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Abstract

Several methods for computing observer motion from

monocular and stereo image sequences have been proposed.

However, accurate positioning over long distances requires

a higher level of robustness than previously achieved. This

paper describes several mechanisms for improving robust-

ness in the context of a maximum-likelihood stereo ego-

motion method. We demonstrate that even a robust sys-

tem will accumulate super-linear error in the distance trav-

eled due to increasing orientation errors. However, when

an absolute orientation sensor is incorporated, the error

growth is reduced to linear in the distance traveled, and

grows much more slowly in practice. Our experiments, in-

cluding a trial with 210 stereo pairs, indicate that these

techniques can achieve errors below 1% of the distance trav-

eled. This method has been implemented to run on-board a

prototype Mars rover.

1 Introduction

The computation of camera motion from an image se-
quence (called ego-motion) is a promising technique for
improving the position estimation capability of a mobile
robot, since errors in robot odometry often grow quickly.
Several methods for the computation of ego-motion have
been proposed using monocular sequences [1, 3, 4, 9] and
stereo sequences [5, 6, 7, 10, 11]. However, in order for
these techniques to be e�ective in long-distance navigation
of a robot, the techniques must be highly robust to prob-
lems such as poor odometry, inaccurate feature matching,
and outliers.

Our aim in this work is to develop a method that is
capable of accurate navigation over long distances using
incremental stereo ego-motion. The use of stereo informa-
tion in this method has been crucial in both outlier rejec-
tion and reducing random errors that occur due to feature
localization and drift in each frame. We use a maximum-
likelihood formulation of motion estimation that models
error in the landmark positions more accurately than a
least-squares formulation, and thus yields more accurate
results. Robustness issues are further addressed through
optimized feature selection, improved motion prediction,
and multiple outlier rejection mechanisms. We show that
reuse of landmarks between frames signi�cantly improves
the overall accuracy since the errors at successive estima-
tion steps become negatively correlated.

For long-range navigation, it is important to consider
the rate of error growth as the robot travels. Even a robust
system will accumulate errors that grow super-linearly
with the distance traveled owing to increasing orientation

errors. However, the incorporation of an absolute orien-
tation sensor, such as a compass or sun sensor, greatly
improves the long-range performance, reducing the accu-
mulated error to a linear function of the distance traveled.

We demonstrate the robustness of these techniques in
rocky terrain containing many occlusion boundaries. The
long-range performance is evaluated under controlled con-
ditions using simulations and real data.

2 Motion estimation

Our motion estimation method is based upon the
maximum-likelihood ego-motion formulation of Matthies
[7, 8]. This method determines the observer motion be-
tween two (or more) pairs of stereo images captured by
calibrated cameras. The basic elements of the method are
as follows.

Feature selection: The �rst step is to select landmarks
for which the 3D position can be precisely measured in
successive stereo pairs. The initial landmarks are selected
by �nding easily trackable features in the left image of the
�rst stereo pair.

Stereo matching (1): An estimate of the 3D position of
the landmarks is obtained by performing stereo matching
in the initial stereo pair. The procedure uses a correlation-
based search to locate the corresponding point for each of
the selected landmarks. Triangulation using the known
relative position between the cameras is then used to de-
termine the position of the landmark with respect to the
camera frame. This step also provides a covariance matrix
that models the error in the position estimate.

Feature tracking: Landmarks are located in subse-
quent stereo pairs using a correlation-based search for the
selected features in the left image, that is similar to stereo
matching. Prior knowledge of the approximate robot mo-
tion is used to select the search space for the feature track-
ing.

Stereo matching (2): A second stereo matching step is
performed to estimate the 3D positions of the landmarks
with respect to the new camera frame. As in the previous
steps, this uses a correlation-based search and triangula-
tion is performed to estimate the position.

Motion estimation: Motion estimation is performed
using Gaussian error distributions for the landmark posi-
tions, which yields better robustness than weighted least-
squares minimization [7]. The maximum-likelihood esti-
mation problem requires an iterative solution. However,
convergence is fast and requires negligible computation
time compared to the previous steps.
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Figure 1: Steps performed for motion estimation.

These steps are performed for each pair of consecutive
stereo frames, retaining the same set of landmarks, but
replenishing those that were not found or discarded. The
overall motion estimate is determined as the combination
of motions from each pair of frames. Figure 1 shows the
steps in the process to estimate the motion between two
frames.

3 Maximum-likelihood ego-motion

Given the noisy landmark positions from stereo data,
we use a maximum-likelihood formulation for motion esti-
mation. An early version of this method was given in [7].
Further details can be found in [8].

Let Lb and La be 3� n matrices of the observed land-
mark positions before and after a robot motion. For each
landmark we have:

L
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i = RL
b

i + T + ei; (1)

where R and T are the rotation and translation of the robot
and e combines the errors in the observed positions of the
landmarks at both locations. Assume, for the moment,
that the pre-move landmark positions are errorless and the
post-move landmark positions are corrupted by Gaussian
noise. In this case, the joint conditional probability density
of the observed post-move landmark positions, given R and
T , is Gaussian:
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where ri = Lai �RLbi �T and Wi is the inverse covariance
matrix of ei. The maximum-likelihood estimate for R and
T is given by minimizing the exponent

P
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that this reduces to the least-squares solution if we let
Wi = wiI.

Solving for the maximum-likelihood motion estimate is
a nonlinear minimization problem, which we solve through
linearization and iteration. We linearize the problem by
taking the �rst-order expansion with respect to the rota-
tion angles. Let �0 be the initial angle estimates and R0

be the corresponding rotation matrix. The �rst-order ex-
pansion is:
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where Ji is the Jacobian for the ith landmark and ei is a
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where Hi = [Ji I] and Li = Lai �R0L
b

i + Ji�0.
After solving (4), the new motion estimate is used as

an initial estimate for the next step and the process is it-
erated until convergence. Further details, and a technique
to estimate only � without T , so that estimation of T can
be removed from the iteration, can be found in [8].

4 Long-range error growth

In order to test the long-range performance of the ego-
motion techniques under controlled conditions, we have
built a simulator that generates random landmark posi-
tions for motion estimation. The simulator initially selects
random image locations as the features in the left image
of the �rst (pre-move) stereo pair. The positions are back-
projected into 3D landmarks using a random (uniformly
distributed) height and then reprojected into the right im-
age with Gaussian noise (� = 0:3 pixels). The same land-
marks are projected into a subsequent (post-move) stereo
pair after moving the camera models to a new position,
simulating robot motion. Feature tracking error is mod-
eled with Gaussian noise (� = 0:5 pixels). After this drift,
the landmarks are again backprojected into 3D and repro-
jected into the right image of the post-move stereo pair
with noise. The motion estimate is then computed be-
tween the robot locations. Further moves are simulated
using the landmark positions incorporating the landmark
drift.

Figure 2 shows the error growth in the robot position
for motions of 0.5 m between stereo pairs for a camera
pair with a 45� �eld-of-view and 512 � 480 pixels. It can
be observed that the growth in the error is greater than
linear in the distance traveled. The explanation for this is
that the expected error in the orientation parameters grows
approximately proportional to the square root of the dis-
tance traveled (since the overall variance is the sum of the
individual variances). The overall position error grows as
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Figure 2: Expected position error as a function of distance trav-
eled.

the sum of two terms. First, the individual position er-
rors contribute a term that is expected to grow with the
square root of the distance traveled. Second, the accu-
mulating orientation errors contribute a term that grows
as the integral of the orientation error. We thus expect a
super-linear contribution from this term, which grows as

O(d
3

2 ), where d is the distance traveled. The contribu-
tion from the orientation error thus dominates the overall
position error.

In order to eliminate the super-linear error growth, we
have examined the use of an absolute orientation sensor to
provide periodic updates to the orientation estimate. For
example, accelerometers can be used to provide roll and
pitch information, while a compass, sun sensor, or even a
panoramic camera could be used to determine the robot
yaw. We have simulated such sensors as providing periodic
orientation updates with Gaussian noise having zero mean
and 1� standard deviation. Figure 2 shows that this results
in linear error growth in the distance traveled when the
orientation updates are used and, in general, the growth
is much slower than when only the ego-motion estimates
are used. In this experiment, the simulations indicate that
error less than 1% of the distance traveled is achievable
with the error variances described above.

Our conclusion is that an absolute orientation sensor
is critical for navigation over long distances, unless some
other means is used to periodically update the robot po-
sition. If no orientation sensor is used, the robot may
navigate safely over short distances. However, over long
distances the increasing orientation errors will build until
the position estimate is useless.

5 Robust estimation

In order to achieve accurate navigation over long dis-
tances, errors in the landmark position estimation and
matching process must have a very small e�ect on each
computed motion estimate. Landmarks must be chosen
such that they are easy to track and yield little stereo er-
ror. Tracking must be performed such that mismatches are
rare. When mismatches occur, there must be mechanisms
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Figure 3: Comparison of the e�ect of variation in stereo corre-
lation error versus tracking correlation error.

for detecting and discarding them. We describe techniques
for performing these steps here, while managing the over-
all error buildup over time and dealing with camera roll as
the robot moves.

5.1 Optimized feature selection

Intuitively, one would expect for errors in stereo match-
ing to produce larger errors in the motion estimate than
errors in the landmark tracking. (Here we refer to the
subpixel localization errors rather than mismatches.) The
reason for this is that stereo error produces a larger e�ect
in the estimation of each landmark position than error in
feature tracking.

Our simulations have veri�ed this e�ect. Figure 3 shows
the variation in the motion error over long distances as the
stereo and feature tracking errors vary. For each plot, the
error standard deviation for one of the matching steps was
held constant at 0.3 pixels, while the other was varied.
It can be observed that the navigation error varies much
faster as the stereo error is changed than as the tracking
error is changed.

While it is important to minimize both the stereo error
and the tracking error, we conclude that navigation error
is improved by performing landmark selection such that
the localization precision along the x-axis has more weight
than localization precision along the y-axis, since error in
the y-direction has a lesser e�ect on the stereo error.

This has been implemented using a variation of the
F�orstner interest operator [2]. A feature is selected if the
covariance ellipse of the feature localization is not highly
elliptical, the precision of the feature localization is strong
(with higher weighting on the horizontal precision), and
there is no better feature within some bounded distance.

5.2 Improved feature tracking

In many environments, it is common for the landmarks
that are selected to look somewhat similar to each other
and other image locations. If a large search space is neces-
sary for each feature, incorrect matches occur frequently,
since the di�erence in the appearance of the landmarks af-
ter the camera motion may be greater than the di�erence
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Figure 4: One cycle of robust feature matching. (a) Landmarks selected. (b) Landmarks matched in right image. (c) Predicted
positions in next image. (d) Matched positions in left image. (e) Matched positions in right image. (f) Landmarks after replenishment.

in appearance between the landmark and other image lo-
cations. For this reason, it is important to limit the search
space over which we search for landmarks. Of course, we
cannot limit the search space to be so small that it does
not contain the correct match.

An a priori estimate of each landmark position is ob-
tained using the robot odometry estimate. However, errors
in the odometry incur the need for a large search window.
In order to decrease the size of this search window, we es-
timate the robot pitch and yaw errors by �rst detecting a
landmark near the top of the image (and thus relatively
far away) using a large template window. In this case, we
use a large search window, but since the landmark is also
large, we are able to avoid mismatches in the image. After
correcting the robot pitch and yaw estimates such that the
initial landmark match is correct, we can reduce the search
windows for the later correlation steps, thereby reducing
the chance of a false positive.

Within the reduced search windows, our experiments
have indicated that correlation using a two-resolution
pyramid with decimation by a factor of four provides the
best combination of speed and tracking performance.

5.3 Outlier rejection

We use several methods to reject outliers in the motion
estimation process. Initially, matches in both the stereo
matching and feature tracking steps are eliminated if the
correlation score is too low. This helps to �lter out cases
where a landmark is not present in the new image and cases
where the change in appearance is so large that correct
matching is not possible.

For each stereo match, the rays from the cameras
through the image features are computed to determine if

they consistent. The consistency is measured by the dis-
tance between the rays at the location of smallest separa-
tion. (If there was no error, the rays would intersect.) If
this gap is not in front of the cameras, or if the projection
of the gap into the image is larger than a pixel or two, the
match can be rejected, since it is not geometrically feasible.

After all of the matches have been found and tracked in
both stereo pairs, a rigidity test is applied to prevent gross
errors. Here, we use a constraint that the landmarks must
be stationary. If a landmark moves between stereo frames,
the landmark is not useful for determining the robot mo-
tion. This test repeatedly rejects the landmark that ap-
pears to have moved the most, by examining the pairwise
distances between the landmarks before and after the robot
motion. Landmarks are rejected until all remaining devi-
ations are small enough to be considered noise.

Finally, outlier rejection is performed within the
maximum-likelihood motion estimation procedure. After
computing a motion estimate, the residual error for each
landmark is determined. Once again, the worst matching
landmarks are rejected if they have a residual greater than
some threshold and the estimation is repeated.

5.4 Multi-frame tracking

Matthies [8] has shown that the errors between succes-
sive motions are negatively correlated if the same land-
marks are tracked through the images. We thus expect to
have lower error when the same landmarks are tracked,
rather than selecting new landmarks at each step. Of
course, some landmarks must be replenished at each step,
since some will move out of the �eld-of-view and some will
be rejected as outliers. However, this e�ect is signi�cant,
even when there is only partial overlap between the land-
mark sets. In our experiments, we have achieved a 27.7%
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Figure 5: Several cycles of robust feature matching for ego-motion. The squares indicate the tracked landmarks and the lines show
the motion of the landmark from the previous frame.

reduction in navigation error when multi-frame tracking
is used, rather than considering each pair of frames sepa-
rately. This e�ect is thus useful in maintaining accurate
navigation over long distances.

5.5 Camera roll

Camera roll due to traversing rough terrain is a sig-
ni�cant problem for robots that operate outdoors. While
pitch and yaw are reasonably approximated by translation
of the features in the image, roll causes the features to
be rotated and makes tracking signi�cantly more di�cult.
Our experiments indicate that correlation scores degrade
approximately linearly with the camera roll. In most ter-
rains, camera roll of less than 10� can be tolerated without
di�culty to the feature tracking.

Clearly, a robust motion estimation system for outdoor
navigation must consider the e�ects of camera roll. The
simplest solution to this problem is to ensure that image
pairs are captured frequently enough that the robot does
not roll by more than 10� between frames. For many sys-
tems, this solution is adequate. An alternative, for cases
where large amounts of camera roll are possible, is the use
of an orientation sensor, such as a gyro or accelerometer.
If the approximate roll of the camera is known, then the
correlation window for each landmark can be rotated to
the appropriate orientation for tracking.

6 Results

These techniques have been tested on hundreds of stereo
pairs, including outdoor terrain, with the robot undergo-
ing six degree-of-freedom motion. Figure 4 shows one com-
plete cycle of the motion estimation process for a simple
example of forward motion. First, landmarks were selected

automatically in the left image of the initial stereo pair.
The matching locations were then detected in the corre-
sponding right image. A small number of landmarks were
discarded at this step due to a poor correlation score or a
signi�cant gap between the rays from the cameras. Next,
the locations of the landmarks were predicted in the next
image of the sequence.

After correcting for pitch and yaw error, the actual lo-
cations of the landmarks were detected in the left and right
images of this image. Several landmarks were eliminated
at this stage using the rigidity constraint. The remaining
landmarks were used to determine the motion of the robot.
Finally, the landmark set was reduced by eliminating those
features that were expected to move out of the �eld-of-view
in the next step and replenished with new landmarks.

Figure 5 shows landmark tracking for six consecutive
frames of forward motion in rocky terrain. (Figure 4 cor-
responds to the third step in this sequence.) Despite errors
in the nominal camera movements and features occurring
on occluding boundaries that are di�cult to track, it can
be observed that the �nal tracking is highly robust, with
no outliers in the tracking process. For this data set, the
overall error was 1.3% of the distance traveled.

In order to test the performance of these techniques on
extended sequences, we have applied them to imagery from
a rover traverse consisting of 210 stereo pairs. This traverse
was performed with a small rover and a wide �eld-of-view,
so the cameras were close to the ground and there was
considerable distortion in the appearance of close-range lo-
cations. Figure 6 shows an example of consecutive stereo
pairs with 320 � 240 resolution. The rover traversed ap-
proximately 20 meters, taking images about every 10 cen-
timeters. For cameras with a higher viewpoint and nar-



Figure 6: Stereo pairs from rover traverse sequence.

rower �eld-of-view, the techniques could be executed less
frequently. However, for this rover, small motions between
stereo pairs are necessary to track the foreground land-
marks. Figure 7 shows the results for this traverse. It can
be observed that the ego-motion track closely follows the
ground-truth from GPS, while the odometry estimate di-
verges from the true position. The error in this run was
approximately 1.2%.

7 Summary

We have examined techniques to perform stereo ego-
motion robustly for long-distance robot navigation. Tech-
niques for performing robust feature selection and tracking
with outlier rejection have been developed in order to en-
sure accurate motion estimation at each step. An impor-
tant result of our investigation is that an absolute orien-
tation sensor is necessary to perform accurate navigation
over long distances, since estimation based on ego-motion
alone has error that grows super-linearly with the distance
traveled. The use of an orientation sensor reduces the er-
ror growth to linear in the distance traveled and results in
a much lower error in practice. The use of stereo data was
also critical to elimination of outliers and accurate motion
estimation. We believe that this combination of techniques
results in a method with greater robustness than previous
techniques and that is capable of accurate motion estima-
tion for long-distance navigation.
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