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This paper describes techniques to perform fast and accurate
curve detection using constrained Hough transforms, in which lo-
calization error can be propagated efficiently into the parameter
space. We first review a formal definition of Hough transform and
modify it to allow the formal treatment localization error. We then
analyze current Hough transform techniques with respect to this
definition. It is shown that the Hough transform can be subdivided
into many small subproblems without a decrease in performance,
where each subproblem is constrained to consider only those curves
that pass through some subset of the edge pixels up to the local-
ization error. This property allows us to accurately and efficiently
propagate localization error into the parameter space such that
curves are detected robustly without finding false positives. The
use of randomization techniques yields an algorithm with a worst-
case complexity of O(n), where n is the number of edge pixels in the
image, if we are only required to find curves that are significant with
respect to the complexity of the image. Experiments are discussed
that indicate that this method is superior to previous techniques
for performing curve detection and results are given showing the
detection of lines and circles in real images. c© 1999 Academic Press
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1 The base of the exponential is the number of bins per dimension in the
accumulator method for the standard Hough transform method, while it is the
number of image edge pixels for the techniques where pixel sets are mapped
The Hough transform is a method to detect parameter
curves in images by mapping image edge pixels into manif
in the parameter space [9, 13]. The parameters that are cons
with many of the manifolds correspond to curves in the im
and thus methods that find peaks in the parameter space c
used to detect the image curves. For example, we may par
terize lines by their slope and intercept (y=mx+ b). Each edge
pixel, (x, y), in the image is mapped into the lineb=−xm+ y
in the parameter space (m× b), corresponding to all of the line
that pass through (x, y).

The peaks in the parameter space are typically found us
multidimensional histogramming procedure, where each m
fold votes for the cells of the histogram that it passes throu
The cells of the histogram that receive many votes are take
indicate curves in the image. Unfortunately, this technique d
not take into account the localization and discretization er
that are present in the image edge pixels. While techniques
∗ http://robotics.jpl.nasa.gov/people/olson/homepage.html.
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nating false positives from consideration. In addition, many
these Hough transform techniques have been very expensi
terms of both computation and memory requirements.

In this paper, we consider techniques to improve the efficie
and accuracy of curve detection using the Hough transform.
key insight that enables the design of an improved algorith
that the curve detection problem can be subdivided into m
small subproblems that can be examined independently wit
a reduction in the curve detection performance. This decom
sition of the problem allows the localization error in the ima
features to be efficiently propagated into the parameter sp
and the additional use of randomization yields a robust a
rithm for curve detection that requires linear time in the num
of image edge pixels.

We first discuss previous work on the Hough transform
curve detection and review a formal definition of the Hou
transform given by Princenet al. [32]. This definition assume
that a histogramming method is used to perform peak detec
and is not directly applicable to methods that propagate the lo
ization error accurately. We give a modification to this definit
that allows the formal treatment of the effects of localization
ror in the Hough transform.

We then consider a technique where sets of pixels, rather
single pixels, are mapped into the parameter space. In this
nique, the set of curves that are consistent with small sub
of image edge pixels are determined, and the parameter s
peaks are accumulated accordingly. Variants of this method
be found in many papers, for example [2, 5, 9, 20, 23, 48].
analysis shows that this technique, by itself, does not chang
accuracy with which curves that surpass some arbitrary thr
old are found, assuming that a perfect peak finding metho
used, since peaks due to random accumulation form in the
rameter space with the same frequency as when individual p
are used. Furthermore, unless additional heuristics are use
running time of the method is exponential in the number of cu
parameters (as is the standard Hough transform1).
into the parameter space.
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We next show that subproblems of the curve detection p
lem can be considered that are constrained to examine only
sets of image edge pixels that share some distinguished
pixels of some fixed sizej . This method is adapted from rece
work on object recognition [7, 28] and also has been used
limited form for curve detection [20, 24]. Each such subprob
corresponds to examining only the curves that pass throug
distinguished set of pixels (up to the localization error). If
examine each possible subproblem, we suffer no loss in c
detection performance.

Randomization can be used to limit the number of subp
lems that need to be examined while maintaining a low p
ability of failure. Unlike previous uses of randomization in
Hough transform, where the image edge pixels are rand
sampled in some manner during the accumulation process
does not reduce the detection performance for any parti
subproblem. We still examine all of the edge pixels in eac
the subproblems. The only reduction in performance is that t
exists a small probability, which can be set arbitrarily low, t
no subproblem will be examined that uses a distinguished s
pixels belonging to a curve present in the image. This distinc
is important. Many Hough transform methods that have in
porated randomization examine a subset of the possible fea
or a subset of the possible feature combinations when acc
lating scores in the parameter space. This not only causes c
in the image to be missed, but also causes false positives
detected, since only an approximation of the Hough transfo
computed. Our technique does not suffer from these probl

The examination of these subproblems not only allows
effective use of randomization, but it also allows the effic
propagation of the localization errors into the parameter s
and makes the parallelization of these techniques simple
consider the propagation of localization error in detail for
cases of straight lines and circles and we analyze the exp
accumulation of votes due to random combinations of pix
These techniques are compared with previous Hough trans
methods with respect to detection performance, both theo
cally and empirically, and the new techniques are shown to
significant improvement over previous methods.

The computational complexity of the algorithm isO(n) (or
O(n logn) depending on the method used to detect peaks) w
randomization is used to limit the number of subproblems
must be examined. Results are given demonstrating the dete
of lines and circles in real images. We then discuss the app
tion of these techniques to higher-order curves such as elli
Finally, the contributions of this work are summarized. An
pendix is included that describes parameterizations for s
interesting curves and gives methods to solve for the param
of each from the minimal amount of information.

2. RELATED WORK
The Hough transform was introduced in a U.S. patent in 19
[13] and was initially used to locate particle tracks in bubbl
OLSON
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chamber imagery. It was brought to the attention of the comp
vision community by Rosenfeld [35]. A subsequent paper
Duda and Hart [9] refined by technique by suggesting the
of the normal parameterization for lines (see Appendix) and
alternative of mapping pairs of pixels into the parameter sp
rather than individual pixels.

A complete review of Hough transform techniques for cu
detection requires an entire paper. See, for example, [17]
[21] for comprehensive reviews of research on the Hough tra
form. Here we focus on related work designed to improve eit
the efficiency or the error propagation of the Hough transfo
method.

2.1. Error in the Hough Transform

Considerable research has been performed with the goal o
alyzing and improving the detection performance of the Hou
transform in relation to localization error in the image and d
cretization error in both the image and the parameter space

Much early analysis of the Hough transform was perform
by Shapiro [36, 37, 39]. This work examined, in particular, a
proximations to the variance of the location of the points in
parameter space in terms of the variance of the locations of p
in the image space. Shapiro examined both cases where s
oriented image pixels were mapped into the parameter spac
cases where pairs of unoriented image pixels were mapped
the parameter space.

In addition, Shapiro and Iannino [40] have given a geome
construction of the region in the parameter space that a p
in the image maps to for line detection under a bounded e
assumption. This information was applied to the determina
of the appropriate size for cells in the accumulator method
peak detection. Shapiro [38] further considered a Hough tra
form variation where the edge points are mapped into all of
curves in the parameter space that satisfy the error model fo
edge point. We argue that this is the correct direction to tak
propagating discretization and localization error in the Hou
transform, since the optimal use of this information will dete
those curves that pass within the bounded error of some spec
number of image edge pixels. However, Shapiro’s applicatio
these ideas was to use the accumulator method, with the mo
cation that all of the accumulator cells consistent with the e
model for a particular point receive votes. This process has
treme computational requirements. Shapiro suggested the u
large grid cells to reduce this problem, despite the inherent
of resolution and curve discrimination performance.

Van Veen and Groen [46] examined the effects of the d
cretization errors and the width of the line segments on the
formance of the standard Hough transform. They concluded
a method by which the gradient information at each edge p
is used to reduce the influence function of each pixel [26] yie
considerable improvement. Brown [4] argued that the Hou
transform is inherently deficient due to the contributions of v

62
e-
ious pixels on a line to off-peak locations in the parameter space.
He suggested that the use of negative votes in the parameter space
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can be used to offset this effect and sharpen the peaks. Ki
and Bruckstein [18] analyzed the Hough transform in terms
sampling of a nonbandlimited signal. They claim that alias
accounts for many of the problems with the Hough transform
present a method that avoids these problems through the u
an influence function that is essentially bandlimited. Howev
no implementation of these techniques is described.

Further results can be found in [8, 11, 25, 14, 34, 41, 4
Unfortunately, all of these techniques are concerned with v
ous aspects of the accumulator method for finding peaks in
parameter space, where the parameter space is discretize
a counter is kept for each of the cells. This method for locat
peaks has the inherent problem that it is desirable for the ce
be both large enough that the pixels from a particular line (o
particular curve, in general) accumulate in a single cell and sm
enough that the random accumulation of votes does not res
false positives. Analysis by Grimson and Huttenlocher [12]
indicated that, when this method is applied to even modera
complex problems, a significant rate of false positives occu

There has recently been some work which does not dep
upon the accumulator method in which localization error h
been treated in an interesting manner. Stephens [43] formula
variant of the Hough transform in terms of maximum likeliho
estimation. A probability density function for the features
used that has a uniform component modeling the pixels tha
not on the curve and a component that falls off as a Gaus
with the distance from the curve to model the pixels that
on the curve. While this method yields correct propagation
localization error in terms of a Gaussian error distribution, i
computationally expensive.

Princenet al. [33] examined the Hough transform in th
framework of hypothesis testing. Each accumulator bin is view
as a hypothesis and is assigned a test statistic that is the su
the scores for each of the data features with respect to the
pothesis. The data features yield scores that are a functio
the distance of the feature from the hypothesis line accordin
a smooth kernel function. Princenet al.considered the optima
kernel that should be used to assign scores to the data fea
in this framework. Palmeret al. [30] extended this work to con
sider a two-dimensional kernel that is a function of both
distance of the feature from the line and the difference in
entations. This reduces the number of lines for which each
feature yields a significant score. Palmeret al. also considered
the optimal two-dimensional kernel for performing line dete
tion. These techniques allow localization error to be propaga
into the parameter space and are complementary to the deco
sition techniques that we describe below. The hypothesis tes
framework has also been applied to the problems of edge de
tion, circular arc detection, and planar surface segmentation

Soffer and Kiryati [42] also examine continuous kernel fun
tions. By considering the Hough transform as an optimizat
problem, they are able to examine under what conditions

Hough transform can be guaranteed to converge to the cor
solution(s). While they have not been able to achieve useful st
GH TRANSFORMS 331
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convergence in the presence of localization error, they are
to achieve a wide-sense convergence in this case based on
and noise models. This analysis provides useful guidelines
selecting the kernel width and the bin size or sampling inte
in the parameter space.

Breuel [3] described a line detection technique related to
Hough transform that searches hierarchical subdivisions o
parameter space using a bounded error model and thus a
some of the problems of the accumulator method. In this te
nique, the parameter space is divided into cells that are te
to determine whether they can contain a line that passes w
the bounded localization error of a specified number of pixel
the cell cannot be ruled out, the cell is divided and the proce
is repeated recursively. This continues until the cells bec
sufficiently small, at which point they are considered to be li
satisfying the output criterion.

2.2. Computational Techniques

Another fertile area for research has been methods to imp
the computational expense required by the Hough transf
Two methods that have been widely used are mapping se
image pixels into the parameter space and randomization.

An early paper by Murakamiet al. [24] described algorithms
for performing straight line detection using a one-dimensio
accumulator. One of the algorithms maps pairs of feature po
into the one-dimensional accumulator by taking the angle of
line between the points. The algorithm is structured in such a
that only the pairs containing one of the feature points are ex
ined in each iteration. This can be viewed as a precursor to
decomposition techniques that we describe. Unfortunately,
algorithm hadO(n2) complexity, wheren is the number of image
features and did not consider the effects of localization erro

Xu et al. [48] described the randomized Hough transfor
For the detection of curves withN parameters, they map sets
N image pixels into single points in the parameter space and
cumulate votes in a discretized version of parameter space
pixel sets that are mapped into the parameter space are c
randomly and the votes are accumulated until a sufficient p
is found or some threshold number of sets have been exam
Xu and Oja [47] give a robust stopping criterion for this proc
dure and they approximate the time required by the algori
by modeling it as a generalized Bernoulli process.

Liang [23] discusses a Hough transform technique where
of image pixels are mapped to single points in a discretized
rameter space by fitting curves to the pixels in small window
the image. This method allows a fast implementation and a
storage requirement, but detection performance will degrad
the presence of image noise, due to poor local fits, and in
tered images, due to distractors present in the image windo

Bergen and Shvaytser [2] gave a theoretical analysis of
use of randomization techniques to speed up the Hough tr

rect
rict
form, although no implementation is described. They consider
both mapping individual pixels and mapping sets of pixels into
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the parameter space. Their method achieves a computa
complexity independent of the number of edge pixels in the
age, but with two caveats. First, only curves that represent s
predetermined fraction of the total number of edge pixels
found. Second, the method is allowed to be in error by a f
tional parameter all of the time and by greater than this fracti
parameter with some small frequency. The practicality of
method is questionable, since the constant number of ran
samples that must be examined is often very large. In fact,
number may often be larger than the number of different sam
that are possible.

Kiryati et al.[19] used randomization to improve the runni
time of the standard Hough transform. They simply subs
pled the edge pixels in the image and proceeded with the
dard algorithm. Their analysis implies that the computatio
requirements of the Hough transform can be improved, w
the performance is degraded little.

Califano and Bolle [5] used a multiple window parame
transform to exploit long distance information in the extract
of parameterized objects from image data. Lateral inhibitio
used in a connectionist-like framework to improve the accur
In addition, a radius of coherence is defined for each pixe
reduce the computation time required by the method.

Leavers [20] described a technique called the dynamic
eralized Hough transform. She used the technique of map
N image pixels into a single point in the parameter space
furthermore, in each iteration selected a single image pixe
constrain the transform, which must be present in each of the
of pixels that are mapped into the parameter space. We pro
a similar technique in this paper, in which the problem is divid
into subproblems where the pixel sets that are mapped int
parameter space must shareN− 1 image pixels and demonstra
that this is superior to using a single pixel to constrain the tr
form. Leavers used a storage efficient voting mechanism
discretized parameter space, where the votes are projected
each of the parameter space axes and several one-dimen
accumulators are kept. While this method of accumulating v
reduces that amount of memory that is required, it may e
erbate the problem of false alarms if the votes in the param
space are not sparse.

Finally, we note that an additional technique that has pro
useful in the efficient implementation of Hough transform te
niques is a multiresolution or coarse-to-fine search of the
rameter space to find peaks [1, 3, 16, 22, 29, 31]. For exam
Li et al. [22] recursively divided the parameter space in hyp
cubes in a coarse-to-fine hierarchy. At each level of the hiera
only those hypercubes that receive enough votes to surpass
threshold are passed on to the next level for examination.

3. THE HOUGH TRANSFORM

Except where noted, we will consider each edge pixel to

located at the point at the center of the image pixel in which it lie
with an insignificant extent. The discretization error inherent
OLSON
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this formalism is treated in combination with localization er
below. We note, though, that this formalism is not necess
and the techniques that are described here apply equally w
arbitrary sets of points.

Princenet al.[32] gave a formal definition of the Hough tran
form that, with some modification, will prove useful in our an
ysis. LetX= (x, y) be a point in image space,Ä= (ω1, . . . , ωN)
be a point in the parameter space, andf (X, Ä)= 0 be the func-
tion that parameterizes the set of curves. The set of edge p
in the image,E ={X1, . . . , Xn}, is represented by the sum of t
delta functions at the pixel’s locations:

I (X) =
n∑

j=1

δ(X − X j ). (1)

Princenet al.usedCÄ to denote a cell in the parameter spa
centered atÄ. Examining such cells allows the consideration
a discretized parameter space. They define

p(X, Ä) =
{

1 if {3 : f (X,3) = 0} ∩ CÄ 6= ∅
0 otherwise.

(2)

So, p(X, Ä) is 1 if any curve in the parameter space cell,CÄ,
passes through the point,X, in image space. The Hough tran
form can be written

H (Ä) =
∫

p(X, Ä)I (X) d X (3)

or

H (Ä) =
n∑

j=1

p(X j , Ä). (4)

H (Ä) is thus the number of image pixels that any curve inCÄ

passes through. This definition is correct for the accumul
method that is typically used to implement the Hough tra
form. Such methods discretize the parameter space into
and maintain a counter for each cell. These counters recor
number of edge pixels that map to a manifold in the para
ter space that intersects the cell. However, the performan
such methods is less than optimal for two reasons. First,
assumes that there is no localization error in the edge pi
When localization error is present, the cell corresponding to
position of the curve may not receive a vote for various pix
that belong to the curve. Second, a single bin may receive v
from multiple edge pixels that cannot lie on the same line, e
when localization error is considered. It is implicitly assum
that the bins are large enough to catch the votes for the curv
interest, yet small enough not to catch a large number of v
from false positive curves.

s,
in

In this work, we discuss a method that solves the first problem
and greatly reduces the second through a decomposition of the
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In addition, curve detection still requires time that is expo-
nential inN. Letα be the number of bins in each dimension of

2 This is true for the curves considered in this paper (lines, circles, and el-
CONSTRAINED HO

problem into constrained subproblems and propagation o
localization error into the parameter space in each of the
problems. We thus prefer a definition that does not incorpo
a discretization of the parameter space, but that does tak
account the propagation of the localization error into the pa
eter space. Let us assume that the true location of each
pixel lies within some bounded region,NX, of the determined
locationX. We can redefinep(X, Ä) as follows:

p(X, Ä) =
{

1 if {Y : f (Y, Ä) = 0} ∩ NX 6= ∅
0 otherwise.

(5)

Now, p(X, Ä) is 1 if the curve represented byÄpasses throug
NX. With this definition we can still use Eqs. (3) and (4)
describe the Hough transform and we achieve our goal o
counting for the propagation of error, without incorporatin
discretized parameter space. To be fully general, we could
ther modify this definition such thatp(X, Ä) was a continuousl
valued function as in [30, 33, 43]. However, this requires u
assume a model for the image noise and localization erro
least implicitly, rather than just an upper bound on the allow
localization error.

In this definition, the Hough transform is continuous in
parameter space. This gives us freedom in considering me
by which the peaks in the parameter space are found. We a
bound to the accumulator method. We are also not constrain
use the same localization error boundary,NX, for each point. If
we have information as to the relative quality of the localiza
of the edge points, it can be used here.

Note that it is possible to propagate the localization e
into the parameter space in the accumulator method for im
menting the Hough transform by determining, for each im
edge pixel, precisely which cells in the quantized param
space contain the parameters of a curve that passes with
bounded error region of the pixel and incrementing the co
ters accordingly. This method has been proposed by Sh
[38]. Unfortunately, this process is computationally expen
and addresses only the first of the problems discussed abo

4. MAPPING PIXEL SETS INTO
THE PARAMETER SPACE

Let us now consider the technique of mapping sets of
els into the parameter space. Rather than considering each
separately, this method considers the sets of pixels with s
cardinalityk. For each such set, the curves that pass thro
every pixel in the set (or through the bounded error regio
every pixel in the set) are determined and the parameter s
scores accumulate accordingly. The primary benefit of using
technique is that each mapping is into a smaller subset o

parameter space. Iff (X, Ä) is anN parameter function, then, in
the errorless case,N nondegenerate edge pixels map to a sing
GH TRANSFORMS 333
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point in the parameter space2. In this case, the accumulato
method needs to increment only a single bin in the param
space for each set, rather than the bins covering anN− 1 dimen-
sional manifold for each edge pixel. Such a technique has
used in some form by several researchers [2, 5, 9, 20, 23, 48
course, we need not use sets with cardinalityN, we could use
any sizek> 0. If k≤ N, then each nondegenerate pixel set m
into anN− k dimensional manifold in the parameter space. T
disadvantage to this technique of mapping sets of pixels into
parameter space is that there are (n

k ) sets of image pixels with
cardinalityk to be considered, which grows very quickly ask
increases.

An examination of how this technique is related to the stand
Hough transform is informative. Let us denote the transfo
where sets ofk pixels are mapped into the parameter sp
Hk(Ä). (The standard Hough transform is thusH1(Ä), but we
will continue to denote it simplyH (Ä).) An image curve (i.e.
a point in the parameter space) now receives a vote only
passes within the error boundary of each pixel in the set, so
have

Hk(Ä) =
∑

{Xg1,...,Xgk
}∈(Ek)

p
(
Xg1, Ä

) · . . . · p(Xgk , Ä
)
, (6)

where (Ek ) denotes the set of allk-subsets of the edge pixels,E .
Consider this function at an arbitrary point in the param

ter space. For some set of pixels,{Xg1, . . . , Xgk}, the product
p(Xg1, Ä) · . . . · p(Xgk , Ä) is 1 if and only if each of thep(X, Ä)
terms is 1 and otherwise it is 0. If there arex pixels such that
p(X, Ä) is 1 (these are the pixels that lie onÄ up to the lo-
calization error), then there are (x

k ) sets with cardinalityk that
contribute 1 to the sum.Hk(Ä) is thus (xk ). Since the standar
Hough transform yieldsH (Ä)= x in this case, we can expre
Hk(Ä) simply in terms ofH (Ä):

Hk(Ä) =
(

H (Ä)

k

)
. (7)

This result indicates that the method of mapping point sets
the parameter space has the same accuracy as the standard
transform. If the standard Hough transform uses thresholdt ≥ k
to find peaks and the method of mapping pixel sets into
parameter space uses a threshold of (t

k ), then the above analys
implies that they will find exactly the same set of peaks, assum
that a perfect peak finding method is used. No correct peak
missed as a result of using this method and no false positive
eliminated.
le

lipses), but it is not necessarily true for arbitrary classes of curves. In general, if
we assume nondegeneracy, then a set ofN errorless edge pixels maps to a finite
set of points in the parameter space.
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FIG. 1. Line segments A and B amid random noise.

the parameter space. The standard Hough transform increm
O(αN−1) bins for each image edge pixel, for a total requireme
of O(nαN−1). The new method incrementsO(αN−k) bins for
each of theO(nk) sets, for a total ofO(αN−knk).3 Furthermore,
the accurate propagation of localization error in the param
space appears to be no easier with this method. This techn
thus has not gained us much, yet. In fact, it is less efficient t
the standard Hough transform method when there are many
pixels present in the image.

Let us examine what these transforms look like in the para
eter space. Figure 1 shows an example image with two s
line segments amid some random noise that we use to illus
the transforms. Figure 2 shows transforms of this image us
theρ-θ parameterization for lines. The peaks corresponding
the line segments in Fig. 1 are labeled with letters. The first p
is the standard Hough transform of the image and the sec
plot is the transform where pairs of pixels are mapped into
parameter space. While the peaks are much higher in the se
case, our analysis indicates that if there was a false positive p
in the standard Hough transform, it would also be present
this case. These plots were made without propagating the lo
ization error into the parameter space. However, to somew
ameliorate the effects of error, the counters were incremen
for each cell in a 3× 3 window around the cells that were inte
sected by the appropriate manifold in the parameter space.

5. DECOMPOSITION INTO SUBPROBLEMS

Let us now consider a new technique where only those p
sets that share some distinguished set ofj edge pixels,D={Xd1,

. . . , Xd }, are mapped into the parameter space. This is sim
j

to previous work by Murakamiet al.[24] and Leavers [20], who
used a single edge pixel to constrain the curves in the parame

3 This assumes thatk≤ N. If k> N, we requireO(nk)>O(nN ) time, but this
is inefficient, since we can achieveO(nN ) time by usingk= N. For this reason,
we will not further consider usingk> N.
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space. However, we do not restrict ourselves to using a s
pixel to constrain the curves. This technique has also been us
the context of object recognition to subdivide difficult proble
into small subproblems [7, 28].

In these constrained transforms, we varyk− j edge pixels,
G={Xg1, . . . , Xgk− j }, in the edge pixel sets. The pixel sets
map into the parameter space are thusD∪G. This yields a new
transform as follows:

HD,k(Ä) =
∑
G∈(E−Dk− j )

j∏
i=1

p
(
Xdi , Ä

) k− j∏
i=1

p
(
Xgi , Ä

)
. (8)

Consider this function at an arbitrary point in the param
space. Since we do not vary the distinguished pixels,{Xd1, . . . ,

Xdj }, the curve must pass through the localization error boun
of each of these pixels to yield a nonzero response. Ifx pixels lie
on a curve up to the localization error, and we use a distingui
set of j of these pixels, thenx− j of these pixels remain i
E −D. We thus have

HD,k(Ä) =


(

H (Ä)− j

k− j

)
if
∏ j

i=1 p
(
Xdi , Ä

) = 1

0 otherwise.

(9)

A threshold of (t− j
k− j ) is appropriate forj < k, if we wish to

find curves comprising at leastt pixels. Perfect peak findin
methods will find any curve that passes through the localiza
error boundaries of each of the distinguished pixels, if it wo
have been found by the standard Hough transform method
thresholdt .

We can formulate an algorithm to recognize arbitrary cur
by considering several subproblems, each of which examin
particular distinguished set, as above. A deterministic algor
using these ideas would consider each possible distinguishe
This would guarantee that we examine a correct distinguis
set for each curve. If we are willing to allow a small probabil
of failure, we can use randomization to reduce the numbe
distinguished sets that must be examined. Note that even
randomization is used in this manner, each of the subprob
retains full accuracy in terms of discrimination between t
curves and false positives, unlike other uses of randomizati
the Hough transform. The only drawback is an arbitrarily sm
possibility of missing a curve due to failing to examine a dis
guished set of pixels that belongs to the curve. An analys
the number of random distinguished sets that must be exam
to maintain high accuracy can be found in Section 8.

To gain the maximum decomposition of the problem, we w
j to be as large as possible, but note thatj cannot be greater tha
k, and we saw earlier that we wantk≤ N for efficiency reasons
Furthermore, whenj = k, there is only a single set ofk pixels

containing the distinguished set and thus the only information
that is gained is which curves go through every pixel in the
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FIG. 2. Transforms of the image in Fig. 1. The peaks labeled A and B correspond to the line segments A and B. (a) Standard Hough transform. (b) Transform
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distinguished set. In other words, whenj = k we have

(
H (Ä)− j

k− j

)
=
(

H (Ä)− j

0

)
= 1,

regardless of the value ofH (Ä) and thus little information is
gained. The optimal cardinality for the distinguished set is t
j = k− 1= N− 1. This maximum decomposition of the pro
lem allows each of the subproblems to be processed quickly
the best efficiency is achieved by the overall algorithm with t
decomposition when randomization is used.

Figure 3 shows three examples of constrained Hough tr
forms for the image in Fig. 1. The first plot shows a case wh

a pixel on segment A was used as the distinguished pixel, theproblems has two very useful properties, both of which derive

ugh
second plot shows a case where a pixel on segment B was usedfrom the fact that the transform is constrained to lie on the Ho
FIG. 3. Constrained Hough transforms of the image in Fig. 1. (a) A pixel from
pixel. (c) A noise pixel is the distinguished pixel.
us
-
and
is

ns-
re

as the distinguished pixel, and the third plot shows a case w
a noise pixel was used as the distinguished pixel. Once a
we have not propagated the localization error into the par
eter space in these examples. The propagation of error w
examined in the following section. Note, though, that peaks
present where appropriate, but that no peak is present wh
noise pixel was used as the distinguished pixel. Notice also
considering sets of edge pixels that vary in only one pixel (
when j = k− 1= N− 1) constrains the transform to lie on
one-dimensional manifold (a curve) in the parameter space
us call this curve theHough curve. When localization error is
considered, the transform is no longer constrained to lie on
Hough curve, but the transform points remain close to this cu

This decomposition of the curve detection problem into s
segment A is the distinguished pixel. (b) A pixel from segment B is the distinguished
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curve in the errorless case. First, since the Hough curve ca
parameterized in a single variable, it is much easier to se
than the full parameter space. Second, it is now much eas
propagate localization error into the parameter space. Th
accomplished by determining tight bounds on the range th
set of pixels can map to in the parameter space under ce
localization error bounds.

6. ERROR PROPAGATION

We now consider methods to propagate the localization e
into the parameter space. Here we take localization error to
compass both the error in determining the precise position o
edge pixels in the image and any discretization error that i
curred in the image space. The conventional method for trea
localization error is to use a binning procedure in the param
space, where each set of pixels maps into a single bin or a
tilinear volume of cells in the parameter space. As previou
noted, this assumes that the bins are large enough to catc
votes from the correct sets of pixels and are small enough
to catch enough votes to result in false positives. This is
difficult to achieve in practice, since the shape of the volu
of the parameter space that is consistent with a set of pixe
to the localization error is not rectilinear and the volumes h
very different shapes and sizes depending on the locations o
pixels in the set.

An additional problem with such techniques is that the par
eter space bins are not infinitesimal. This implies that each
in the parameter space maps to some noninfinitesimal area
image space. Let us consider the case of straight lines in p
ular. Each bin covers some set of parameters, [ρ1, ρ2]× [θ1, θ2],
in theρ-θ parameterization of lines. This sweeps out an are
the image space that is shaped somewhat like an hourglas
Fig. 4). A detailed analysis of this shape can be found in [3]. N
that this shape expands as it moves out from its point that is
est to the origin in the coordinate frame. A line passing thro
the wide region of the hourglass contributes several votes t
bin, even though the line itself has parameters very diffe
FIG. 4. A cell in the parameter space sweeps out approximately an hourg
shape in the image space for theρ-θ parameterization of lines.
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from those in the bin. This factor contributes to false positi
in Hough transform implementations that use the accumu
method.

Now, let us examine how localization error should be pro
gated ideally in the curve detection process. Each set of p
maps to a subset of the parameter space under given error c
tions. This subset consists of all of the curves that pass thr
each pixel in the set up to the localization error. Call this su
of the parameter space theerror cloudof the set of pixels. Ide
ally, we would locate exactly those points in the parameter s
at which some predetermined number of error clouds inter
This would yield the curves that pass through some minim
number of the points up to the localization error. We do no
this precisely, since it is not practical. However, for the subpr
lems that we now examine, we can efficiently compute a g
approximation to this number.

We first parameterize the Hough curve in a single variablt .
Consider the projection of the error clouds onto thet-axis for
each of the pixel sets that are examined in some subpro
(examples of these projections for the cases of lines and ci
can be found below). The number of projected error clouds
intersect at some point on the Hough curve yields a boun
the number of error clouds that intersect on a corresponding
persurface in the full space. Furthermore, since the error cl
do not stray far from the Hough curve, this bound is a g
approximation to the actual number of intersecting error clo
which is the information we desire.

Since we sum the number of projected error clouds that in
sect at points on the Hough curve, this corresponds to a k
function for each error cloud that looks like a top hat. The ke
function takes on a value of 0 or 1 at each point dependin
the whether the point is contained in the projection of the e
cloud. If desired, we could instead map each error cloud in
smooth, continuous kernel on the Hough curve using the t
niques described by Princenet al. [33] and Palmeret al. [30].
This yields the possibility of achieving better performance at
cost of additional computation.

Once we have projected each of the pixel sets that are e
ined in some subproblem onto thet-axis, we can find the peak
along the Hough curve using any of several different techniq
We could simply discretizet and perform voting by incremen
ing the bins consistent with each range int that an error cloud
projects to. This does not suffer from the problems of previ
accumulator methods, since we can discretizet finely and in-
crement all of the cells that are consistent with a particular e
cloud. Alternatively, we could sort the minimal and maxim
t points for each error cloud and use a sweep algorithm.
method examines the extremal points in sorted order and ke
counter that is incremented each time we hit a minimal point
decremented each time we hit a maximal point. If the cou
reaches a large enough value, then a line has been found w
passes through (or close to) many edge pixels.
lassNote that the reason that we can project the error clouds onto
a single parameter axis in this method without exacerbating the
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problem of false positives is that we have already constrained
error clouds to lie nearly on a one-dimensional manifold of
parameter space. However, we must take care to paramet
this manifold correctly, such that the mapping between po
on the manifold and points in the parameterization is one-to-o
The following subsections describe how we can parameteriz
Hough curve int for the cases of lines and circles and how w
can project the error cloud for the sets of edge pixels onto
t-axis for each case.

6.1. Lines

If we use theρ-θ parameterization for lines (i.e.,x cosθ +
y sinθ = ρ), we can parameterize the Hough curve byθ , since
ρ is a function ofθ . To project the error cloud for a pair o
pixels onto theθ -axis, we simply determine the minimal an
maximal θ such that there exists a line with that orientati
passing through both of the pixels up to the localization er
If we use square error boundaries, we need only conside
corners of the squares in determining these minimal and max
θ values. See Figure 5.

6.2. Circles

We can parameterize the space of circles by the coordinat
the center of the circle and the radius, so there are three pa
eters: (xc, yc, r ). For this case, the optimal decomposition us
j = N− 1= 2 distinguished pixels. The Hough curve can be
rameterized by the distance from the center of the circle to
midpoint between the two distinguished pixels (we take this d
tance to be positive when the center is to the right of the segm
connecting the distinguished pixels, and negative otherwise

To project the error cloud onto thet-axis, we now need to
determine error bounds on this distance given three points
their localization error boundaries. Recall that the center of
circle passing through three points is the point where the
pendicular bisectors of the segments between the points m
We can thus determine bounds on the location of the cente
the circle by examining the set of points at which two of the p
FIG. 5. We can determine bounds on the range ofθ for any two pixels by
considering lines that pass through the boundaries of their possible localizat
errors.
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FIG. 6. We can determine bounds on the position of the center of a ci
passing through three points (up to the localization error) by examining
range of possible perpendicular bisectors for the segments between the p

pendicular bisectors of the segments can meet (see Fig. 6)
minimum and maximum distance from the center of the cir
to the midpoint of the distinguished pixels can be determined
examining the extremal points of this set.

7. ANALYSIS AND COMPARISON
WITH PREVIOUS METHODS

In order to study the rate of false positives that these meth
yield, let us examine, in the context of line detection, the aver
number of error clouds that are consistent with a particular p
on the Hough curve for a single trial. Since there aren− 1 such
error clouds that are examined and the Hough curve coveπ
radians, the average number of error clouds consistent with
point on the Hough curve is

E[NC] = (n− 1)E[θd]

π
, (10)

whereE[θd] is the expected length of the projection of the err
cloud onto the Hough curve.

We can place an upper bound onθd, the length of the projection
of an error cloud for a particular pair of points onto the Hou
curve as follows. Consider the triangle formed by the midpo
between the pair of pixels and the two corners of one of
points’ localization error boundaries that form an acute trian
with this midpoint (see Fig. 7).θd is given by the angle of the
triangle formed at the midpoint between the pixels.

The side of the triangle opposite toθ has length
√

2γ , where
ionγ is the length of a side of the localization error boundary. Let
l1 andl2 be the other edges of the triangle. The law of cosines
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FIG. 7. The range of possibleθ values can be determined using the law
cosines.

yields

2γ 2 = l 2
1 + l 2

2 − 2l1l2 cosθd. (11)

If d is the distance between the pair of pixels, then we h
l1, l2>

d
2 and

4γ 2 < d2− d2 cosθd (12)

θd < arccos

(
1− 4γ 2

d2

)
. (13)

E[θd] is not straightforward to determine, but we can co
pute it empirically by examining the distribution ofd in sample
images. For example, for the image in Fig. 1, we getE[θd]=
ace.
0.08485, withγ = 1 pixel, and since there are 262 edge pix-
els in the image, we getE[NC]= 6.21. So, the average number

propagation of the localization error into the parameter sp
A 900 bin accumulator was used.
FIG. 8. Constrained Hough transforms of the image in Fig. 1 with error pro
from segment B was used as the distinguished pixel. (c) A noise pixel was
OLSON

f

ve

-

of votes that each point on the Hough curve receives (inc
ing the peaks due to the true lines) is just over six. Meanwh
the peaks for the curves in this case are 34 and 41 votes
Figure 8 shows constrained transforms of the image in Fi
with error propagation. The distinguished points used are
same as in Fig. 3. Note that the signal-to-noise ratio is hig
when the error is propagated into the parameter space.

Let us contrast this with a method that simply divides
Hough curve into bins and, for each pair of pixels that is co
dered, casts votes for some set of bins centered at the bin th
pair of pixels would map into if they had no localization error.
contrast to the previous method, this method can make no g
antee that the correct bin is voted for, even if it intersects the e
cloud of the pair of points, since it does not accurately mo
the localization error. However, the pixels must vote for eno
bins that it is likely that they hit the correct bin. This mea
that the redundancy,E[θd ]

π
, should be at least as large as in t

case above (and probably larger), yet since some predeterm
constant size is used, the redundancy is underestimated for
pixels and overestimated for others. We thus miss some co
lines due to the underestimations and find some false posi
due to the overestimations.

For the standard Hough transform and the techniques w
set of pixels are mapped into the parameter space, we hav
actly the same problems, but now we have underestimates
overestimates in each of the dimensions of the parameter s
and thus the problems may be compounded.

We have performed empirical tests using four method
detect curves in synthetic images. The methods that we com
are:

1. The method described in this paper, where subprobl
are examined and the localization error is propagated into
parameter space. A 900 bin accumulator was used.

2. The method where subproblems are examined, but wit
pagation. (a) A pixel from segment A was used as the distinguished pixel. (b) A pixel
used as the distinguished pixel.
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3. The method where pairs of pixels are mapped into
parameter space without propagation of the localization e
into the parameter space. A 360× 360 accumulator was used

4. The standard Hough transform method. A 360× 360 ac-
cumulator was used.

To ameliorate the effects of error in the cases where loca
tion error is not propagated into the parameter space, vote
cast for all cells that are adjacent (including those sharing o
a corner) to the cells that are hit precisely in the transform.

The synthetic test images were generated by placing a str
line consisting of 64 pixels in a 256× 256 image. In addition
1000 randomly selected pixels and two distractors were ad
to the images. The distractors consisted of circular arcs w
radius of curvature of 100 pixels. An example can be foun
Fig. 9.

Tests were performed on 1000 such synthetic ima
Figure 10 shows the results of these tests. For each metho
probability of detecting the correct line segment is plotted ver
the probability of finding a false positive for varying levels
the threshold that is used to determine which lines are dete
The method described in this paper, where the localization
ror is propagated into the parameter space has by far the
performance among the methods tested. Somewhat surp
is the poor performance of the method where subproblems
examined, but that localization error is not propagated into
parameter space. This performance is due to a combinatio
the inaccurate propagation of error with the use of constra
(the distinguished pixel) that contain error. When a distinguis
pixel with very little error is chosen, the performance is acce
able, but when no such distinguished pixel is examined, the
formance becomes poor. This indicates that when constra
FIG. 9. Example synthetic image that was used in generating receiver ope
ing characteristic (ROC) curves.
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FIG. 10. ROC curves generated using synthetic data.

subproblems are examined, it is crucial to propagate the lo
ization error accurately into the parameter space.

8. COMPUTATIONAL COMPLEXITY

This section examines the computational complexity of cu
detection using the techniques described above. Let us firs
termine how many of the distinguished sets must be exam
to maintain a low rate of failure. We assume that we only nee
find curves that comprise some fractionε of the total number of
edge pixels in the image and thus are significant with respe
the complexity of the image. The probability that a single se
j random pixels all lie on a particular such curve can be boun
by

p0 ≥
(
εn
j

)(n
j

) ≈ (εn) j

n j
= ε j . (14)

This follows since we must have (εnj ) distinguished sets tha
lie on the curve among the (n

j ) possible distinguished sets.
we taket such trials, the probability that all of them fail for
particular curve is bounded by

p ≤ (1− p0)t ≈ (1− ε j )t . (15)

For each curve, we thus have a probability no larger thap
that we fail to examine a set of distinguished pixels that
subset of the curve int trials. Since conservative peak findin
techniques are used, we can assume that any trial examin
correct set of distinguished pixels leads to the identification
the curve.
rat-We now choose an arbitrarily small probability of failure,δ,
and determine the number of trials necessary to guarantee this
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accuracy:

(1− ε j )t ≤ δ. (16)

Solving fort yields

t log(1− ε j ) ≥ logδ (17)

tmin = logδ

log(1− ε j )
≈ log 1

δ

ε j
. (18)

The number of trials necessary is thus dependent on the
ability of success desired (but only to a logarithmic factor),
fraction of image edge pixels that must comprise the curve
the size of the distinguished set. Note that while the numb
trials is exponential in the size of the distinguished set, the n
ber of bins we have to increment per trial in the parameter s
is inversely exponential in this size. The number of trials is
explicitly dependent onn, although it is implicitly dependen
onn. This is because, as the complexity of the image increa
we need to lowerε to detect the same curves, although th
curves become less significant with respect to the complex
the image.

Now let us consider the complexity of detecting peaks
the Hough curve for each trial. Recall that we usej = N− 1 in
our method. For the technique of discretizing the Hough c
and voting for the bins over an appropriate range for eac
of pixels that is mapped onto the Hough curve, the comple
is dependent upon how finely the Hough curve is discreti
If there areα bins, then we need to incrementO(αγ ) bins per
trial per edge pixel, and this yields a complexity ofO(nαγ ) per
trial. The total complexity is thusO(

nαγ log 1
δ

εN−1 ) or simply O(n)
when measured by the size of the input (α, γ, δ, ε, and N are
constants). The storage required by this technique isO(n+α).

If we instead use the sweep algorithm, we must sort theO(n)
minimal and maximal points of the error cloud projections o
the Hough curve, which requiresO(n logn) time per trial. Pro-
cessing the sorted points requiresO(n) time. We thus requir
O(

n logn log 1
δ

εN−1 ) total time or O(n logn) when measured by th
size of the input. The storage required by this technique isO(n).

While the time that is required is exponential in the numbe
curve parameters,N, the base of the exponential is nowε rather
thann or α as in previous algorithms. We thus have an accu
algorithm in which the time dependence on the number of e
pixels and the accuracy of the algorithm is low.

An additional area where randomization may be used i
are willing to sacrifice some performance in the discrimina
of true curves versus false positives is by subsampling the p
that are examined in each subproblem. The analysis of Be
and Shvaytser [2] implies that we can achieve a complexity
is independent of the number of image edge pixels if we
willing to allow the method to be in error with slightly increas

frequency. We have not fully explored this possibility, since it
practicality is questionable (the number of sampled pixels ne
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FIG. 11. Example image used to test line detection.

essary may be larger than the total number of edge pixels in
image).

9. RESULTS

These techniques have been applied to real images to tes
efficacy. Figure 11 shows an example image (483× 318 pixels)
that was used to test the line detection techniques. Figur
shows the edges found in this image. These edges were d
mined to subpixel accuracy using a version of the Canny e
detector [6].

For tests on this image, square localization error bounda
were used such that the true location of each edge pixel
assumed to be within 0.25 pixels of the measured locatio
each direction. For each line that surpasses the detection th
old in each subproblem, only the parameters at which the p
occurred were kept. Furthermore, for any two lines that w
detected in separate subproblems that were within some m
mum distance of each other, only the line with the higher v
count was kept. Finally, we output the connected segmen
s
c- FIG. 12. Edges detected in the image.
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FIG. 13. Straight lines detected withε= .01.

edge pixels along the lines that were detected in the image u
a method that allowed small gaps to be bridged. Figures 13
14 show the lines that were detected at two thresholds. Wh
large threshold was used (ε= 0.01), all of the long lines were
found in the image, but short or curving lines were not foun
When a lower threshold was used (ε= 0.004), even short lines
were found in the image.

Figure 15 shows an image (400× 300 pixels) that was used to
test circle detection using the method described in this wo
This image is an engineering drawing that has been scan
For this reason, it was not possible to determine the location
edge pixels to subpixel accuracy. In addition, the presence
small and dashed circles and the clutter in the image make
a difficult test case. For this circle detection example, we u
the additional constraint that each circle that is output should
represented in the image by at least some minimum fraction
its perimeter edge pixels.

Figure 16 shows the circles found withε= .04. While all of
the large circles were found, the small and dashed circles
not comprise a large enough fraction of the image to be fou
FIG. 14. Straight lines detected withε= .004.
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FIG. 15. Engineering drawing used to test circle detection.

With ε= .008, the implementation finds a number of circl
some of which are not perceptually obvious. Figure 17 sh
the circles found for this case that are perceptually salient.
implementation had difficulty finding both of the dashed circ
with the same center since they were so close together.
circles shown consist of the top half of one of the circles
the bottom half of the other. This may partially be a result of
circles not being perfectly circular in the image. Figure 18 sh
circles that were found that are not perceptually salient. Note
in each case, the pixels found form most of the perimeter
circle. These circles successfully met the acceptance crite
specified, so this is not a failure of the algorithm.

10. ELLIPSES AND OTHER HIGH-ORDER CURVES

When applying these techniques to curves with many deg
of freedom, we must take special care, since the number of
that are required can become large. Let us consider the dete
FIG. 16. Circles detected withε= .04.
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here
n is the number of edge pixels in the image. In addition, only
O(n) storage is necessary.
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FIG. 17. Perceptually salient circles detected withε= .008.

of ellipses, which have five parameters. If the image is sp
or we can segment the image, then we should have no prob
For example, if we only need to detect ellipses that comp
50% of the image edges (or some subset after segmenta
then the number of trials required to achieve 0.99 probabilit
success is 74. On the other hand, if we wish to detect ellipse
comprise at least 10% of the image edges using these techn
in a straightforward manner, then we require 46,052 trial
achieve 0.99 probability of success.

When we wish to detect high-order curves in complex
ages, there are additional techniques that we can use to pe
curve detection quickly. One simple technique is to use a
tional information at each edge pixel. For example, we can
the orientation of the curve at each pixel (as determined
the gradient or the curve normal or tangent). When we do
we require fewer curve points to determine the position of
FIG. 18. Perceptually insalient circles that surpassed the threshold w
ε= .008. The original image is drawn in lightly to show why these were d
tected.
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curve. We can determine the position of an ellipse using three
ented points4 rather than five unoriented points. We would th
use two, rather than four, distinguished pixels, and we would
quire many fewer trials to ensure that there is a low probab
of failure (461 for the example given above). Of course, we n
not restrict this technique to high-order curves. We can use
oriented points to determine the position of a circle, rather t
three unoriented points.

An alternate technique that can detect high-order curves
ckly is to use a two (or more) step technique, where some su
of the curve parameters is determined first, and the remai
parameters are determined subsequently. An example of
technique is the method of finding the center of an ellipse
is described by Tsuji and Matsumoto [45]. They note that
points on an ellipse that have parallel tangent lines lie on op
site sides of the center of the ellipse, and thus ellipse center
be detected by finding points that are midway between m
such pairs of points with parallel tangents. Problem decomp
tion techniques similar to those described here can also be
with this method to detect ellipse centers. Once the center o
ellipse has been detected, three parameters remain to be
mined. These can be determined using a three parameter H
transform technique, similar to the detection of circles.

11. SUMMARY

This paper has discussed efficient and accurate metho
perform curve detection using a decomposition of the Ho
transform that allows localization error to be efficient propaga
into the parameter space. To this end, we have modified a fo
definition of the Hough transform that allows the localizati
error to be analyzed appropriately. Under this definition, it w
shown that the mapping of pixel sets (rather than individ
pixels) into the parameter space did not, by itself, improve
accuracy or efficiency of curve detection.

We then considered a new method where the Hough tr
form is decomposed into several constrained subproblems,
of which examines a subset of the parameter space by co
ering only those pixel sets that include some distinguished
of pixels. If each possible subproblem is examined, then
loss in performance results, but no decrease in complexi
gained. However, the examination of these subproblems al
us, first, to propagate the localization error efficiently and ac
rately into the parameter space, and second, to use randomiz
techniques to reduce the complexity of curve detection, w
maintaining a low probability of failure. The overall complexi
of the resulting algorithm isO(n) or O(n logn) (depending on
the method used to find peaks in the parameter space), w
ith
e- 4 In fact, three points with orientations overconstrain the position of the ellipse
in the errorless case.
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parameters (a description was found by this author in [20]).
Given (xi , yi ), i = 1 . . .5 we can determine the coefficients in the
CONSTRAINED HO

Analysis of this method indicates that curves can be dete
robustly with a lower rate of false positives than previous me
ods to perform curve detection. An empirical investigation c
firmed this result and demonstrated that even in the pres
of random noise and correlated distractors, this technique
detect straight lines without a high rate of false positives, wh
previous methods break down. We have given examples of t
techniques detecting straight lines and circles in real image

Further improvements to these techniques and extensio
curves with many degrees of freedom are possible through
use of additional information. For example, the orientation
each edge pixel can be used as an additional constraint o
location of a curve. This reduces the number of points tha
necessary to solve for the parameters of a curve and thu
duces the dependence of the algorithm on the number of c
parameters.

The primary contribution of this work is twofold. First, th
technique of subdividing the Hough transform into many sm
subproblems has previously only been considered in a very
ited fashion. We have formalized this technique and shown
it allows randomization to be used in a manner that introdu
a small probability of failure, since a correct distinguished
of pixels may not be examined for a particular curve, but t
it does not reduce the detection performance, assuming t
correct distinguished set of pixels is examined. Second, we
described new techniques by which the localization error pre
in the image edge features may be propagated into the para
space allowing curves to be detected robustly. The combina
of these techniques results in an algorithm that combines
efficiency of operation and robustness of curve detection
formance, without the detection of false positives that are
supported by the image.

APPENDIX

Parameterizations

This appendix describes parameterizations for lines, circ
and ellipses that can be used in Hough transform impleme
tions.

A.1. Lines

One parameterization for lines is the standard slope–inter
representation:

y = mx+ b. (19)

While this parameterization has the advantage that the p
in the image space map to lines in the parameter space, it ha
disadvantage that the ranges ofm andb are unbounded, sinc
we may have vertical or horizontal lines.

Duda and Hart [9] proposed to use the normal paramete
tion instead:
x cosθ + y sinθ = ρ. (20)
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In this parameterization,θ is the orientation of the line andρ
is the distance of the line from the origin. Whileρ is theoretically
unbounded, for any image we can boundρ by the maximum dis-
tance of any image point from the origin. This parameteriza
maps points in the image space to sinusoids in the param
space.

Given two points (x1, y1) and (x2, y2) we can solve forθ and
ρ as follows:

θ = arctan
x1− x2

y2− y1
(21)

ρ = x1 cosθ + y1 sinθ. (22)

For any distinguished point, (xd, yd), the Hough curve is given
by xd cosθ + yd sinθ = ρ. In addition,ρ is a function ofθ , so
we can parameterize the Hough curve byθ .

A.2. Circles

The standard parameterization for circles is (xc, yc, r ), where
(xc, yc) is the center of the circle andr is the radius. The circle
is given by the solutions to

(x − xc)
2+ (y− yc)

2 = r 2. (23)

Given three points, (x1, y1), (x2, y2), and (x3, y3), the circle
that passes through each of them has parameters

[
xc

yc

]
=

[
y3− y1 y1− y2

x1− x3 x2− x1

][ x2
2 + y2

2 − x2
1 − y2

1

x2
3 + y2

3 − x2
1 − y2

1

]
(x2− x1)(y3− y1)− (y2− y1)(x3− x1)

(24)

r =
√

(x1− xc)2+ (y1− yc)2. (25)

A slightly different parameterization that is useful in the co
text of Hough curves is (xc, yc, d), whered is the distance of the
center of the circle from the segment connecting the two dis
guished points. If we choosed to be positive when the cente
of the circle is to the right of the segment and negative whe
is to the left5, we can reparameterize the curve in one varia
by d. In this case the Hough curve forms a straight line in
parameter space.

A.3. Ellipses

Ellipses are typically parameterized by (xc, yc,a, b, θ ), where
(xc, yc) is the center of the ellipse,a andb are the lengths of the
major and minor axes, andθ is the orientation of the majo
axis. Forbes [10] determined a stable method to solve for
5 If the segment is horizontal, then left and right of the segment have no
meaning. In this case, we take above be positive and below to be negative.
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following equation and solve for (U,V, R, S, T) using Gaussian
elimination:

x2+ y2−U (x2− y2)− 2V xy− Rx− Sy− T = 0. (26)

We then solve for (xc, yc,a, b, θ ) in the following equations

e= b

a
(27)

U = cos 2θ
1− e2

1+ e2
(28)

V = sin 2θ
1− e2

1+ e2
(29)

R = 2xc(1−U )− 2ycV (30)

S= 2yc(1−U )− 2xcV (31)

T = 2a2b2

a2+ b2
− xcR

2
− xcS

2
. (32)
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