Computer Vision and Image Understanding
Vol. 73, No. 3, March, pp. 329-345, 1999

Article ID cviu.1998.0728, available online at http://www.idealibrary.coml DE %

|.®

Constrained Hough Transforms for Curve Detection

Clark F. Olsorf
Jet Propulsion Laboratory, California Institute of Technology, Mail Stop 125-209, 4800 Oak Grove Drive, Pasadena, California 91109

Received January 7, 1997; accepted July 31, 1998

This paper describes techniques to perform fast and accurate
curve detection using constrained Hough transforms, in which lo-
calization error can be propagated efficiently into the parameter
space. We first review a formal definition of Hough transform and
modify it to allow the formal treatment localization error. We then
analyze current Hough transform techniques with respect to this
definition. It is shown that the Hough transform can be subdivided
into many small subproblems without a decrease in performance,
where each subproblem is constrained to consider only those curves
that pass through some subset of the edge pixels up to the local-
ization error. This property allows us to accurately and efficiently
propagate localization error into the parameter space such that
curves are detected robustly without finding false positives. The
use of randomization techniques yields an algorithm with a worst-
case complexity of O(n), where n is the number of edge pixels in the
image, if we are only required to find curves that are significant with
respect to the complexity of the image. Experiments are discussed
that indicate that this method is superior to previous techniques
for performing curve detection and results are given showing the
detection of lines and circles in real images.  © 1999 Academic Press

1. INTRODUCTION

been proposed to deal with these errors, they have not been ful
satisfactory in both robustly locating noisy curves and elimi-
nating false positives from consideration. In addition, many of
these Hough transform techniques have been very expensive,
terms of both computation and memory requirements.

Inthis paper, we consider technigues to improve the efficienc
and accuracy of curve detection using the Hough transform. Th
key insight that enables the design of an improved algorithm i
that the curve detection problem can be subdivided into man
small subproblems that can be examined independently witho
a reduction in the curve detection performance. This decompc
sition of the problem allows the localization error in the image
features to be efficiently propagated into the parameter spac
and the additional use of randomization yields a robust algo
rithm for curve detection that requires linear time in the numbe
of image edge pixels.

We first discuss previous work on the Hough transform for
curve detection and review a formal definition of the Hough
transform given by Princeet al. [32]. This definition assumes
that a histogramming method is used to perform peak detectic
andis notdirectly applicable to methods that propagate the loca
ization error accurately. We give a modification to this definition
that allows the formal treatment of the effects of localization er-

The Hough transform is a method to detect parameteriz& in the Hough transform.

curves in images by mapping image edge pixels into manifolds\Ve then consider a technique where sets of pixels, rather thg
inthe parameter space [9, 13]. The parameters that are consistéile pixels, are mapped into the parameter space. In this tec
with many of the manifolds correspond to curves in the imadddue, the set of curves that are consistent with small subse
and thus methods that find peaks in the parameter space caffdgnage edge pixels are determined, and the parameter spe
used to detect the image curves. For example, we may parai@aks are accumulated accordingly. Variants of this method ce
terize lines by their slope and intercept£ mx+ b). Each edge Pe found in many papers, for example [2, 5, 9, 20, 23, 48]. Ou
pixel, (x, y), in the image is mapped into the libe= —xm+y analysis shows that this technique, by itself, does not change tl
in the parameter space(x b), corresponding to all of the lines @ccuracy with which curves that surpass some arbitrary thres|
that pass throughk( ). old are found, assuming that a perfect peak finding method |
The peaks in the parameter space are typically found using¥€d. since peaks due to random accumulation form in the p
multidimensional histogramming procedure, where each mafimeter space with the same frequency as when individual pixe
fold votes for the cells of the histogram that it passes throug€ used. Furthermore, unless additional heuristics are used, t
The cells of the histogram that receive many votes are takerf#hning time of the method is exponential in the number of curve
indicate curves in the image. Unfortunately, this technique dogarameters (as is the standard Hough transfprm
not take into account the localization and discretization errors

that are present in the image edge pixels. While techniques have
P 9 9ep q TThe base of the exponential is the number of bins per dimension in th

accumulator method for the standard Hough transform method, while it is th
number of image edge pixels for the techniques where pixel sets are mapp

* http://robotics.jpl.nasa.gov/people/olson/nomepage.html. into the parameter space.
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We next show that subproblems of the curve detection prothamberimagery. It was brought to the attention of the comput
lem can be considered that are constrained to examine only theiséon community by Rosenfeld [35]. A subsequent paper b
sets of image edge pixels that share some distinguished sebDafla and Hart [9] refined by technique by suggesting the u:
pixels of some fixed siz¢. This method is adapted from recenbf the normal parameterization for lines (see Appendix) and tt
work on object recognition [7, 28] and also has been used iraliernative of mapping pairs of pixels into the parameter spa
limited form for curve detection [20, 24]. Each such subproblenather than individual pixels.
corresponds to examining only the curves that pass through thé complete review of Hough transform techniques for curve
distinguished set of pixels (up to the localization error). If weetection requires an entire paper. See, for example, [17] a
examine each possible subproblem, we suffer no loss in cuf2é] for comprehensive reviews of research on the Hough tran
detection performance. form. Here we focus on related work designed to improve eith

Randomization can be used to limit the number of subprotie efficiency or the error propagation of the Hough transforr
lems that need to be examined while maintaining a low probiethod.
ability of failure. Unlike previous uses of randomization in th .

Hough transform, wherg the image edge pixels are randor%y}" Error in the Hough Transform

sampled in some manner during the accumulation process, thi€onsiderable research has been performed with the goal of :
does not reduce the detection performance for any particuddyzing and improving the detection performance of the Houg
subproblem. We still examine all of the edge pixels in each tfinsform in relation to localization error in the image and dis
the subproblems. The only reduction in performance is that theretization error in both the image and the parameter space.
exists a small probability, which can be set arbitrarily low, that Much early analysis of the Hough transform was performe
no subproblem will be examined that uses a distinguished sebgfShapiro [36, 37, 39]. This work examined, in particular, ap
pixels belonging to a curve presentin the image. This distinctigmoximations to the variance of the location of the points in th
is important. Many Hough transform methods that have incquarameter space interms of the variance of the locations of pix
porated randomization examine a subset of the possible feattirethe image space. Shapiro examined both cases where sir
or a subset of the possible feature combinations when accumtiented image pixels were mapped into the parameter space
lating scores in the parameter space. This not only causes cumases where pairs of unoriented image pixels were mapped i
in the image to be missed, but also causes false positives tale parameter space.

detected, since only an approximation of the Hough transform isln addition, Shapiro and lannino [40] have given a geometri
computed. Our technique does not suffer from these problent@nstruction of the region in the parameter space that a pol

The examination of these subproblems not only allows &mthe image maps to for line detection under a bounded err
effective use of randomization, but it also allows the efficierssumption. This information was applied to the determinatic
propagation of the localization errors into the parameter spaafethe appropriate size for cells in the accumulator method «
and makes the parallelization of these techniques simple. Weak detection. Shapiro [38] further considered a Hough tran
consider the propagation of localization error in detail for thimrm variation where the edge points are mapped into all of tf
cases of straight lines and circles and we analyze the expeatadves in the parameter space that satisfy the error model for t
accumulation of votes due to random combinations of pixelsdge point. We argue that this is the correct direction to take
These techniques are compared with previous Hough transfquropagating discretization and localization error in the Houg
methods with respect to detection performance, both theoretansform, since the optimal use of this information will detec
cally and empirically, and the new techniques are shown to béh@se curves that pass within the bounded error of some specif
significant improvement over previous methods. number of image edge pixels. However, Shapiro’s application «

The computational complexity of the algorithm@(n) (or these ideas was to use the accumulator method, with the mod
O(nlogn) depending on the method used to detect peaks) wheation that all of the accumulator cells consistent with the errc
randomization is used to limit the number of subproblems thatodel for a particular point receive votes. This process has €
must be examined. Results are given demonstrating the detectieme computational requirements. Shapiro suggested the us
of lines and circles in real images. We then discuss the applitarge grid cells to reduce this problem, despite the inherent lo
tion of these techniques to higher-order curves such as ellipsefyesolution and curve discrimination performance.

Finally, the contributions of this work are summarized. An ap- Van Veen and Groen [46] examined the effects of the di:
pendix is included that describes parameterizations for sorretization errors and the width of the line segments on the pe
interesting curves and gives methods to solve for the parametiersnance of the standard Hough transform. They concluded tf

of each from the minimal amount of information. a method by which the gradient information at each edge pix
is used to reduce the influence function of each pixel [26] yield
2. RELATED WORK considerable improvement. Brown [4] argued that the Houg

transform is inherently deficient due to the contributions of val
The Hough transform was introduced in a U.S. patent in 1963us pixels on a line to off-peak locations in the parameter spac
[13] and was initially used to locate particle tracks in bubbléde suggested thatthe use of negative votes in the parameter sy
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can be used to offset this effect and sharpen the peaks. Kiryainvergence in the presence of localization error, they are ab
and Bruckstein [18] analyzed the Hough transform in terms tf achieve a wide-sense convergence in this case based on e«
sampling of a nonbandlimited signal. They claim that aliasirgnd noise models. This analysis provides useful guidelines fc
accounts for many of the problems with the Hough transform asdlecting the kernel width and the bin size or sampling interva
present a method that avoids these problems through the usmahe parameter space.
an influence function that is essentially bandlimited. However, Breuel [3] described a line detection technique related to th
no implementation of these techniques is described. Hough transform that searches hierarchical subdivisions of th
Further results can be found in [8, 11, 25, 14, 34, 41, 44)jarameter space using a bounded error model and thus avoi
Unfortunately, all of these techniques are concerned with vasieme of the problems of the accumulator method. In this tect
ous aspects of the accumulator method for finding peaks in thigue, the parameter space is divided into cells that are test
parameter space, where the parameter space is discretizedtamttermine whether they can contain a line that passes with
a counter is kept for each of the cells. This method for locatirthe bounded localization error of a specified number of pixels. |
peaks has the inherent problem that it is desirable for the cellghe cell cannot be ruled out, the cell is divided and the procedur
be both large enough that the pixels from a particular line (ori@ repeated recursively. This continues until the cells becom
particular curve, in general) accumulate in a single cell and smasillifficiently small, at which point they are considered to be lines
enough that the random accumulation of votes does not resulsatisfying the output criterion.
false positives. Analysis by Grimson and Huttenlocher [12] has
indicated that, when this method is applied to even moderat%é Computational Techniques
complex problems, a significant rate of false positives occurs. ™ P q
There has recently been some work which does not depend\nother fertile area for research has been methods to impro
upon the accumulator method in which localization error halse computational expense required by the Hough transforn
beentreatedin aninteresting manner. Stephens [43] formulatéldhad methods that have been widely used are mapping sets
variant of the Hough transform in terms of maximum likelihoodmage pixels into the parameter space and randomization.
estimation. A probability density function for the features is An early paper by Murakangt al.[24] described algorithms
used that has a uniform component modeling the pixels that &oe performing straight line detection using a one-dimensiona
not on the curve and a component that falls off as a Gaussestumulator. One of the algorithms maps pairs of feature poini
with the distance from the curve to model the pixels that ameto the one-dimensional accumulator by taking the angle of th
on the curve. While this method yields correct propagation bhe between the points. The algorithm s structured in such awa
localization error in terms of a Gaussian error distribution, it ithat only the pairs containing one of the feature points are exan
computationally expensive. ined in each iteration. This can be viewed as a precursor to tf
Princenet al. [33] examined the Hough transform in thedecomposition techniques that we describe. Unfortunately, thi
framework of hypothesis testing. Each accumulator bin is viewattjorithm hadD (n?) complexity, where is the number ofimage
as a hypothesis and is assigned a test statistic that is the surfeafures and did not consider the effects of localization error.
the scores for each of the data features with respect to the hyXu et al. [48] described the randomized Hough transform.
pothesis. The data features yield scores that are a functionFof the detection of curves with parameters, they map sets of
the distance of the feature from the hypothesis line accordingikbimage pixels into single points in the parameter space and a
a smooth kernel function. Princext al. considered the optimal cumulate votes in a discretized version of parameter space. T
kernel that should be used to assign scores to the data featpigsl sets that are mapped into the parameter space are chos
in this framework. Palmeet al.[30] extended this work to con- randomly and the votes are accumulated until a sufficient pez
sider a two-dimensional kernel that is a function of both this found or some threshold number of sets have been examine
distance of the feature from the line and the difference in ofku and Oja [47] give a robust stopping criterion for this proce-
entations. This reduces the number of lines for which each daltare and they approximate the time required by the algorithn
feature yields a significant score. Palne¢rl. also considered by modeling it as a generalized Bernoulli process.
the optimal two-dimensional kernel for performing line detec- Liang [23] discusses a Hough transform technique where se
tion. These techniques allow localization error to be propagatefiimage pixels are mapped to single points in a discretized pe
into the parameter space and are complementary to the decompaieter space by fitting curves to the pixels in small windows o
sition techniques that we describe below. The hypothesis testthg image. This method allows a fast implementation and a lo
framework has also been applied to the problems of edge detstorage requirement, but detection performance will degrade |
tion, circular arc detection, and planar surface segmentation [1tle presence of image noise, due to poor local fits, and in clu
Soffer and Kiryati [42] also examine continuous kernel fundered images, due to distractors present in the image windows
tions. By considering the Hough transform as an optimization Bergen and Shvaytser [2] gave a theoretical analysis of th
problem, they are able to examine under what conditions thee of randomization techniques to speed up the Hough tran
Hough transform can be guaranteed to converge to the correein, although no implementation is described. They conside
solution(s). While they have not been able to achieve useful stixith mapping individual pixels and mapping sets of pixels intc
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the parameter space. Their method achieves a computatigha formalism is treated in combination with localization errol
complexity independent of the number of edge pixels in the ilbelow. We note, though, that this formalism is not necessar
age, but with two caveats. First, only curves that represent soaral the techniques that are described here apply equally well
predetermined fraction of the total number of edge pixels aagbitrary sets of points.
found. Second, the method is allowed to be in error by a frac-Princeret al.[32] gave a formal definition of the Hough trans-
tional parameter all of the time and by greater than this fractiorfakrm that, with some modification, will prove useful in our anal-
parameter with some small frequency. The practicality of thisis. LetX = (x, y) be a pointinimage spac®,= (w1, . .., wn)
method is questionable, since the constant number of randbena point in the parameter space, drf&, 2) =0 be the func-
samples that must be examined is often very large. In fact, thisn that parameterizes the set of curves. The set of edge pix
number may often be larger than the number of different samplaghe image& = { X4, ..., Xu}, is represented by the sum of the
that are possible. delta functions at the pixel’s locations:

Kiryati et al.[19] used randomization to improve the running
time of the standard Hough transform. They simply subsam- n
pled the edge pixels in the image and proceeded with the stan- 1(X) = Z 8(X = X;). (1)
dard algorithm. Their analysis implies that the computational =1

requirements of the Hough transform can be improved, while _ )
the performance is degraded little. Princenet al.usedCg, to denote a cell in the parameter spac

Califano and Bolle [5] used a multiple window paramete‘?entered af2. Examining such cells allows the consideration o

transform to exploit long distance information in the extractioft discretized parameter space. They define
of parameterized objects from image data. Lateral inhibition is
used in a connectionist-like framework to improve the accuracy.
In addition, a radius of coherence is defined for each pixel to
reduce the computation time required by the method.

Leavers [20] described a technique called the dynamic 9ensgo, p(X, Q) is 1 if any curve in the parameter space ogl,

eralized Hough transform. She used the technique of mapp't%;sses through the poirX, in image space. The Hough trans-
N image pixels into a single point in the parameter space afgym can be written

furthermore, in each iteration selected a single image pixel to

constrain the transform, which must be presentin each of the sets

of pixels that are mapped into the parameter space. We propose H(®) = /p(x, QI(X)dX (3)
a similar technique in this paper, in which the problem is divided

into subproblems where the pixel sets that are mapped into tire

parameter space must shaére- 1image pixels and demonstrate .

that this is superior to using a single pixel to constrain the trans-

form. Leavers used a storage efficient voting mechanism in a H(®) = 2_; P(X;, €2). (4)
discretized parameter space, where the votes are projected onto =

each of the parameter space axes and several one—dimensionﬁl(g) is thus the number of image pixels that any curvein

accumulators are kept. While this method of accumulating vo Ssses through. This definition is correct for the accumulats

reduces that amount of memory that is required, it may ex ethod that is typically used to implement the Hough trans

erbate the problem of false alarms if the votes in the paramef§l.  s,ch methods discretize the parameter space into ce
space are not sparse. . . and maintain a counter for each cell. These counters record t

Flna_lly, we nc_)tg ”‘"?“ an add|t|or_1al technique that has PrOVEli mber of edge pixels that map to a manifold in the params
useful in the efficient implementation of Hough transform tecqér space that intersects the cell. However, the performance

nigues is a multiresolution or coarse-to-fine search of the ich methods is less than optimal for two reasons. First, t
rameter space to find peaks [1, 3, 16, 22, 29, 31]. For exam &sumes that there is no localization error in the edge pixe

Li et a!. [22] recurswe_ly d|y|ded the parameter space n NYPe{ihen localization error is present, the cell corresponding to t
cubesin a coarse-to-fine hierarchy. Ateach level of the hierarc Ysition of the curve may not receive a vote for various pixel
only those hypercubes that receive enough votes to surpass s Fbelong to the curve. Second, a single bin may receive vol

threshold are passed on to the next level for examination. from multiple edge pixels that cannot lie on the same line, eve
when localization error is considered. It is implicitly assumes
3. THE HOUGH TRANSFORM that the bins are large enough to catch the votes for the curves
interest, yet small enough not to catch a large number of vot

Except where noted, we will consider each edge pixel to liie@m false positive curves.
located atthe point at the center of the image pixelinwhichitlies, In this work, we discuss a method that solves the first proble
with an insignificant extent. The discretization error inherent iand greatly reduces the second through a decomposition of

1 if{A:f(X,A)=0nNC 0
p(xﬂ):{ if {A: f(X,A)=0}NCq # @

0 otherwise
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problem into constrained subproblems and propagation of theint in the parameter spa&cen this case, the accumulator
localization error into the parameter space in each of the suhethod needs to increment only a single bin in the paramete
problems. We thus prefer a definition that does not incorporaigace for each set, rather than the bins covering anl dimen-

a discretization of the parameter space, but that does take isignal manifold for each edge pixel. Such a technique has be
account the propagation of the localization error into the paragised in some form by several researchers [2, 5, 9, 20, 23, 48]. (
eter space. Let us assume that the true location of each eggérse, we need not use sets with cardinalitywe could use
pixel lies within some bounded regiohly, of the determined any sizek > 0. If k < N, then each nondegenerate pixel set map:

location X. We can redefing(X, 2) as follows: into anN — k dimensional manifold in the parameter space. The
disadvantage to this technique of mapping sets of pixels into th
1 if{Y:f(Y,Q)=0NnNx #0 parameter space is that there aE¢ gets of image pixels with
p(X, Q) = . (5) cardinalityk to be considered, which grows very quickly las
0 otherwise )
increases.

An examination of how this technique is related to the standar

Now, p(X, €)is Llifthe curve represented Bpassesthrough Hough transform is informative. Let us denote the transforn
Nx. With this definition we can still use Egs. (3) and (4) tavhere sets ok pixels are mapped into the parameter space
describe the Hough transform and we achieve our goal of d8¥(<2). (The standard Hough transform is thd$(2), but we
counting for the propagation of error, without incorporating will continue to denote it simphH (£2).) An image curve (i.e.,
discretized parameter space. To be fully general, we could farpoint in the parameter space) now receives a vote only if |
ther modify this definition such thait( X, ) was a continuously passes within the error boundary of each pixel in the set, so w
valued function as in [30, 33, 43]. However, this requires us tave
assume a model for the image noise and localization error, at
least implicitly, rather than just an upper bound onthe allowable ~ H¥(@2) = >~ p(Xg. Q) ... p(Xq. Q). (6)
localization error. {Xgy... xg€(5)

In this definition, the Hough transform is continuous in the

parameter space. This gives us freedom in considering methggsre €) denotes the set of atsubsets of the edge pixels,
by which the peaks in the parameter space are found. We are n@¢onsider this function at an arbitrary point in the parame:
bound to the accumulator method. We are also not constrainegdpspace. For some set of pixel¥q,. .. .. Xg}, the product
use the same localization error boundaty, for each point. If Xg. Q) ... p(Xq. Q)is 1ifand only if each of the(X, Q)
we have information as to the relative quality of the localizatiogms js 1 and otherwise it is 0. If there areixels such that
of the edge points, it can be used here. o p(X, ) is 1 (these are the pixels that lie @hup to the lo-
Note that it is possible to propagate the localization err@hjization error), then there ar&)(sets with cardinality that
into the parameter space in the accumulator method for impigmtribute 1 to the surH¥(Q) is thus (‘()_ Since the standard
menting the Hough transform by determining, for each imaggough transform yield$ (€2) = x in this case, we can express
edge pixel, precisely which cells in the quantized parametgr®(Q) simply in terms ofH (Q):
space contain the parameters of a curve that passes within the
bounded error region of the pixel and incrementing the coun- ‘ H(R)
ters accordingly. This method has been proposed by Shapiro HY($2) = ( k > :
[38]. Unfortunately, this process is computationally expensive
and addresses only the first of the problems discussed above. This resultindicates that the method of mapping point setsint
the parameter space has the same accuracy as the standard Hc
transform. If the standard Hough transform uses thresheld
4. MAPPING PIXEL SETS INTO to find peaks and the method of mapping pixel sets into_th1
THE PARAMETER SPACE parameter space uses a thresholof(mf’men the above analysis
implies thatthey will find exactly the same set of peaks, assumin
Let us now consider the technique of mapping sets of pifhat a perfect peak finding method is used. No correct peaks a
els into the parameter space. Rather than considering each piisised as a result of using this method and no false positives
separately, this method considers the sets of pixels with soglégninated.
cardinalityk. For each such set, the curves that pass throughlin addition, curve detection still requires time that is expo-
every pixel in the set (or through the bounded error region Bential inN. Leta be the number of bins in each dimension of
every pixel in the set) are determined and the parameter space
fCOrI]’e.S accgn:gla:te acrtl:ordlng!y. T.he. ptrlmary be”neflt OLUSItngfthlg This is t'rl.Je for the curves considered'in this paper (lines, circles, and el
echnique is that eac ma_lpplng IS INto a sma er subse O W&ges), but it is not necessarily true for arbitrary classes of curves. In general,
parameter space. ff(X, ) is anN parameter function, then, in e assume nondegeneracy, then a sét efrorless edge pixels maps to a finite
the errorless cas® hondegenerate edge pixels map to a sing#et of points in the parameter space.

()
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. space. However, we do not restrict ourselves to using a sing
e, R pixelto constrain the curves. This technique has also been use
e T the context of object recognition to subdivide difficult problem:

o into small subproblems [7, 28].

] } In these constrained transforms, we vary j edge pixels,
- cooL . : G={Xg. ..., Xg_,}, in the edge pixel sets. The pixel sets we
Ao L map into the parameter space are thus G. This yields a new

Ce ) L transform as follows:

k—

vy j
) . HPX(@) = Z 1—[ P(X4. Q)] | P(Xg. Q). (8)

£-DY j=
ge(kij i=1 i

I
i

Consider this function at an arbitrary point in the paramete
space. Since we do not vary the distinguished piXeds,, . . .,
X4, }, the curve must pass through the localization error bounda

of each of these pixels to yield a nonzero responseplkels lie

the pNa_rflmgter space. The standard Hough transform incremeps ,rve up to the localization error, and we use a distinguish
O(a™") bins for each image edge pixel, for a total requiremeRky of j of these pixels, thex — j of these pixels remain in
of O(na™~1). The new method incremen®(a"~*) bins for ¢ _ p \we thus have
each of theD(n¥) sets, for a total 0D (aN"*n¥).2 Furthermore,
the accurate propagation of localization error in the parameter H(Q) — | _
space appears to be no easier with this method. This technique . J if TT_.p(Xg,R) =1
\ . > Dk K — i=1P(Ad

thus has not gained us much, yet. In fact, it is less efficient than H () = J
the standard Hough transform method when there are many edge 0 otherwise
pixels present in the image.

Let us examine what these transforms look like in the param- threshold of (,(_,-) is appropriate for < k. if we wish to
eter space. Figure 1 shows an example image with two sthrfA =, ppropri: y ’ -
. . . . ind curves comprising at leastpixels. Perfect peak finding
line segments amid some random noise that we use to illustrate e 2

; o .methods will find any curve that passes through the localizatic

the transforms. Figure 2 shows transforms of this image using

. . . or boundaries of each of the distinguished pixels, if it woul
the p-6 parameterization for lines. The peaks corresponding [0 |
. — : ) have been found by the standard Hough transform method wi

the line segments in Fig. 1 are labeled with letters. The first pl

is the standard Hough transform of the image and the secot%r shold. . : .
e can formulate an algorithm to recognize arbitrary curve

plot is the transform where pairs of pixels are mapped into the L . .
. : . by considering several subproblems, each of which examine:

parameter space. While the peaks are much higher in the second. Lo - .
icular distinguished set, as above. A deterministic algorith

case, our analysis indicates that if there was a false positive pg%ng these ideas would consider each possible distinguished:

in the standard Hough transform, it would also be present fu% g A
: : . is would guarantee that we examine a correct distinguishe
this case. These plots were made without propagating the local:

o ) S for each curve. If we are willing to allow a small probability
ization error into the parameter space. However, to somew L. 2
of failure, we can use randomization to reduce the number:

ameliorate the effects of error, the counters were incrementgd : . .
. . . iStinguished sets that must be examined. Note that even wh
for each cell in a 3« 3 window around the cells that were inter-

. . X randomization is used in this manner, each of the subprobler
sected by the appropriate manifold in the parameter space. . : T
retains full accuracy in terms of discrimination between tru

curves and false positives, unlike other uses of randomization
the Hough transform. The only drawback is an arbitrarily sma

Let us now consider a new technique where only those pi)@pssibility of missing a curve due to failing to examine a distin
sets that share some distinguished s¢tafge pixelsP = { X, guished set of pixels that belongs to the curve. An analysis
X4}, are mapped into the parameter space. This is simithie number of random distinguished sets that must be examir
Tt i ' . . . . .
to previous work by Murakangt al.[24] and Leavers [20], who {0 Maintain high accuracy can be found in Section 8.

used a single edge pixel to constrain the curves in the parametef© 92in the maximum decomposition of the problem, we war
j to be as large as possible, but note theannot be greater than

k, and we saw earlier that we wank N for efficiency reasons.

3 This assumes tht< N. If k > N, we requireO(nk) > O(nN) time, but this Furth.er,more’ Wher_] = kf there is onIy a smgle set dxfmxels .
is inefficient, since we can achie@(n") time by usingc= N. For this reason, Ccontaining the distinguished set and thus the only informatic
we will not further consider using> N. that is gained is which curves go through every pixel in th

FIG. 1. Line segments A and B amid random noise.

(9)

5. DECOMPOSITION INTO SUBPROBLEMS
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FIG. 2. Transforms of the image in Fig. 1. The peaks labeled A and B correspond to the line segments A and B. (a) Standard Hough transform. (b) Tra
mapping pairs of pixels into the parameter space.

distinguished set. In other words, whea:- k we have as the distinguished pixel, and the third plot shows a case whe
a noise pixel was used as the distinguished pixel. Once agai

(H(Q) —j ) HQ) — we have not propagated the localization error into the paran

, = ( ) =1, eter space in these examples. The propagation of error will b

k—] 0 examined in the following section. Note, though, that peaks ar

present where appropriate, but that no peak is present wher
regardless of the value df (2) and thus little information is noise pixel was used as the distinguished pixel. Notice also th:
gained. The optimal cardinality for the distinguished set is thesnsidering sets of edge pixels that vary in only one pixel (i.e.
j =k—1=N — 1. This maximum decomposition of the probwhen j =k —1= N — 1) constrains the transform to lie on a
lem allows each of the subproblems to be processed quickly antk-dimensional manifold (a curve) in the parameter space. L
the best efficiency is achieved by the overall algorithm with thiss call this curve thélough curve When localization error is
decomposition when randomization is used. considered, the transform is no longer constrained to lie on th
Figure 3 shows three examples of constrained Hough trai#eugh curve, but the transform points remain close to this curve
forms for the image in Fig. 1. The first plot shows a case whereThis decomposition of the curve detection problem into sub
a pixel on segment A was used as the distinguished pixel, tblems has two very useful properties, both of which derive
second plot shows a case where a pixel on segment B was userh the fact that the transform is constrained to lie on the Hougl|

votes
votes
votes

FIG.3. Constrained Hough transforms of the image in Fig. 1. (a) A pixel from segment A is the distinguished pixel. (b) A pixel from segment B is the didtingu
pixel. (c) A noise pixel is the distinguished pixel.
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curve in the errorless case. First, since the Hough curve canflmen those in the bin. This factor contributes to false positive
parameterized in a single variable, it is much easier to seainiHough transform implementations that use the accumulat
than the full parameter space. Second, it is now much easiemethod.

propagate localization error into the parameter space. This ifNow, let us examine how localization error should be prope
accomplished by determining tight bounds on the range thagated ideally in the curve detection process. Each set of pixe
set of pixels can map to in the parameter space under certaiaps to a subset of the parameter space under given error cor

localization error bounds. tions. This subset consists of all of the curves that pass throu
each pixel in the set up to the localization error. Call this subs
6. ERROR PROPAGATION of the parameter space tbeor cloudof the set of pixels. Ide-

ally, we would locate exactly those points in the parameter spa

We now consider methods to propagate the localization errwhich some predetermined number of error clouds interse
into the parameter space. Here we take localization error to driris would yield the curves that pass through some minimui
compass both the error in determining the precise position of thember of the points up to the localization error. We do not d
edge pixels in the image and any discretization error that is ithis precisely, since it is not practical. However, for the subprot
curred in the image space. The conventional method for treatiegns that we now examine, we can efficiently compute a goc
localization error is to use a binning procedure in the parametgsproximation to this number.
space, where each set of pixels maps into a single bin or a recwe first parameterize the Hough curve in a single variable,
tilinear volume of cells in the parameter space. As previous§onsider the projection of the error clouds onto thexis for
noted, this assumes that the bins are large enough to catcheheh of the pixel sets that are examined in some subproble
votes from the correct sets of pixels and are small enough rfekamples of these projections for the cases of lines and circl
to catch enough votes to result in false positives. This is vecgn be found below). The number of projected error clouds th
difficult to achieve in practice, since the shape of the voluniatersect at some point on the Hough curve yields a bound ¢
of the parameter space that is consistent with a set of pixelstap number of error clouds that intersect on a corresponding h
to the localization error is not rectilinear and the volumes hayersurface in the full space. Furthermore, since the error clou
very different shapes and sizes depending on the locations of tleenot stray far from the Hough curve, this bound is a goo
pixels in the set. approximation to the actual number of intersecting error cloud

An additional problem with such techniques is that the paramwhich is the information we desire.
eter space bins are not infinitesimal. This implies that each binSince we sum the number of projected error clouds that inte
in the parameter space maps to some noninfinitesimal area ingket at points on the Hough curve, this corresponds to a kert
image space. Let us consider the case of straight lines in parfimction for each error cloud that looks like a top hat. The kerne
ular. Each bin covers some set of parameters,d.] x [61, 62], function takes on a value of 0 or 1 at each point depending ¢
in the p-6 parameterization of lines. This sweeps out an areatine whether the point is contained in the projection of the err
the image space that is shaped somewhat like an hourglass ¢$eed. If desired, we could instead map each error cloud into
Fig. 4). Adetailed analysis of this shape can be found in [3]. Nogenooth, continuous kernel on the Hough curve using the tec
that this shape expands as it moves out from its point that is clodgques described by Princen al. [33] and Palmeet al. [30].
est to the origin in the coordinate frame. A line passing throudhis yields the possibility of achieving better performance at th
the wide region of the hourglass contributes several votes to st of additional computation.
bin, even though the line itself has parameters very differentOnce we have projected each of the pixel sets that are exa
ined in some subproblem onto th@xis, we can find the peaks
along the Hough curve using any of several different technique
We could simply discretizeand perform voting by increment-
ing the bins consistent with each rangd ithat an error cloud
projects to. This does not suffer from the problems of previou
accumulator methods, since we can discretifi@ely and in-
crement all of the cells that are consistent with a particular err
cloud. Alternatively, we could sort the minimal and maximal
t points for each error cloud and use a sweep algorithm. Th
method examines the extremal points in sorted order and keeg
counter thatis incremented each time we hit a minimal point ar
decremented each time we hit a maximal point. If the countt
reaches a large enough value, then a line has been found wh
passes through (or close to) many edge pixels.
FIG.4. Acellin the parameter space sweeps out approximately an hourglassNOte that the reason that we can project the error clouds or
shape in the image space for the parameterization of lines. a single parameter axis in this method without exacerbating tl

image space
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problem of false positives is that we have already constrained the
error clouds to lie nearly on a one-dimensional manifold of the
parameter space. However, we must take care to parameteriz
this manifold correctly, such that the mapping between points
on the manifold and points in the parameterization is one-to-one
The following subsections describe how we can parameterize th
Hough curve it for the cases of lines and circles and how we

can project the error cloud for the sets of edge pixels onto the
t-axis for each case.

6.1. Lines

If we use thep-6 parameterization for lines (i.ex,cosd +
y sing = p), we can parameterize the Hough curvethince
p is a function of6. To project the error cloud for a pair of
pixels onto thep-axis, we simply determine the minimal and
maximal 6 such that there exists a line with that orientation
passing through both of the pixels up to the localization error. ™
If we use square error boundaries, we need only consider the e

corners ofthe squaresin determining these minimal and maximal . . .
- FIG. 6. We can determine bounds on the position of the center of a circle
6 values. See Figure 5.

passing through three points (up to the localization error) by examining the
range of possible perpendicular bisectors for the segments between the point

6.2. Circles

We can parameterize the space of circles by the coordinategghdicular bisectors of the segments can meet (see Fig. 6). T
the center of the circle and the radius, so there are three parafinimum and maximum distance from the center of the circle
eters: &, Y, ). For this case, the optimal decomposition us&g the midpoint of the distinguished pixels can be determined b

j =N —1=2distinguished pixels. The Hough curve can be p&xamining the extremal points of this set.
rameterized by the distance from the center of the circle to the

midpoint between the two distinguished pixels (we take this dis-
tance to be positive when the center is to the right of the segment 7. ANALYSIS AND COMPARISON
connecting the distinguished pixels, and negative otherwise). WITH PREVIOUS METHODS

To project the error cloud onto theaxis, we now need to
determine error bounds on this distance given three points andin order to study the rate of false positives that these methoc
their localization error boundaries. Recall that the center of tiyeld, let us examine, in the context of line detection, the averag
circle passing through three points is the point where the p@mber of error clouds that are consistent with a particular poir
pendicular bisectors of the segments between the points megatthe Hough curve for a single trial. Since thererarel such
We can thus determine bounds on the location of the centeresfor clouds that are examined and the Hough curve cowvers
the circle by examining the set of points at which two of the peradians, the average number of error clouds consistent with ea

point on the Hough curve is

4 E[Nc] =

(n — D)E[s] 10
T

D2, whereE[64] is the expected length of the projection of the error
cloud onto the Hough curve.

We can place an upper bound@nthe length of the projection
of an error cloud for a particular pair of points onto the Hough
curve as follows. Consider the triangle formed by the midpoin
p’ between the pair of pixels and the two corners of one of the
points’ localization error boundaries that form an acute triangle
4, 0, with this midpoint (see Fig. 74 is given by the angle of the

> triangle formed at the midpoint between the pixels.
FIG. 5. We can determine bounds on the range) dbr any two pixels by The side of the triangle oppositedghas Iength/zy, where

considering lines that pass through the boundaries of their possible localizatérdS the length of a side of the |0calilzati0n error boundarY-'l—e'
errors. [; andl, be the other edges of the triangle. The law of cosine:
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N of votes that each point on the Hough curve receives (inclu
’ ing the peaks due to the true lines) is just over six. Meanwhils
the peaks for the curves in this case are 34 and 41 votes hi
o Figure 8 shows constrained transforms of the image in Fig.
, with error propagation. The distinguished points used are tl
d - same as in Fig. 3. Note that the signal-to-noise ratio is highi

o when the error is propagated into the parameter space.
Let us contrast this with a method that simply divides the
E Hough curve into bins and, for each pair of pixels that is cons
A I 9 dered, casts votes for some set of bins centered at the bin that
. pair of pixels would map into if they had no localization error. In
N contrast to the previous method, this method can make no gu
antee thatthe correct bin is voted for, even ifitintersects the err
cloud of the pair of points, since it does not accurately mod
Y \/57 the localization error. However, the pixels must vote for enoug
bins that it is likely that they hit the correct bin. This means
that the redundancy,ajf—“l, should be at least as large as in the
FIG. 7. The range of possible values can be determined using the law ottase above (and probably larger), yet since some predetermit

cosines. constant size is used, the redundancy is underestimated for sc

pixels and overestimated for others. We thus miss some corrt

yields lines due to the underestimations and find some false positiv
due to the overestimations.

2y% =12 412 — 2], cosby. (11) For the standard Hough transform and the techniques whe

set of pixels are mapped into the parameter space, we have
If d is the distance between the pair of pixels, then we hagetly the same problems, but now we have underestimates &

l1,12> § and overestimates in each of the dimensions of the parameter sp:
and thus the problems may be compounded.
4y? < d* — d* costy (12)  We have performed empirical tests using four methods 1
4y2 detect curves in synthetic images. The methods that we comp:
04 < arcco<1 — ¥> (13) are:

1. The method described in this paper, where subprobler
E[64] is not straightforward to determine, but we can comare examined and the localization error is propagated into t
pute it empirically by examining the distribution dfin sample parameter space. A 900 bin accumulator was used.
images. For example, for the image in Fig. 1, we §iy] = 2. The method where subproblems are examined, but withc
0.08485, withy =1 pixel, and since there are 262 edge pixpropagation of the localization error into the parameter spac
els in the image, we gé&i[Nc] = 6.21. So, the average humberA 900 bin accumulator was used.

45 45 45
B
30 A 30- . 30-
[
8 8 8
8 g
0 [} 1 0 T 1 Y T 1
-90 0 90 -90 0 90 -90 0 90
theta theta theta
a b C

FIG. 8. Constrained Hough transforms of the image in Fig. 1 with error propagation. (a) A pixel from segment A was used as the distinguished pixel. (b)
from segment B was used as the distinguished pixel. (c) A noise pixel was used as the distinguished pixel.
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3. The method where pairs of pixels are mapped into the -
parameter space without propagation of the localization erroi
into the parameter space. A 3&®B60 accumulator was used.

4. The standard Hough transform method. A 36860 ac- S -
cumulator was used.

To ameliorate the effects of error in the cases where localiza- 0
tion error is not propagated into the parameter space, votes alProbability
cast for all cells that are adjacent (including those sharing onlygf detection
a corner) to the cells that are hit precisely in the transform. <

The synthetic testimages were generated by placing a straigt
line consisting of 64 pixels in a 256 256 image. In addition,

Constrained transform
with error propagation

£ / )
FAe ——— Constrained transform,

7 P . without error propagation
1000 randomly selected pixels and two distractors were adde « o/ /' +------- Transform mapping pairs of
. . . . . ] i/ i i
to the images. The distractors consisted of circular arcs with & j/ points Info parimelr space
. . . o e Standard Hough transform
radius of curvature of 100 pixels. An example can be found in
Fig. 9. o : | | T T ]
Tests were performed on 1000 such synthetic images a. 0.2 0.4 0.6 0.8 1.0

Figure 10 shows the results of these tests. For each method, tt

Probability of a false alarm

probability of detecting the correct line segment s plotted versus
the probability of finding a false positive for varying levels of
the threshold that is used to determine which lines are detected.
The method described in this paper, where the localization gtibproblems are examined, it is crucial to propagate the loca
ror is propagated into the parameter space has by far the bigation error accurately into the parameter space.
performance among the methods tested. Somewhat surprising
is the poor performance of the method where subproblems are
examined, but that localization error is not propagated into the
parameter space. This performance is due to a combination of ) ) ] )
the inaccurate propagation of error with the use of constraints! IS S€ction examines the computational complexity of curve

(the distinguished pixel) that contain error. When a distinguishd§tection using the techniques described above. Let us first d

pixel with very little error is chosen, the performance is accegfrMine how many of the distinguished sets must be examine

able, but when no such distinguished pixel is examined, the pg}_maintain alow rate of failure. We assume that we only need t

formance becomes poor. This indicates that when constrairff @il curves that comprise some fractioof the total number of
edge pixels in the image and thus are significant with respect

the complexity of the image. The probability that a single set o
j random pixels all lie on a particular such curve can be bounde

by

FIG. 10. ROC curves generated using synthetic data.

8. COMPUTATIONAL COMPLEXITY

(5)

L (e

G o

This follows since we must havéj”() distinguished sets that
lie on the curve among the') possible distinguished sets. If
we taket such trials, the probability that all of them fail for a
particular curve is bounded by

e T Do > (14)

ST p<(@-po) ~(L-e). (15)
For each curve, we thus have a probability no larger than
that we fail to examine a set of distinguished pixels that is
subset of the curve ihtrials. Since conservative peak finding
A . techniques are used, we can assume that any trial examining
I correct set of distinguished pixels leads to the identification o

) the curve.

FIG.9. Example synthetic image that was used in generating receiver operat-YV& NOW Cthoose an arbitrari|Y_Small probability of failufe,
ing characteristic (ROC) curves. and determine the number of trials necessary to guarantee tt
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accuracy:
1-—e) <. (16)
Solving fort yields
tlog(l—e€l) > logs (17)
logs _log;
™ log(l—e€l) el (18)

The number of trials necessary is thus dependent on the pro
ability of success desired (but only to a logarithmic factor), the )
fraction of image edge pixels that must comprise the curve, ar®é ||
the size of the distinguished set. Note that while the number of
trials is exponential in the size of the distinguished set, the num-
ber of bins we have to increment per trial in the parameter space
is inversely exponential in this size. The number of trials is n@ssary may be larger than the total number of edge pixels in t
explicitly dependent om, although it is implicitly dependent image).
onn. This is because, as the complexity of the image increases,

FIG.11. Example image used to test line detection.

we need to lowek to detect the same curves, although these 9. RESULTS
curves become less significant with respect to the complexity of
the image. These techniques have been applied to realimages to test tf

Now let us consider the complexity of detecting peaks asfficacy. Figure 11 shows an example image (48818 pixels)
the Hough curve for each trial. Recall that we yse N — 1in  that was used to test the line detection techniques. Figure
our method. For the technique of discretizing the Hough curg@ows the edges found in this image. These edges were de
and voting for the bins over an appropriate range for each $gined to subpixel accuracy using a version of the Canny edk
of pixels that is mapped onto the Hough curve, the complexitietector [6].
is dependent upon how finely the Hough curve is discretized.For tests on this image, square localization error boundari
If there arex bins, then we need to increme@i«y) bins per were used such that the true location of each edge pixel w
trial per edge pixel, and this yields a complexity®fnay) per - assumed to be within 0.25 pixels of the measured location
trial. The total complexity is thu@(%) or simply O(n) each direction. For each line that surpasses the detection thre
when measured by the size of the input ¢, §, €, andN are old in each subproblem, only the parameters at which the pec
constants). The storage required by this techniqu@(is+ «). occurred were kept. Furthermore, for any two lines that wet

If we instead use the sweep algorithm, we must sorQf®) detected in separate subproblems that were within some mi
minimal and maximal points of the error cloud projections ontmum distance of each other, only the line with the higher vot
the Hough curve, which requiré3(nlogn) time per trial. Pro- count was kept. Finally, we output the connected segments
cessing thle sorted points requir@gn) time. We thus require
O(™9M%9% ) total time or O(nlogn) when measured by the
size of the input. The storage required by this techniqu@(ig.

While the time that is required is exponential in the number of
curve parameterd, the base of the exponential is newather
thann or « as in previous algorithms. We thus have an accuratq
algorithm in which the time dependence on the number of edg
pixels and the accuracy of the algorithm is low.

An additional area where randomization may be used if we
are willing to sacrifice some performance in the discrimination
of true curves versus false positives is by subsampling the pixel
that are examined in each subproblem. The analysis of Berge ‘ a
and Shvaytser [2] implies that we can achieve a complexity tha ‘%\ \ P (
is independent of the number of image edge pixels if we are \
willing to allow the method to be in error with slightly increased \ 1)
frequency. We have not fully explored this possibility, since its
practicality is questionable (the number of sampled pixels nec- FIG.12. Edges detected in the image.

)
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FIG. 15. Engineering drawing used to test circle detection.
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FIG. 13. Straight lines detected with=.01.

edge pixels along the lines that were detected in the image using
a method that allowed small gaps to be bridged. Figures 13 afith ¢ =.008, the implementation finds a number of circles,
14 show the lines that were detected at two thresholds. Whesame of which are not perceptually obvious. Figure 17 show
large threshold was used £ 0.01), all of the long lines were the circles found for this case that are perceptually salient. Th
found in the image, but short or curving lines were not foundmplementation had difficulty finding both of the dashed circles
When a lower threshold was used= 0.004), even short lines with the same center since they were so close together. Tt
were found in the image. circles shown consist of the top half of one of the circles anc
Figure 15 shows an image (480300 pixels) that was used tothe bottom half of the other. This may partially be a result of the
test circle detection using the method described in this worircles not being perfectly circular in the image. Figure 18 show:
This image is an engineering drawing that has been scanngttles that were found that are not perceptually salient. Note th:
For this reason, it was not possible to determine the locationiofeach case, the pixels found form most of the perimeter of .
edge pixels to subpixel accuracy. In addition, the presenceaifcle. These circles successfully met the acceptance criteric
small and dashed circles and the clutter in the image make thjrecified, so this is not a failure of the algorithm.
a difficult test case. For this circle detection example, we used
the additional constraint that each circle that is output should b&0. ELLIPSES AND OTHER HIGH-ORDER CURVES

represented in the image by at least some minimum fraction of ) )
its perimeter edge pixels. When applying these techniques to curves with many degree

Figure 16 shows the circles found with=.04. While all of ©f freedom, we must take special care, since the number of tria

the large circles were found, the small and dashed circles ditft are required can become large. Let us consider the detecti
not comprise a large enough fraction of the image to be found.

VA

A SN
=\

FIG. 14. Straight lines detected with=.004. FIG. 16. Circles detected with =.04.
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curve. We can determine the position of an ellipse using three o
ented point&rather than five unoriented points. We would thus
use two, rather than four, distinguished pixels, and we would ri
quire many fewer trials to ensure that there is a low probabilit
of failure (461 for the example given above). Of course, we nee
not restrict this technique to high-order curves. We can use tv
oriented points to determine the position of a circle, rather the
three unoriented points.

An alternate technique that can detect high-order curves qt
ckly is to use a two (or more) step technique, where some sub:
of the curve parameters is determined first, and the remainil
parameters are determined subsequently. An example of tl
technique is the method of finding the center of an ellipse th
is described by Tsuji and Matsumoto [45]. They note that th
points on an ellipse that have parallel tangent lines lie on opp
site sides of the center of the ellipse, and thus ellipse centers ¢
be detected by finding points that are midway between mai
such pairs of points with parallel tangents. Problem decompo:t

of ellipses, which have five parameters. If the image is spar8@n techniques similar to those described here can also be u:
or we can segment the image, then we should have no probleW\%h this method to detect ellipse centers. Once the.center of t
For example, if we only need to detect ellipses that compriE&iPse has been detected, three parameters remain to be de
50% of the image edges (or some subset after segmentatidfijed- These can be determined using a three parameter Ho
then the number of trials required to achieve 0.99 probability §nsform technique, similar to the detection of circles.
success is 74. On the other hand, if we wish to detect ellipses that
comprise at least 10% of the image edges using these techniques
in a straightforward manner, then we require 46,052 trials to

achieve 0.99 probability of success. _ _ This paper has discussed efficient and accurate methods

When we wish to detect high-order curves in complex iMserform curve detection using a decomposition of the Houg
ages, there are additional techniques that we can use to perfgifisform that allows localization error to be efficient propagate
curve detection quickly. One simple technique is to use adgiyg the parameter space. To this end, we have modified a forn
tional information at each edge pixel. For example, we can Uggfinition of the Hough transform that allows the localizatior
the orientation of the curve at each pixel (as determined frofpyor 1o he analyzed appropriately. Under this definition, it wa
the gradient or the curve normal or tangent). When we do thig,qn that the mapping of pixel sets (rather than individus
we require fewer curve points to determine the position of trﬁxas) into the parameter space did not, by itself, improve t

accuracy or efficiency of curve detection.

We then considered a new method where the Hough trar
form is decomposed into several constrained subproblems, e:
of which examines a subset of the parameter space by cons
ering only those pixel sets that include some distinguished s

FIG. 17. Perceptually salient circles detected with- .008.

11. SUMMARY

~ of pixels. If each possible subproblem is examined, then r
“~ loss in performance results, but no decrease in complexity
v T RS gained. However, the examination of these subproblems alloy
A oo us, first, to propagate the localization error efficiently and acct

rately into the parameter space, and second, to use randomiza
techniques to reduce the complexity of curve detection, whil
maintaining a low probability of failure. The overall complexity
of the resulting algorithm i©(n) or O(nlogn) (depending on
the method used to find peaks in the parameter space), wh
n is the number of edge pixels in the image. In addition, onl
O(n) storage is necessary.

R

FIG. 18. Perceptually insalient circles that surpassed the threshold with
€ =.008. The original image is drawn in lightly to show why these were de- 4 Infact, three points with orientations overconstrain the position of the ellips
tected. in the errorless case.
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Analysis of this method indicates that curves can be detectedn this parameterizatiom, is the orientation of the line and
robustly with a lower rate of false positives than previous metis the distance of the line from the origin. Whjlés theoretically
ods to perform curve detection. An empirical investigation conmnbounded, for any image we can bounioly the maximum dis-
firmed this result and demonstrated that even in the presema@ace of any image point from the origin. This parameterizatior
of random noise and correlated distractors, this technique gaaps points in the image space to sinusoids in the paramet
detect straight lines without a high rate of false positives, whespace.
previous methods break down. We have given examples of thes&iven two points X1, y1) and k., y2) we can solve fof and
techniques detecting straight lines and circles in real imagesp as follows:

Further improvements to these techniques and extensions to

curves with many degrees of freedom are possible through the 0 = arctanxl —X (21)
use of additional information. For example, the orientation of Y2— VY1

each edge pixel can be used as an additional constraint on the
location of a curve. This reduces the number of points that is

necessary to solve for the parameters of a curve and thus reForanydistinguished poinix{, ya), the Hough curve is given
duces the dependence of the algorithm on the number of Cub‘ﬂﬁxd COSO + Yg Sin = p. In addition, p is a function ofé, so

parameters. o , _ _ we can parameterize the Hough curvesby
The primary contribution of this work is twofold. First, the

technique of subdividing the Hough transform into many smad 2. Circles

subproblems has previously only been considered in a very lim- o ) )

ited fashion. We have formalized this technique and shown that! "€ Standard parameterization for circlesds §c, r), where
it allows randomization to be used in a manner that introducg- ¥e) iS the center of the circle andis the radius. The circle
a small probability of failure, since a correct distinguished skt 9iven by the solutions to

of pixels may not be examined for a particular curve, but that ) _—

it does not reduce the detection performance, assuming that a (X =Xe)" + (y = ye)" =" (23)
correct distinguished set of pixels is examined. Second, we have_. ) ]
described new techniques by which the localization error presenf>IVen three points, g, y1), (2, y2), and &, ys), the circle
in the image edge features may be propagated into the paramttat Passes through each of them has parameters

space allowing curves to be detected robustly. The combination s 2 2 o

of these techniques results in an algorithm that combines both [YS -1 Y1— Y2i| REY=X =Y
efficiency of operation and robustness of curve detection per- [XC} X1 — X3 Xo— X1 x§ + y§ —_ xf — yf (24)
;zrg:)ir;tceed t\;\;;tthhoeuit r;gz getectlon of false positives that are not Ve (%o — x0)(Y3 — Y1) — (Y2 — y1)(xa — x1)

0 = X1 €OSH + y; Sing. (22)

r=v0x—x)?+ (1 — Yo)% 25
APPENDIX Vi = %2 + (1 — Ye) (25)
A slightly different parameterization that is useful in the con-
text of Hough curves isg, yc, d), whered is the distance of the
This appendix describes parameterizations for lines, circlegnter of the circle from the segment connecting the two distin
and ellipses that can be used in Hough transform implemengatished points. If we choos#to be positive when the center

Parameterizations

tions. of the circle is to the right of the segment and negative when i
) is to the left, we can reparameterize the curve in one variable
A.l. Lines by d. In this case the Hough curve forms a straight line in the
One parameterization for lines is the standard slope—interc@gfameter space.
representation: A3, Ellipses
y=mx+b. (19)  Ellipses are typically parameterized by yc, a, b, 8), where

(X, Ye) is the center of the ellipse@,andb are the lengths of the

While this parameterization has the advantage that the pOimé_jor and minor axes, andl is the orientation of the major
in the image space map to lines in the parameter space, it hasdfig. Forbes [10] determined a stable method to solve for th
disadvantage that the rangesmfandb are unbounded, since parameters (a description was found by this author in [20])

we may have vertical or horizontal lines. Given (, yi),i = 1...5we can determine the coefficients in the
Duda and Hart [9] proposed to use the normal parameteriza-
tion instead:

51f the segment is horizontal, then left and right of the segment have nc
X cosh + ysing = p. (20)  meaning. In this case, we take above be positive and below to be negative.
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following equation and solve fol, V, R, S, T) using Gaussian 14. D. J. Hunt, L. W. Nolte, A. R. Reibman, and W. H. Ruedger, Hougt
elimination:

X2+ y?—U(X? - y?) —2Vxy— Rx— Sy—T = 0.

(26) 15.

We then solve forXc, yc, @, b, 8) in the following equations:

b
= — 27) 16.
e=— (27)
1_¢2 17.
U=cosd—— 28
1+¢€2 (28) 18,
1-€?
V =sin®¥ —— 29
sin T e (29) 19,
R =2x.(1—-U) —2y.V (30) 20,
S=2y.(1-U)—-2x.V (32)
2a2h? R S
a _ %R XS (32)

T aib2 2 2 21,

ACKNOWLEDGMENTS 22.

This research was performed while the author was with Cornell University,
Ithaca, NY. A preliminary version of this work appeared in the 1996 Europe&3.
Conference on Computer Vision [27].

10.

11.

12.

13.

. T.M. Breuel, Finding lines under bounder erfeattern Recog29(1), 1996,
. C. M. Brown, Inherent bias and noise in the Hough transftEEE Trans.

. A. Califano and R. M. Bolle, The multiple window parameter transform29

24.
REFERENCES

M. Atiquzzaman, Multiresolution Hough transform—An efficient metho
of detecting patterns in imagesEE Trans. Pattern Anal. Mach. Intell.
14(11), 1992, 1090-1095.

26.
. J. R. Bergen and H. Shvaytser, A probabilistic algorithm for computing

Hough transforms]. Algorithms12, 1991, 639-656.

167-178.

28.
Pattern Anal. Mach. Intell5(5), 1983, 493-505.

IEEE Trans. Pattern Anal. Mach. Intell4(12), 1992, 1157-1170.

. J. Canny, A computational approach to edge detedtidtt: Trans. Pattern

Anal. Mach. Intell.8(6), 1986, 679-697. 30

. T. A. CassPolynomial-Time Geometric Matching for Object Recognition

Ph.D. thesis, Massachusetts Institute of Technology, Feb. 1993.

. M. Cohen and G. T. Toussaint, On the detection of structures in noigy

pictures Pattern Recogd, 1977, 95-98.

. R.O. Duda and P. E. Hart, Use of the Hough transformation to detect lines

and curves in picture§Sommun. Assoc. Comput. Madlb, 1972, 11-15.
A. B. ForbesFitting an Ellipse to DataReport NPL-DITC 95/87, National
Physical Laboratory, Dec. 1987.

G. Gerig, Linking image-space and accumulator space: A new appro@h
for object-recognition, ifProceedings of the International Conference on
Computer Vision, 198pp. 112-115.

W. E. L. Grimson and D. P. Huttenlocher, On the sensitivity of the Houg$y.
transform for object recognitiodEEE Trans. Pattern Anal. Mach. Intell.
12(3), 1990, 255-274.

P. V. C. Hough, Method and means for recognizing complex patterns, U35.
Patent 3069654, 1962.

32.

transform and signal detection theory performance for images with a
ditive noise,Comput. Vision Graphics Image Proce&®, 1990, 386—
401.

J. llingworth, G. Jones, J. Kittler, M. Petrou, and J. Princen, Robus
methods of 2d and 3d image description Arogress in Image Analysis
and Processing I(V. Cantoni, M. Ferretti, S. Levialdi, R. Negrini, and
R. Stefanelli, Eds.), pp. 3-26, World Scientific, Singapore, 1991.

J. lllingworth and J. Kittler, The adaptive Hough transfofEEE Trans.
Pattern Anal. Mach. Intell9(5), 1987, 690-698.

J. lllingworth and J. Kittler, A survey of the Hough transfor@gmput.
Vision Graphics Image Proces#4, 1988, 87-116.

N. Kiryatiand A. M. Bruckstein, Antialiasing the Hough transfo@Wv,GIP:
Graphical Models Image Process3, 1991, 213-222.

N. Kiryati, Y. Eldar, and A. M. Bruckstein, A probabilistic Hough trans-
form, Pattern Recog24(4), 1991, 303-316.

V. F. Leavers, The dynamic generalized Hough transform: Its relatior
ship to the probabilistic Hough transforms and an application to the cor
current detection of circles and ellips€Vy/GIP: Image Understandingg,
1992, 381-398.

V. F. Leavers, Which Hough transforn@/GIP: Image Understandingg,
1993, 250-264.

H. Li, M. A. Lavin, and R. J. Le Master, Fast Hough transform: A hi-
erarchical approacitComput. Vision Graphics Image Proce8$, 1986,
139-161.

P. Liang, A new and efficient transform for curve detectibnRobotic
System$(6), 1991, 841-847.

K. Murakami, H. Koshimizu, and K. Hasegawa, On the new Hough algc
rithms without two-dimensional array for parameter space to detect a s
of straight lines, inProceedings of the IAPR International Conference on
Pattern Recognition, 198@p. 831-833.

(55. W. Niblack and D. Petkovic, On improving the accuracy of the Hougt

transform Mach. Vision Appl3(2), 1990, 87-106.

F. O’Gorman and M. B. Clowes, Finding picture edges through collinearit
of feature points|EEE Trans. Compu5(4), 1976, 449-456.

27. C. F. Olson, Decomposition of the Hough transform: Curve detection wit

efficient error propagation, iRroceedings of the European Conference on
Computer Vision, 1996/0l. 1, pp. 263-272.

C. F. Olson, Efficient pose clustering using a randomized algorltitm.
Comput. Visior23(2), 1997, 131-147.

. P. L. Palmer, J. Kittler, and M. Petrou, Using focus of attention with th

Hough transform for accurate line parameter estimatiRattern Recog
27(9), 1994, 1127-1134.

P. L. Palmer, M. Petrou, and J. Kittler, A Hough transform algorithm witf
a 2d hypothesis testing kern€@VGIP: Image Understanding8, 1993,
221-234.

J. Princen, J. lllingworth, and J. Kittler, A hierarchical approach to line
extraction based on the Hough transfof@omput. Vision Graphics Image
Process52(1), 1990, 57-77.

J. Princen, J. lllingworth, and J. Kittler, A formal definition of the Hough
transform: Properties and relationshigsMath. Imaging Visiorl, 1992,
153-168.

J. Princen, J. lllingworth, and J. Kittler, Hypothesis testing: A frameworl
for analyzing and optimizing Hough transform performan&&E Trans.
Pattern Anal. Mach. Intell16(4), Apr. 1994, 329-341.

T. Risse, Hough transform for line recognition: Complexity of evidence ac
cumulation and cluster detectid@pmput. Vision Graphics Image Process.
46, 1989, 327-345.

A. Rosenfeld,Picture Processing by ComputeAcademic Press, San
Diego, 1969.



36.

37.

38.

39.

40.

41.

42.

CONSTRAINED HOUGH TRANSFORMS

S. D. Shapiro, Transformations for the computer detection of curves48.
noisy picturesComput. Graphics Image Procegs.1975, 328-338.

S. D. Shapiro, Feature space transforms for curve detePattern Recog. 44.
10, 1978, 129-143.

S. D. Shapiro, Generalization of the Hough transform for curve detection in
noisy digital images, ifProceedings of the International Joint Conference45.
on Pattern Recognitiqrl978, pp. 710-714.

S. D. Shapiro, Properties of transforms for the detection of curves in noisy
pictures,Comput. Graphics Image Proce$5.1978, 219-236. 46.
S.D. Shapiroand A. lannino, Geometric constructions for predicting Hough
transform performancé;EE Trans. Pattern Anal. Mach. Intell(3), 1979, 47.
310-317.

J. Sklansky, On the Hough technique for curve detectiBRE Trans.
Comput.27(10), 1978, 923-926.

M. Soffer and N. Kiryati, Guaranteed convergence of the Hough transform,
in Vision Geometry Ill, Proc. SPIE 2356, 199%h. 90-100.

48.

345

R.S. Stephens, Probabilistic approach to the Hough trandfoage Vision
Comput9(1), 1991, 66-71.

P. R. Thrift and S. M. Dunn, Approximating point-sets image by line seg-
ments using a variation of the Hough transfo@omput. Vision Graphics
Image Proces21, 1983, 383-394.

S. Tsuji and F. Matsumoto, Detection of ellipses by a modified Hough trans
form and simplified interpretation strated¥EE Trans. Comput27(8),
1978, 777-781.

T. M. van Veen and F. C. A. Groen, Discretization errors in the Hough
transform Pattern Recogl4(1-6), 1981, 137-145.

L. XuandE. Oja, Randomized Hough transform (RHT): Basic mechanisms
algorithms, and computational complexiti€s/GIP: Image Understanding
57,1993, 131-154.

L. Xu, E. Oja, and P. Kultanen, A new curve detection method: Random
ized Hough transform (RHTRattern Recog. Lettll, May 1990, 331
338.



	1. INTRODUCTION
	2. RELATED WORK
	3. THE HOUGH TRANSFORM
	4. MAPPING PIXEL SETS INTO THE PARAMETER SPACE
	FIG. 1.
	FIG. 2.

	5. DECOMPOSITION INTO SUBPROBLEMS
	FIG. 3.

	6. ERROR PROPAGATION
	FIG. 4.
	FIG. 5.
	FIG. 6.

	7. ANALYSIS AND COMPARISON WITH PREVIOUS METHODS
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.

	8. COMPUTATIONAL COMPLEXITY
	FIG. 11.

	9. RESULTS
	FIG. 12.
	FIG. 13.
	FIG. 14.
	FIG. 15.
	FIG. 16.
	FIG. 17.
	FIG. 18.

	10. ELLIPSES AND OTHER HIGH-ORDER CURVES
	11. SUMMARY
	APPENDIX
	ACKNOWLEDGMENTS
	REFERENCES

