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Abstract

One goal for future Mars missions is for a rover to be able to navigate autonomously to science targets not visible to the rover, but seen in
orbital or descent images. This can be accomplished if accurate maps of the terrain are available for the rover to use in planning and local-
ization. We describe techniques to generate such terrain maps using images with a variety of resolutions and scales, including surface images
from the lander and rover, descent images captured by the lander as it approaches the planetary surface, and orbital images from current
and future Mars orbiters. At the highest resolution, we process surface images captured by rovers and landers using bundle adjustment. At
the next lower resolution (and larger scale), we use wide-baseline stereo vision to map terrain distant from a rover with surface images. Map-
ping the lander descent images using a structure-from-motion algorithm generates data at a hierarchy of resolutions. These provide a link
between the high-resolution surface images and the low-resolution orbital images. Orbital images are mapped using similar techniques,
although with the added complication that the images may be captured with a variety of sensors. Robust multi-modal matching techniques
are applied to these images. The terrain maps are combined using a system for unifying multi-resolution models and integrating three-
dimensional terrains. The result is a multi-resolution map that can be used to generate fixed-resolution maps at any desired scale.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

For a Mars rover capable of long-range mobility, it is
desirable to travel to science targets observed in orbital
or descent images, but that are not visible to the rover at
its starting position. However, current rovers, including
the Mars Exploration Rovers (Spirit and Opportunity),
are not able to navigate autonomously to distant targets
with a single command. Furthermore, navigation errors
can result in the loss of an entire day of scientific activity,
since communication with rovers on Mars usually occurs
only once per day. Navigation and localization accuracy
1077-3142/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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can be improved using maps of the terrain that encompass
the rover’s location and the desired destination. Such maps
allow improved planning in the route taken by the rover to
reach its goal. They are also critical for localization, so that
the rover knows when the goal has been reached. We have
developed techniques to generate 3D terrain maps for Mars
rovers that use all available images, including surface
images from landers and rovers, orbital images from
current and future Mars orbiters, and descent images from
landers. (Descent images are the nested images taken by the
lander as it descends to the surface of the planet.) These
images provide mapping data at a variety of resolutions
from the very high resolution in the surface images to the
lower resolution in the orbital images.

For mapping the high-resolution rover and lander images
on the surface, we use bundle adjustment techniques
to optimize the estimated camera external parameters
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iteratively. These techniques are applied, in particular, to
overlapping stereo images from panoramic image sets in
order to create accurate maps of the terrain nearby the
rover, since slight inaccuracies in the camera positions
can lead to seams or ridges in the panoramic map that
appear to be obstacles for planning purposes. This method
automatically determines corresponding features between
multiple pairs of stereo images, even in cases where the
overlap is small. These correspondences are used to update
the camera positions precisely and produce seamless maps
from the stereo data. This technique has been used during
ground operations for the Mars Exploration Rover (MER)
mission.

Terrain that is distant from the rover cannot be mapped
accurately using such techniques. We map this terrain
using a combination of rover, lander, and orbital images.
Onboard the rover, maps of distant terrain can be created
using wide-baseline stereo vision. While conventional ste-
reo vision performed on the rover has limited accuracy
for distant terrain owing to the small distance between
the stereo cameras (known as the baseline distance), we
can achieve accurate mapping for distant terrain using
wide-baseline stereo vision. With this technique, images
from the same camera, but at different rover positions,
are used to generate a virtual pair of stereo images with a
large baseline distance. This introduces two problems.
First, the relative positioning between the cameras is not
well known, unlike conventional stereo vision, where the
cameras can be carefully calibrated. In addition, the prob-
lem of determining the corresponding locations between
the two images is more difficult owing to the different view-
points at which the images are captured. We combine
structure-from-motion and stereo vision techniques in our
solution to these problems.

Images captured during the descent of a lander to the
surface can be mapped using similar techniques. Each suc-
cessive image is taken closer to the surface, so that the
sequence represents a nested hierarchy of images with
shrinking scale and growing resolution. This is useful for
integrating the high-resolution surface data with the low-
resolution orbital data. However, these images are more
difficult to process, since the direction of movement is
towards the terrain being imaged, which complicates image
rectification. For this problem, we determine the terrain
height at each image location by resampling the image mul-
tiple times, with each resampling representing a possible
terrain height. For each location, the resampled image that
yields the best match against the preceding image in the
sequence is used to form an initial estimate of the terrain
height. The estimates are refined using parabolic
interpolation.

At the lowest resolution (and the largest scale), we use
pairs of orbital images (or an orbital image and a high-al-
titude descent image) to compute three-dimensional terrain
information. This builds upon the wide-baseline stereo
methodology. However, for this case, the images may come
from multiple sensors, such as different orbiters or an orbit-
er and a lander. For this reason, we must use techniques
that can find correspondences between images even when
the sensors have very different responses to various terrain
features. Our approach is to transform the images into a
new representation that measures the entropy in the image
values around each pixel (treating the pixels in each neigh-
borhood as samples from a random variable). This repre-
sentation is robust and allows mapping using images
from different types of camera.

The terrain maps computed from all of the sources of
imagery and at all of the resolutions are compiled using
SUMMITT (System for Unifying Multi-resolution Models
and Integrating Three-dimensional Terrains), which is
designed to merge disparate data sets from multiple mis-
sions into a single multi-resolution data set. This system
registers the maps and combines them using an octree rep-
resentation. The multi-resolution map can be used to gen-
erate terrain maps with any fixed resolution to use for
planning and localization purposes.

A considerable amount of previous work has been done
on robotic mapping [1]. Much of it concerns indoor robots,
while we are concerned with mapping natural terrain with
rovers and spacecraft. We concentrate on the use of camer-
as for mapping, but other sensors have also been used for
mapping Mars, including laser altimeter [2] and delay-
Doppler radar [3]. Aside from our own work, much of
the early and recent work on terrain mapping for rovers
has been performed at Carnegie Mellon University [4–7].
Work at CNRS (the National Center for Scientific
Research in France) is also significant, where stereo
mapping is performed using an autonomous blimp [8,9].

In Section 2, we discuss the use of wide-baseline stereo
for mapping terrain that cannot be mapped effectively
using conventional stereo vision. Section 3 describes our
approach to mapping surface terrain close to the rover
using stereo panoramas. Methods to map images captured
during a spacecraft descent to the planetary surface are giv-
en in Section 4. Section 5 discusses techniques by which
multi-model image pairs (such as from different orbiters
or orbital/descent image pairs) can be used to create
three-dimensional maps. The SUMMITT system for inte-
grating multi-resolution data sets is described in Section
6. We give our conclusions in Section 7.

2. Wide-baseline stereo vision

Rovers currently map nearby terrain using stereo vision.
However, the standard deviation of the error of stereo
vision depth estimates increases with the square of the dis-
tance to the terrain position. For this reason, conventional
stereo cannot accurately map terrain many meters away.
One solution to this problem is to use a larger baseline dis-
tance (the distance between the cameras), since the error
standard deviation is inversely proportional to this dis-
tance. This is problematic, however, since a rover with lim-
ited size cannot have two cameras with a large baseline
distance. We achieve an arbitrarily large baseline distance



Fig. 1. Matching features detected in a wide-baseline stereo pair.
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using two images captured by the rover at different posi-
tions. This technique has been called motion stereo
[10,11] and wide-baseline stereo vision [12–16]. It allows
terrain up to a few kilometers distant from a rover to be
mapped. In general, when a stereo map of distant terrain
is desired, the rover will capture an image from a suitable
vantage point and then move perpendicular to the vector
to the terrain to capture another image, since this provides
the best geometry for recovering the terrain map.

While the use of wide-baseline stereo vision improves
the accuracy of the range estimation, it introduces two
new problems. First, conventional stereo systems use a pair
of cameras that are carefully calibrated. In this case, the
relative displacement and rotation between the camera
positions are determined precisely prior to performing the
stereo algorithm. For wide-baseline stereo, this is not pos-
sible, since the rover’s knowledge of its position when each
image is captured is prone to error much greater than a cal-
ibrated system would have. Second, the determination of
correspondences between the images is more difficult for
wide-baseline stereo, since the images have a larger differ-
ence in viewpoint than with conventional stereo. Our algo-
rithm addresses these problems using a motion refinement
step based on the structure-from-motion problem of com-
puter vision [17] and robust matching between the images
[18].

2.1. Motion refinement

Given a pair of wide-baseline images of the same ter-
rain, the first step is to determine the relative positions
of the camera at the locations where the images were
taken. We assume that an initial estimate of this motion
is available from the rover odometry (or other sensors).
This estimate is used in two ways. It is used as a starting
location for the iterative optimization of the motion. For
this use, the estimate does not need to be accurate. The
estimate is also used to determine the baseline distance
between the camera locations. This parameter cannot be
recovered during the optimization, since the same images
would result if the problem was scaled to an arbitrary
size.

We refine the initial estimate by determining corre-
sponding points between the images and updating the
motion to enforce geometrical constraints that must be sat-
isfied for the points to be in correspondence [17]. These cor-
respondences are determined using a simple and robust
procedure. Distinctive features are first selected in one
image using an operator that locates image pixels where
there are gradients in multiple orientations. Candidate
matches are detected in the other image at a reduced reso-
lution using the sum-of-absolute-difference (SAD) measure
to compare local neighborhoods. Our use of a simple mea-
sure here, rather than one that provides affine invariance
[12–14,16] is based on a tradeoff between speed and match-
ing errors. Experiments indicate that our system is able to
detect a sufficient number of correct matches. Incorrect
matches are usually detected and discarded using quality
measures.

One or more candidate matches (depending on the can-
didate scores) determined using the SAD measure at the
reduced resolution are carried forward to a candidate
refinement step at the highest resolution, where they are
again evaluated using the SAD measure. Some candidates
are discarded at this stage based on the quality of match.
The remaining candidates undergo an affine optimization
step before the final match is selected. Even the final match
is thrown out if the estimated standard deviation in the
match position is too large or if the quality of the second
best candidate is close to that of the best candidate.

After finding correspondences between the images, we
optimize the translation T and rotation R that represent
the motion of the camera between the two positions from
which the images were taken:

p2 ¼ Rp1 þ T : ð1Þ
For this optimization, we use a state vector that includes
the six parameters describing the relative camera positions
(only five are recoverable, owing to the scale ambiguity)
and the depth estimates of the features for which we have
found correspondences. The objective function that we
minimize combines the distances (one for each feature
match) between the detected feature positions in the search
image and the reprojected feature position in that image for
the corresponding point according to the current motion
estimate and feature depth. If there are n feature matches
with coordinates (ri,ci) and the reprojected image locations
of the corresponding features using the motion estimate are
ð~ri;~ciÞ, then a simple objective function would be

Xn

i¼1

ðri � ~riÞ2 þ ðci � ~ciÞ2: ð2Þ

We combine the distances in an M-estimator (following the
discussion of Forsyth and Ponce [19]) and use the Leven-
berg–Marquardt optimization technique [20] to adjust the
state vector in order to minimize this function.

After we have refined the motion estimate, we apply a
rectification process that forces corresponding points
between the images to lie on the same row in the images
[21]. Fig. 1 shows an example of matching features that
were detected in an image pair with a baseline distance of
20 m. Fig. 2 shows the images after motion refinement
and rectification has been performed. In this example, the



Fig. 2. Wide-baseline stereo pair after rectification. Corresponding
features now lie on the same image row.
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camera pointing angles converged by 20� from parallel so
that the same rock was located at the center of both
images.

It can be observed that there is relatively little movement
between the features matched in the middle of the image.
Features on the mountains move considerably to the right
and foreground features move in the opposite direction.
After rectification, all of the corresponding features lie on
the same image row, facilitating dense matching.

2.2. Disparity estimation

Disparity is a measure of the difference in the image
position for corresponding points between two images.
After rectification, this difference should be exclusively in
the x-coordinate. Given a pair of rectified images, we can
compute the disparity for any point that is present in both
images by searching along the corresponding row of the
other image. Every position in one image is given a dispar-
ity estimate, unless no corresponding match can be found
in the other image. We accomplish this by combining
robust template matching [18] with an efficient stereo
search algorithm [22,23]. This provides robustness to
changes in appearance owing to different viewpoints while
maintaining efficiency.

In order to determine which points are in correspon-
dence between the two images, we could use a measure
such as normalized correlation or the sum-of-squared dif-
ferences (SSD) applied to a small image window (or neigh-
borhood) around each point. However, owing to the
difference in viewpoints, these measures do not produce
good results for wide-baseline stereo vision [17]. Instead,
we use a maximum-likelihood measurement that improves
upon normalized correlation (and SSD) in two ways. First,
normalized correlation compares only the pixels between
the two images that are directly overlapping at some dis-
parity of the image window with respect to the other image.
If camera motion or perspective distortion causes pixels to
move by different amounts between the two images, it will
not be possible to find a window position where all of the
pixels are correctly overlapped. Our distance measure
allows pixels that are not directly overlapping to be
matched by linearly combining the distance in the image
with the difference in intensity. This is important, since
we do not model perspective (or even affine) distortion in
determining disparities. Computing the best distance for
a pixel is no longer trivial with the formulation, since the
best match may not be the overlapping pixel from the other
image. However, the distances can be computed efficiently
by precomputing a three-dimensional distance transform of
the input data [18].

The second improvement over normalized correlation is
that the possibility of an outlier is explicitly represented. In
this application, any terrain feature that is visible in one
image, but not in the other is an outlier for the matching
process. Such outliers occur frequently for images taken
from different viewpoints. In order to model such outliers,
we use a probability density function (PDF) for each pixel
distance that is a mixture of two terms, one for inliers and
one for outliers, where each is weighted by an estimate of
the probability of an outlier. Let pi(D) be the PDF for
inliers (typically modeled as a Gaussian function), po(D)
be the PDF for outliers (a constant function works well
in practice), and a be the expected fraction of inliers. The
overall PDF is simply a linear combination:

pðDÞ ¼ apiðDÞ þ ð1� aÞpoðDÞ: ð3Þ
The disparities computed using this PDF are not sensitive
to the expected fraction of inliers a, as long as it is not close
to one. Our implementation uses a = 0.75.

The overall likelihood for a neighborhood of pixels is
the product of the probability density functions for each
of the pixels in the neighborhood. In practice, it is efficient
to sum the logarithms of the probability density functions,
which can be precomputed.

log LðD1ðdÞ; . . . ;DnðdÞjdÞ ¼
Xn

i¼1

log pðDiðdÞÞ; ð4Þ

where d is the disparity under consideration, n is the num-
ber of pixels in the image window, Di(d) is the distance for
the ith pixel in the image window at this disparity, and p(Æ)
is the probability density function for the distances. This
yields an M-estimator for robust estimation of the disparity
[24]. The use of a probability density function that models
outliers prevents individual pixels that match very poorly
from having an undue effect on the overall likelihood for
a candidate match.

We use an efficient strategy that is common in stereo
vision to perform dense matching between the rectified
images using the measure described above. When two adja-
cent neighborhoods in the first image are compared to the
second image at the same disparity, the computations per-
formed overlap almost completely. Dynamic programming
can be used to eliminate these redundant computations and
perform dense matching efficiently [22,23]. Fig. 3 shows a
result of performing dense matching using the images from
Figs. 1 and 2. The disparities shown correspond to pixels at
the same location in the left image of Fig. 2. Black loca-
tions indicate that no good match could be found. High
quality results are achieved on the left side of the image,
since the features in this area are also present in the right



Fig. 3. Disparity map computed from a wide-baseline stereo pair. The
largest (positive) disparities are white. The smallest (negative) disparities
are dark. Black values indicate that the disparity was discarded.
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image. Towards the right side and bottom of the image, the
results degrade, since there is no matching feature (or the
match is difficult to find).

3. Mapping surface panoramas

We map surface panoramas using an automatic proce-
dure that first selects candidate tie points in stereo images.
Matches are detected both within stereo pairs and between
adjacent stereo pairs to create an image network. Bundle
adjustment is applied to the image network in order to
improve the estimates of the camera and landmark posi-
tions. Finally, elevation maps and orthophotos are generat-
ed using dense matches detected between image pairs.

3.1. Automatic selection of tie points

We have developed a systematic method for automatic
tie point selection [25–27]. For selecting tie points within
one stereo pair (intra-stereo tie points), the first step in
the procedure is interest point extraction using the Förstner
operator [28]. The interest points are initially matched
using normalized cross-correlation coefficients. However,
within each stereo pair, mismatches may occur. The match-
es are verified based on the mutual consistency of the par-
allax between matches. The parallaxes are plotted versus
the row of the interest point. Assuming that the terrain
does not change sharply, the parallaxes should form a
Fig. 4. Intra-stereo tie points in lander IMP
consistent curve in the plot. A median filter is used to iden-
tify and eliminate the mismatches. Next, an even distribu-
tion of the tie points is selected using a gridding method.
Within each evenly spaced image patch, the single tie point
with the largest variance in the image intensity is selected.
Fig. 4 shows an example of automatically selected intra-ste-
reo tie points from IMP (Imager for Mars Pathfinder)
images.

Tie points between adjacent stereo images (inter-stereo
tie points) are more difficult to find, since the images often
have little overlap. In this case, a coarse elevation map is
constructed using the intra-stereo data. The coarse map is
used to predict both the overlapping areas in the inter-ste-
reo images and approximate locations of the matches for
selected interest points. We then search over a small search
space in order to find the final match. This has resulted in
approximately 90% success in test images. Verification is
performed by examining the consistency of the parallaxes
in this case also. Fig. 5 shows an example of automatically
selected inter-stereo tie points from IMP images. Fig. 6
shows an example of tie points automatically selected from
rover images. Ultimately, the selected intra- and inter-
stereo tie points build an image network.

3.2. Bundle adjustment

A bundle adjustment [29] is applied to the image net-
work to improve the accuracy of image orientation param-
eters as well as the 3D ground positions of the tie points.
To achieve high accuracy, we model the correlation
between the position and attitude of the stereo camera
and use this correlation as constraints in the least-squares
adjustment. A subset of the tie points is selected for the
overall bundle adjustment with nine evenly distributed
intra-stereo tie points per image and six evenly distributed
inter-stereo tie points per image pair. These tie points are
selected such that more weight is given to those points that
appear in the most images.

In a Mars mission, it is unlikely that there will be a large
number of control points that can be used to register sur-
face images with orbital images. We, thus, use a free net-
work with a rank deficient normal matrix for the bundle
adjustment. No unique solution exists for such a network.
(Imager for Mars Pathfinder) images.



Fig. 5. Inter-stereo tie points in lander IMP (Imager for Mars Pathfinder) images.

Fig. 6. Automatically selected tie points from rover images. (Red crosses are intra-stereo tie points and blue crosses are inter-stereo tie points.) (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this paper.)

78 C.F. Olson et al. / Computer Vision and Image Understanding 105 (2007) 73–85
We solve the normal equation using singular value decom-
position to satisfy both the least-squares criterion and the
minimum norm principle.

In an experiment on IMP data, the panorama consisted
of 129 images that form either an upper panorama and a
lower panorama with horizontal links, or a complete pan-
orama with both horizontal and vertical links. In the image
network, there were 655 tie points, 633 of which were auto-
matically selected and 22 that were manually selected. The
manually selected points were necessary to strengthen the
image network, since some adjacent images have very little
overlap. In practice, we expect to use an operational sce-
nario that would produce a larger overlap between the
adjacent images for use in mapping and prevent the need
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for any manually selected points. Before adjustment, the
precision was 4.61 pixels in the image space (distance
between measured and reprojected image points) and
0.067 m in the object space (distance between 3D positions
triangulated from adjacent stereo pairs). After bundle
adjustment, the precision was 0.80 pixels in the image space
and 0.05 m in the object space.

In an experiment processing terrestrial rover data, a
panoramic image network was built by linking 36 mast
images (18 pairs) with 220 automatically selected intra-
and inter-stereo tie points. Before adjustment, the preci-
sion was 2.61 pixels in the image space and 1.62 m in
the object space. After bundle adjustment, the precision
was 0.55 pixels in the image space and 0.08 m in the
object space. Clearly, the precision is considerably
improved in both the image space and the object space
by the bundle adjustment.
Fig. 8. 3D visualizations of th

Fig. 7. Elevation map and orthophoto o
3.3. Elevation map and orthophoto generation

After bundle adjustment, image matching is performed
to find dense correspondence points for elevation map gen-
eration. The epipolar geometry is used with a coarse-to-fine
matching strategy to achieve both high speed and high reli-
ability. The 3D ground coordinates of the matched points
are then calculated by photogrammetric triangulation
using the adjusted image orientation parameters. Finally,
based on the 3D points, the elevation is generated using
the Kriging interpolation method [30].

The orthophoto is generated by projecting the grid
points of the refined elevation map onto the left (or right)
image. A corresponding grayscale value is found and
assigned to the grid point. In the area of overlap for adja-
cent images, the grid points will be projected to two or
more images. The grayscale value is picked from the image
e terrestrial rover test site.

f the Mars Pathfinder landing site.
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in which the projected point is closest to its image center.
The resultant elevation map and orthophoto of the Mars
Pathfinder landing site are shown in Fig. 7. The 3D visual-
izations of the terrestrial rover data are shown in Fig. 8.
Through visual checking of the orthophotos, we find no
seams between image patches.

4. Mapping descent images

Images taken by a rover and lander on the surface give
us high-resolution data for mapping, particularly near the
landing site. We can also perform mapping using orbital
images at a much lower resolution. One way of linking
the data at very different resolutions is through the nested
images that a lander captures as it descends to the plane-
tary surface. These descent images yield data at a hierarchy
of resolutions that can help pinpoint the landing site and
integrate the high-resolution surface data into an encom-
passing multi-resolution map. Fig. 9 shows an example of
descent imagery of the moon from the Ranger 9 mission.
Fig. 10 shows a descent image sequence captured using a
helicopter in the Mojave Desert for rover testing.
Fig. 10. Three images from a descent sequence of the Mojave Desert captured
at altitudes in between those shown above.

Fig. 9. Images of the moon captured by the Rang
To perform matching between pairs of consecutive des-
cent images, we can use techniques similar to those
described for wide-baseline stereo, including motion refine-
ment and dense disparity estimation [31]. For this case, the
use of robust matching techniques for disparity estimation
is less important, since the terrain is viewed from largely
the same direction, but at different altitudes over the image
sequence. A different problem arises for this case. Since the
images are captured in the direction in which the spacecraft
is traveling (down towards the surface), the epipoles are
within the image boundaries and this has two consequenc-
es. First, we cannot rectify the images along epipolar lines,
since they pass through the epipoles, and this would resam-
ple the image unevenly. In addition, the depth cannot be
accurately recovered near the epipoles, since the computa-
tion is numerically unstable. Another issue that must be
considered is that translations of the spacecraft relative to
the surface tend to cause similar images to those caused
by rotations of the spacecraft. We rely on the onboard iner-
tial navigation system to provide accurate orientation data.

For the above reasons, our approach to recovering an
elevation map from these images is somewhat different
with a helicopter. The full sequence consists of eight images, including two

er 9 spacecraft during descent to the surface.



Fig. 12. Partial hierarchy of maps extracted from Mojave Desert images.
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from the wide-baseline stereo vision methodology. As in
the previous algorithm, we refine the motion by matching
features between the images and performing an optimiza-
tion that minimizes the difference between the matched fea-
ture positions and the predicted positions from the motion
estimate. However, instead of performing rectification, we
examine a discrete set of virtual planar surfaces perpendic-
ular to the camera pointing axis that slice through the
three-dimensional terrain. See Fig. 11.

For each of the elevations examined (each elevation cor-
responds to a virtual plane through the terrain) one image
is warped to appear as it would from the second camera
position if all of the terrain was at this elevation. The
warped image is compared to the second image by comput-
ing the sum-of-squared-differences (SSD) in a neighbor-
hood around each pixel. The scores in each
neighborhood are weighted by a Gaussian modulation
function, so that the pixels closest to the center of the
neighborhood are given higher weight than the edges of
the neighborhood. At each location, the elevation that pro-
duces the lowest of the modulated SSD scores is stored as
the initial elevation estimate for that location:

Skðx; yÞ ¼
XW

2

i¼�W
2

XW
2

j¼�W
2

e
�i2�j2

2r2 ðI1ðxþ i; y þ jÞ � Ik
2ðxþ i; y þ jÞÞ2;

ð5Þ
where W is the size of the image window examined, I1 is the
first image, and Ik

2 is the second image warped according to
the recovered motion parameters and the hypothesized
depth zk. Details of the warping can be found in [31].

We improve the accuracy of these estimates using para-
bolic fitting of the SSD scores achieved near the optimum.
If zk(x,y) is the initial estimate for position (x,y) in the
image, dz is the spacing between the planes slicing the ter-
rain, Sk(x,y) is the SSD score for this plane and Sk+1(x,y)
and Sk�1(x,y) are the SSD scores for neighboring planes,
then the fitted depth estimate is
I

I2

1

Terrain

Fig. 11. The terrain is sliced with virtual planes in order to estimate the
elevation at each location.
zðx; yÞ ¼ zkðx; yÞ

þ dzðSkþ1ðx; yÞ � Sk�1ðx; yÞÞ
2Skþ1ðx; yÞ þ 2Sk�1ðx; yÞ � 4Skðx; yÞ

: ð6Þ

These techniques have been tested on synthetic images, real
images collected with a helicopter and Ranger images such
as those in Fig. 9. Unfortunately, accurate camera models
for the Ranger images are not available, so the maps con-
structed from those images are not quantitatively accurate.
For the helicopter data, the initial motion estimates were
computed using control points on the ground rather than
using an inertial navigation system, as we would expect
on a Mars lander. In addition, the camera positions do
not follow a smooth path towards the surface, owing to
the difficulty in maintaining the helicopter position as the
altitude changes.

Fig. 12 shows two levels of the hierarchy of maps creat-
ed from the descent images in Fig. 10. The maps were gen-
erated by rendering images according to the elevations
computed by the algorithm. A channel can clearly be seen
running through the lower image. Note that the location of
the epipole can also be seen in the center of the lower image
where the elevation estimates become somewhat unstable.
Such areas can be refined using the map at the next higher
resolution (lower altitude). In upper image, the epipole is
not as noticeable, but it is present at the shadow of the heli-
copter. The epipoles are not precisely at the center of the
images, since the motion between images was not directly
downward and some rotation of the camera occurred
between images.

5. Multi-modal data

After considering surface and descent images, one might
wonder whether similar techniques can be used for orbital
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images. In general, the answer is yes. We can even generate
depth maps by performing matching between a descent
image and an orbital image. If the same terrain location
is imaged by the same sensor from a different location, then
mapping can be performed using one of the previously
described techniques. (If it is not imaged from a different
location, we cannot extract any depth information.) On
the other hand, if we want to perform matching between
images captured from different sensors, then the problem
becomes more complex, since the terrain will not necessar-
ily have the same appearance in images from different
sensors.

When we perform matching between images captured
with different sensors, we must use a measure for matching
image neighborhoods (essentially feature tracking) between
images that is insensitive to the difference between the sen-
sors, since different sensors have different responses to the
various wavelengths of light. Our approach is to transform
the images into a new representation that is less sensitive to
Fig. 13. An aerial image and its represen

Fig. 14. Registration between an aerial and an orbital image. Left, aerial i
sensor characteristics. The new representation replaces
each pixel in the image with a local measure of the entropy
in the image near the pixel [32]. This is based on the idea
that each neighborhood in the image can be treated as a
set of samples from a random variable. The entropy of
the random variable is estimated from the sample values.

We estimate the probability density by, first, histogram-
ming the values observed in the local neighborhood. The
size of the neighborhood is selected empirically at present.
A scheme to select the neighborhood size adaptively is a
possible improvement for future work. This histogram is
smoothed using a Gaussian function and the resulting dis-
tribution is used in the entropy calculation. Fig. 13 shows
an example image and the same image after each pixel
has been replaced with the local entropy computed using
this method.

This entropy representation is insensitive to sensor char-
acteristics. In fact, it has been used to perform matching
between infrared images and conventional images that
tation using a local entropy measure.

mage of Mojave Desert. Right, registered location in an orbital image.
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have a very different appearance [32]. Once the images have
been transformed into the entropy representation, the
images can be compared in a straightforward manner using
normalized correlation.

This technique can also be used to determine the loca-
tion of a descent image within an orbital image in order
to pinpoint the landing site. For this problem, the search
space is large, since the spacecraft position has six
degrees-of-freedom. The terrain is usually roughly planar,
so the transformation between the images can be modeled
by an affine transformation.

Since we do not necessarily have a good enough initial
estimate of the position to converge to the true position
using iterative optimization, we search the pose space using
different techniques. Translation in the image (such as
would be caused by lateral motion of the spacecraft) can
be searched efficiently using the Fast Fourier Transform
(FFT), since cross-correlation corresponds to point-wise
multiplication in the frequency domain. However, this
technique cannot be used for the remaining parameters.
Our approach is to sample these parameters coarsely. All
translations are considered for each sample point using
the FFT-based cross-correlation algorithm. When candi-
date matches are found, we refine them using iterative opti-
mization. This combination of techniques has led to good
speeds for multi-modal matching with a large search space
[32]. Fig. 14 shows an example where an aerial helicopter
image was registered with an orbital image encompassing
the same location. Since the images were captured with dif-
ferent sensors, matching using straightforward techniques
does not produce the correct result for this case.

6. Integrating data sets

We use SUMMITT for integrating maps from various
sensors. SUMMITT is the System for Unifying Multi-res-
olution Models and Integrating Three-dimensional Ter-
rains. It is a suite of software tools developed at the Jet
Propulsion Laboratory for registering and merging terrain
models from a variety of sources. The terrain models can
then be output in a variety of formats to support activities
requiring visualization of the terrain.
Fig. 15. Elevation map generated from
The fundamental data structure for the terrain data in
SUMMITT is the octree. Octrees were chosen due to their
inherent support of multi-resolution data, their ability to
support rapid searches for nearest neighbors, and their
small memory footprint. Multi-resolution support is neces-
sary due to the disparate sources of terrain information
that must be merged. Orbital cameras may be used to
collect imagery and produce terrain models through stereo
processing. In this case, the resolution of the terrain models
could range from one meter up to multiple kilometers
based on the quality and resolution of the optics, the orbi-
tal dynamics, and atmospheric constraints. Typically, the
resolution of terrain models produced from orbital cameras
will be relatively constant as the range to the terrain is gen-
erally fixed by roughly circular orbits. Descent cameras, on
the other hand, are constantly moving during data collec-
tion and their range to the terrain is varied. Thus, a camera
in the early stages of data collection, at a higher altitude,
might be capable of producing models with a resolution
near one meter. The same camera might produce models
at one-centimeter resolution at a very low altitude. Finally,
rover and lander cameras may produce models with sub-
centimeter resolution. For example, on the Mars Explora-
tion Rovers (MER) mission, the rovers carry three sets of
stereo cameras ranging from nearly 180� FOV down to
about 15� FOV. Given that the stereo baseline for each pair
of cameras is comparable, the resolution of the terrain
models produced will vary considerably among the camer-
as on a given platform. In addition, the models produced
by a single camera will vary considerably in resolution
due to the wide range of distances of the terrain from the
camera. Thus, near-field objects may have up to 30 times
finer resolution than far-field objects.

The terrain models are inserted into the octree by
assuming that each sample is a volume with a cross-section
equivalent to the model resolution. The coarser model data
remain near the root of the tree while the finer data traverse
nearer the leaves of the octree. Each individual model,
except the first, must be registered to the overall terrain
model contained within the octree, prior to being merged
into the octree. The registration process uses the Iterative
Closest Points (ICP) algorithm, as described by Zhang
registered rover panorama data.
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[33] and applied by Nishino and Katsushi [34] and Miyaza-
ki et al. [35], to compute an alignment transform. This
transform is then applied to each sample in the model prior
to inserting it into the octree. Since the ICP algorithm is an
iterative process that requires finding nearest neighbors, the
octree’s support for rapid searches is very important to the
success of the ICP algorithm.

Once models have been merged into the octree, terrain
models can be generated. For many applications, multi-res-
olution triangle meshes are used. By treating the octree as a
cloud of points, a variety of algorithms are available for
this process, including those of Hoppe et al. [36] and Hilton
et al. [37]. For rover missions, corresponding height maps
are also required. The height maps are produced by bin-
ning the octree data in the (x,y) plane and then selecting
the largest z value within each bin. The bins can be of
any desired resolution to support the visualization require-
ments. Repeated extraction of height maps at different res-
olutions produces multi-resolution maps for applications
requiring such support.

Fig. 15 shows an example of an elevation map generated
using SUMMITT. In this case, panoramic stereo images
were registered, integrated, and, finally, rendered with the
original image data.

7. Discussion

In developing these techniques, some of the lessons
learned are unsurprising in retrospect. The use of robust
estimation procedures that do not break down in the pres-
ence of outliers has certainly been important. We also
found that locating feature matches that broadly cover
the area to be mapped is important. When the coverage
was not as good, the estimated motion between the images
tended to best fit areas in which features matches had been
detected. The dense mapping was, therefore, better in these
areas. In practice, this means that areas where the feature
matching is difficult, such as nearby terrain that undergoes
considerable perspective distortion in wide-baseline stereo,
are not likely to be mapped well by this technique. Howev-
er, it should be noted that we use wide-baseline stereo pri-
marily to map distant terrain where this is not an issue,
since conventional stereo can map the nearby terrain accu-
rately. One possible improvement to our methodology
would be to spend more computation in detecting more
feature matches in difficult areas prior to estimating the
camera motion.

The failure modes of these techniques are largely com-
mon ones for motion and depth estimation techniques.
All of the techniques rely on images that capture the same
terrain. If the terrain shown in the images does not overlap,
then the techniques cannot succeed. Similarly, we require
the images to have sufficiently distinctive features that they
can be matched between images. Featureless images, or
ones between which the appearance of the features changes
drastically, prevent us from performing feature matching.
This, in turn, disallows computation of the relative posi-
tions of the camera at the times when the images were cap-
tured and causes a failure. In both of these cases, where few
(if any) matches are computed, the failure can be detected.
A different type of failure can occur if some of the matches
between the images are incorrect. While we use techniques
designed to eliminate such errors in the matching process
and to ameliorate the effects of them in the motion estima-
tion process, quantitative error in the terrain mapping can
occur when these errors are present. Our strategy has been
to reduce the frequency of this type of error, since detecting
when they have occurred is difficult.

8. Conclusions

Obtaining accurate maps of the terrain is critical for a
rover to traverse long-distances on Mars. Without such
maps, a rover may spend much time and energy venturing
along what turns out to be a dead end. Maps are also crit-
ical for rover localization in a long-distance traverse, since
estimates from odometry and other sensors will grow in
error without bound unless corrected using a global map.
We have described techniques for generating three-dimen-
sional terrain maps spanning many resolutions, from the
high-resolution maps generated using conventional stereo
onboard a rover, through medium resolution maps gener-
ated using wide-baseline stereo or descent images, to the
lower resolution (but wider area) maps generated from
high-altitude descent images and orbital images. The data
sets are combined using a system (SUMMITT) that
efficiently registers and integrates the data sets in a multi-
resolution context. This system also provides tools for
map visualization that are useful for planning.
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