show examples of the application of our
method to real images. The correct location was deter-
mined in each example using the techniques described
above.

Figure 4 shows FLIR and CCD images of a military
vehicle taken from close-by locations [1]. The template
was generated by cropping the FLIR image to contain
the vehicle and some nearby terrain. Matching was
then performed against the CCD image using similar-
ity transformations in 22.5 seconds on a 333 MHz Sun
UltraSPARC, with a 138�100 pixel template and a
720�480 pixel reference image. Note that the entropy
matching technique succeeds in detecting the correct
location, despite the camouage on the vehicle that is
not visible in the infrared image and the highly di�er-
ent appearance of the vehicle in the two images. The
experiment shown in Fig. 5 is similar in nature to that
of Fig. 4.

In Fig. 6, the template is an image captured using
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Figure 5: Registration between FLIR and CCD camera im-
ages. (a) FLIR image of military vehicles. (b) Registered
location in a CCD image.

a helicopter at an elevation of approximately 800 me-
ters and the reference image is an orbital image that
encompasses the same location. The correct location
of the template is diÆcult to detect manually, unless
prior knowledge of the area is used. Successful match-
ing was performed with the aÆne transformation and
the correct location was determined in 13.8 seconds
with a 112�112 pixel template and a 500�500 pixel
reference image. Figure 1 shows a similar example.

The �nal problem domain (Fig. 7 and Fig. 8) uses
images from Mars. Both the template and the refer-
ence image were captured with the Imager for Mars
Path�nder (IMP) cameras. However, they were cap-
tured with di�erent lens �lters and at di�erent times
during the day, so the illumination and the shadowing
of the terrain is di�erent between the images. Further-
more, the reference image has undergone a non-linear
warping operation to remove lens distortion, while the
template has not. The matching algorithm was able
to succeed despite these di�erences and required 54.14
seconds with a 164�127 pixel template and a 776�400
pixel reference image for the problem in Fig 7.

(a)

(b)

Figure 6: Registration between aerial and orbital images.
(a) Aerial image of California desert. (b) Registered loca-
tion in an orbital image.

6 Summary

We have described a new method for performing
registration between images captured with di�erent
sensors or with di�erent illumination. This method is
robust and is able to succeed in cases where matching
with mutual information and gradient alignment fail.
The basic idea is to transform the images into a rep-
resentation that contains the image entropy at each
pixel location. The best registration is determined us-
ing normalized correlation. In order to perform this
operation eÆciently over a large search space, such
as similarity or aÆne transformations, we have de-
veloped a search strategy that combines search over
translations using the Fast Fourier Transform, coarse
search over the remaining parameters by sampling the
search space, and re�nement using iterative optimiza-
tion. Experiments examining the capture range of the
method were performed to determine how sparsely to
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Figure 7: Registration between images taken with di�erent
�lters and with di�erent illumination. (a) CCD image of
a Martian rock. (b) Registered location of rock in a CCD
image with a di�erent lens �lter.

sample the search space. The resulting method is able
to quickly and robustly register images from di�erent
sensors.
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