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Abstract—Keypoint recognition is an important component
of many object recognition and image classification systems.
However, the color information present in images is not well
incorporated. Previous techniques mostly rely on derivatives
that only use the rate of change, rather than the actual
color, and/or neglect the spatial relationships between the
colors. We describe a new keypoint descriptor constructed
with normalized color histograms that preserves color infor-
mation and spatial relationships while maintaining invariance
to illumination brightness variation (bias and gain). When
combined with shape information, our descriptor surpasses the
performance of previous techniques.
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I. INTRODUCTION

Keypoint detection and recognition has a long history
in computer vision for image matching, object recognition,
and image classification. Considerable work on keypoint
descriptors has focused on the use of invariants based on
gradients in grayscale and color images [1], [2], [3], [4].
Less work has considered the underlying color values (rather
than the derivatives). The use of local hue, for example, has
been examined [5], [6], [4].

In this paper, we consider a descriptor that accumu-
lates color values directly (after appropriate normalization)
in order to retain as much information as possible. Our
technique, Histograms of Normalized Colors (HoNC), uses
simple color histograms (not gradients) in a spatial grid,
similar to the manner in which SIFT uses gradient orienta-
tion histograms to describe a keypoint. With normalization,
our descriptor is invariant to illumination intensity changes
(bias and gain), but not illumination color. With a modified
normalization, it can be made invariant to illumination color
as well. However, this removes information that is useful
for keypoint recognition when the illumination color is
unchanged.

We note that, in a previous study on color descriptors
[4], few descriptors were invariant to illumination color
(including SIFT). Among those that were, only RGB-SIFT
(SIFT descriptors computed independently on the three color
channels and then combined) was competitive with the
top performing descriptors. Furthermore, Zhang et al. [7]
argue that ”local features with the highest possible level of
invariance do not yield the best performance.” The reason

for this is that a feature loses discriminative power when it
is invariant to phenomena that it does not need to be.

In addition, techniques based on pixel hues or ratios of
colors that remove intensity information cannot succeed on
purely grayscale images, since all pixels yield identical hue
values (or color ratios). Indeed, any image with low satu-
ration will cause these techniques problems. Our technique
is hindered by grayscale images, but it still yields a useful
descriptor.

Experiments on the Oxford affine covariant regions data
set used in previous studies [8], [9] and additional image
pairs indicate that the HoNC descriptor performs comparably
to the SIFT descriptor and its variations. When combined
with SIFT, performance gains are achieved.

The next section discusses previous work. Section III
describes our new descriptor (HoNC). Section IV gives
details on competing (and complementary) descriptors. Sec-
tion V describes our experiments comparing HoNC with
other techniques. Finally, Section VI gives our conclusions.

II. PREVIOUS WORK

Early work on keypoint detection focused on corners
[10], [11]. Schmid and Mohr [1] first developed invariant
descriptors for keypoints that allowed them to be recognized
under arbitrary rotation and scale. Their work was based on
the local jet at a point in the image and was computed using
the average intensity and derivatives up to the third order.

Lowe’s work [2] has been the most influential on keypoint
recognition. Keypoints were first detected by finding scale-
space extrema after applying difference-of-Gaussian (DoG)
operations to an image. This yielded the keypoint location
and size. Orientation of the keypoint was determined using
a histogram of local gradient orientations.

Next, the Scale-Invariant Feature Transform (SIFT) de-
scriptor was created by (implicitly) placing a 4×4 grid at the
keypoint location, scale, and orientation. In each grid cell,
an eight-bin histogram of gradient orientations (weighted
by the gradient magnitude) was constructed, resulting in a
4 × 4 × 8 = 128 dimensional descriptor for each keypoint.
This keypoint descriptor is invariant to keypoint location,
scale, orientation, and affine illumination changes. Keypoint
descriptors can be easily compared using the Euclidean dis-
tance to determine similarity. An example of SIFT matching
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Figure 1. Example of SIFT keypoint matching on images of furry creatures. The top 200 matches are displayed. With SIFT matching six incorrect
matches are found.

(using the OpenCV implementation based on the work of
Rob Hess [12]) can be seen in Fig. 1.

Many variations and improvements on SIFT for grayscale
image data were subsequently developed, including HOG
[13], GLOH [9], SURF [14], BRIEF [15], and ORB [16].

Less work has considered the use of color data. Among
the first to use color information in keypoint descriptors were
van de Weijer and Schmid [5]. They developed multiple
descriptors, including a hue histogram (invariant to illumi-
nation intensity, but not illumination color) and opponent
angle histogram, which has additional invariance to diffuse
lighting. However, the color histograms have no spatial com-
ponent, based on the argument that combining the descriptor
with SIFT provides sufficient spatial information.

Abdel-Hakim and Farag [17] describe the CSIFT descrip-
tor based on color invariants. They use a color invariant from
Guesebroek et al. [18] combined with the SIFT descriptor
(replacing intensity with the color invariant) for keypoint
description. Burghouts and Geusebroek [3] use similar de-
scriptors based on color invariants. Subsequently, van de
Sande et al. [4] noted that the CSIFT descriptor can be seen
as SIFT using opponent color space coordinates normalized
by intensity.

Luke, Keller, and Chamorro-Martinez [6] describe a de-
scriptor using hue combined with spatial information. Their
descriptor replaces gradient orientation and magnitude in the
SIFT descriptor with pixel hue and saturation. The descriptor
is then stacked with the original SIFT descriptor.

Several color descriptors were compared by van de Sande
et al. [4]. The four best performing descriptors in their
experiments are RGB-SIFT (SIFT on all three color channels
separately, then stacked), OpponentSIFT (same as RGB-
SIFT, but in an opponent color space), C-SIFT (same as
OpponentSIFT, but with the first two components divided
by the third component, i.e., intensity), and rgSIFT (same
as RGB-SIFT, but with only red and green divided intensity).

In their experiments, descriptors based on simple color
histograms fared poorly. However, they contained no spatial
information.

III. HISTOGRAMS OF NORMALIZED COLORS

Our contribution is a new descriptor that combines color
and spatial information. It is invariant to affine illumination
brightness changes (bias and gain) without resorting to
gradient information and it can be applied to images with
little (or no) saturation.

The premise of our descriptor is to compute normalized
color histograms within the each of the grid cells of the
4 × 4 sample array used in the SIFT descriptor. For this
reason, we call it Histograms of Normalized Colors (HoNC).
Since the sample array is translated, rotated, and scaled
according to the keypoint location, orientation, and size, the
descriptor is invariant to similarity transformations. While
it is not invariant to skew and perspective distortion, it is
not sensitive to moderate changes in these values. Further
invariance can be gained through the use of affine-invariant
keypoint detection and representation techniques [19], [20].

In order to gain invariance to illumination intensity and
shift, the image colors must be normalized. For each key-
point, we compute the means (μr, μg , μb) and standard devi-
ations (σr, σg, σb) of the color channels in the neighborhood
of the keypoint. We then modify the keypoint color values
such that the average color value is 127.5 and the average
of the three standard deviations is 48:

β = 127.5− (μr + μg + μb)/3 (1)

γ = 48 ∗ 3/(σr + σg + σb) (2)
⎡
⎣ R′

G′

B′

⎤
⎦ =

⎡
⎣ γ(R− μr) + μr + β

γ(G− μg) + μg + β
γ(B − μb) + μb + β

⎤
⎦ (3)
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Figure 2. Illustration of the descriptor construction using color histograms.
An eight-bin color histogram is formed in each cell of the rotated, scaled,
and translated sample array.

After this transformation, the average color mean and
standard deviation have been set to a constant value and this
yields invariance to illumination intensity and shift. The nor-
malized color values are not invariant to illumination color.
Few descriptors are, including the original SIFT descriptor
[4]. An exception is RGB-SIFT, which was among the top
four descriptors in the study of van de Sande et al. [4], while
the other three top descriptors were not. We believe that
most applications tolerate variance to illumination color and
foregoing it allows better discriminatory power when this is
the case. When invariance to illumination color is required,
it can be achieved with our descriptor by normalizing each
of the color channels with a separate bias and gain:⎡

⎣ R′

G′

B′

⎤
⎦ =

⎡
⎣ γr(R− μr) + μr + βr

γg(G− μg) + μg + βg

γb(B − μb) + μb + βb

⎤
⎦ (4)

Once the colors have been normalized, we construct color
histograms in each of the grid cells of a SIFT-like sample
array. In order to compute a descriptor of comparable size,
we use a coarse (2 × 2 × 2) color histogram in each cell.
This yields a 4×4×8 = 128 dimensional descriptor similar

to SIFT. Fig. 2 illustrates the descriptor construction. In
each of the cells of the 4 × 4 image grid (rotated and
scaled appropriately) an 8 bin color histogram is constructed
corresponding to the primary and secondary colors of light.

As in the SIFT descriptor, we weight the histogram votes
using a Gaussian function of the distance from the keypoint
center. In each color histogram, interpolation is used not
only among four spatial positions, but also among the eight
color bins. For each color C, the weights are computed as:

w0 = min(1,max(0, (C − 63.5)/128)) (5)

w1 = 1− w0 (6)

Appropriate weights for the three color channels are multi-
plied (and combined with positional weights) for the contri-
bution to each of the histogram bins. This allows a smooth
transition between color bins in each of the three color
channels. A pixel may contribute to a single bin, if it is
near a corner of the color cube, or all eight, if it is near the
center.

While this descriptor can be used by itself, we also
concatenate it to the SIFT descriptor (or a variation) to
form a larger descriptor that captures both color and shape
information. Figure 3 shows an example where such a
combination was used to achieve improved results over SIFT
(compare to Fig 1).

IV. DESCRIPTORS

We compare against (and in combination with) several
other descriptors.

A. SIFT

The original Scale-Invariant Feature Transform (SIFT)
descriptor was described by Lowe [2]. We use the OpenCV
contributed implementation based on the code of Hess [12].
The SIFT descriptor and a variation called GLOH were
found to be the best performing local descriptors by Miko-
lajczyk and Schmid [9] when compared to several grayscale
descriptors.

B. SURF

Speeded Up Robust Features (SURF) [14] was designed
to be a faster feature detector and descriptor. The feature
detector approximates the Hessian determinant using integral
images and we use it in our experiments to determine the
feature locations for all descriptors. We use the standard
descriptor (64 dimensions) in the OpenCV contributed im-
plementation.

C. RGB-SIFT

RGB-SIFT is the concatenation of the SIFT descriptors
computed separately for three RGB channels, yielding a 384-
dimensional descriptor. This descriptor was considered in the
study by van de Sande et al. [4] and found to be among the
top performers.
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Figure 3. Example of HoNC+SIFT keypoint matching on images of furry creatures. The top 200 matches are displayed. With this descriptor combination,
no incorrect matches are found. (Compare to the results using only SIFT in Fig. 1.)

D. rgSIFT

The rgSIFT descriptor [4] concatenates the SIFT descrip-
tors computed on the following two channels, yielding a
256-dimensional descriptor:

[
r
g

]
=

[
R/(R+G+B)
G/(R+G+B)

]
(7)

E. OpponentSIFT

OpponentSIFT is the same as RBG-SIFT, except that the
color channels are first transformed into the opponent color
space:

⎡
⎣ O1

O2

O3

⎤
⎦ =

⎡
⎣ (R−G)/

√
2

(R+G− 2B)/
√
6

(R+G+B)/
√
3

⎤
⎦ (8)

Some previous researchers using this technique have
normalized the SIFT descriptors for each channel separately.
However, this causes channels with less variation to have a
magnified impact on the overall descriptor. We first concate-
nate the channel descriptors and then perform normalization.
Separate normalization was as good (or even better) on many
image sets, but was much worse on some.

Like RGB-SIFT, this yields a 384-dimensional descriptor
and was one of the top performing descriptors in the study
by van de Sande et al. [4].

F. C-SIFT

The variation on the C-SIFT descriptor described by van
de Sande et al. [4] concatenates the SIFT descriptors for the
channels givens by O1/O3 and O2/O3, yielding a 256 di-
mensional descriptor. Similar descriptors were proposed by
Abdel-Hakim and Farag [17] and Burghouts and Geusebroek
[3].

Table I
CHARACTERISTICS OF DESCRIPTORS.

Works on Illumination
Name Size Grayscale Invariance
SIFT 128 yes intensity + shift
SURF 64 yes intensity + shift
RGB-SIFT 384 yes intensity + shift + color
rgSIFT 256 no intensity
OpponentSIFT 384 yes intensity + shift
C-SIFT 256 no intensity
HoWH 128 no intensity + shift
HoNC-none 128 yes none
HoNC 128 yes intensity + shift
HoNC-full 128 yes intensity + shift + color

G. HoWH: Histogram of Weighted Hues

Luke, Keller, and Chamorro-Martinez [6] have suggested
stacking the SIFT descriptor with a similar descriptor that
replaces the gradient orientation and magnitude at each pixel
with the hue and saturation. We consider here a version that
is not (necessarily) stacked with the SIFT descriptor. Since
hue is a circular value (like gradient orientation) and the
saturation describes the strength of the hue (comparable to
gradient magnitude), a similarly structured descriptor results.
Pixel hue weighted by saturation was also used by van de
Weijer and Schmid [5]. However, they use a single histogram
for each keypoint that does not combine location and color
information. It is also used in combination with a separate
shape descriptor.

H. Summary

Table I summarizes the characteristics of the descriptors
used in the tests. Included for comparison are two variations
on the HoNC descriptor, HoNC-none (in which no color
normalization is performed) and HoNC-full (in which colors
are normalized separately).
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V. EXPERIMENTS

In order to recognize keypoints between images, we
first detect the keypoints in the images using the SURF
feature detector [14]. We have found that this yields better
matching performance that the SIFT feature detector in our
experiments. The top 1000 keypoints are retained for each
image. Descriptors for each keypoint are constructed using
the techniques described above. Individual descriptors may
be used, but we also consider combinations of descriptors
that are stacked into longer descriptors. When combined,
each individual descriptor vector is scaled to have the same
length, regardless of size (except as noted below).

The best match for each keypoint in the reference image
is found in the target image using the Euclidean distance
between the keypoint descriptors. Matches are considered
correct if the projection of the keypoint location into the
other image (using a known homography) lies within the
computed size of the corresponding keypoint (and in re-
verse).

We measure the matching performance of each descriptor
using the mean average precision as follows. The precision
and recall are defined as:

precision =
# correct matches detected
# total matches detected

(9)

recall =
# correct matches detected

# keypoints possible to detect
(10)

In computing the recall, we exclude from the denominator
those keypoints from the reference image that do not appear
in the target image (because they have moved outside the
boundaries of the image). We do not exclude keypoints
that appear in the target image, but that are missed by the
keypoint detector. As the threshold on descriptor distance
varies, the number of matches changes and the precision
versus recall can be plotted. The average precision is the
average of the precision over the interval r ∈ [0, 1] (the area
under the curve). The mean average precision computes the
mean over multiple plots. The maximum value is one and the
minimum is zero. Fig. 4 shows an example plot of precision
versus recall for one image pair from the Oxford data set.

A. Oxford Data Set

We ran experiments with each descriptor and several
combinations on the Oxford affine covariant regions data set1

that models variations in viewpoint, rotation, zoom, lighting,
blur, and compression. All six images (five pairs with the
same reference image) of each of the eight data subsets
were used. Note that some pairs are quite difficult, with no
combination of descriptors achieving an average precision
above 0.05.

Table II shows the results. Individually, the top performing
descriptors are OpponentSIFT, RGB-SIFT, SIFT, and HoNC.

1 http://www.robots.ox.ac.uk/∼vgg/data/data-aff.html

Figure 4. Example precision/recall plot for the first pair of ”trees” images
in the Oxford data set.

Table II
MEAN AVERAGE PRECISION FOR DESCRIPTORS OVER ALL IMAGE PAIRS

IN THE OXFORD DATA SET.

Descriptor(s) Size Mean average precision
HoNC+OpponentSIFT 512 .5550
HoNC+RGBSIFT 512 .5535
HoNC+SIFT 256 .5522
HoWH+OpponentSIFT 512 .5421
HoWH+RGBSIFT 512 .5416
HoWH+SIFT 256 .5388
OpponentSIFT+SURF 448 .5250
OpponentSIFT 384 .5237
OpponentSIFT+RGBSIFT 768 .5223
OpponentSIFT+SIFT 512 .5203
RGBSIFT+SURF 448 .5197
RGBSIFT 384 .5185
RGBSIFT+SIFT 512 .5167
SIFT+SURF 192 .5148
SIFT 128 .5136
HoNC+SURF 192 .5074
HoNC+HoWH 256 .5064
HoNC 128 .5043
OpponentSIFT+rgSIFT 640 .4914
OpponentSIFT+CSIFT 640 .4913
SIFT+CSIFT 384 .4911
RGBSIFT+CSIFT 640 .4907
RGBSIFT+rgSIFT 640 .4904
SIFT+rgSIFT 384 .4903
HoNC+CSIFT 384 .4838
HoNC+rgSIFT 384 .4742
SURF+CSIFT 320 .4323
HoWH+rgSIFT 384 .4207
HoWH+CSIFT 384 .4144
SURF+rgSIFT 320 .4036
SURF 64 .4008
rgSIFT+CSIFT 512 .3974
rgSIFT 256 .3940
HoWH+SURF 192 .3939
CSIFT 256 .3900
HoWH 128 .3206
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Table III
COMPARISON OF DIFFERENT LEVELS OF NORMALIZATION AND

HISTOGRAM COARSENESS WITH THE OXFORD DATA SET. EACH ENTRY

IS THE MEAN AVERAGE PRECISION.

Descriptor Solo +SIFT +RGBSIFT +OpponentSIFT
HoNC-none .3479 .4608 .4617 .4638
HoNC .5043 .5522 .5535 .5550
HoNC-full .5009 .5490 .5502 .5519
HoNC-3×3×3 .5068 .5613 .5627 .5635

When combinations are used, the three top performers are
the combination of HoNC and one of the three top shape-
based descriptors. While HoNC+OpponentSIFT was the top
combination, HoNC+SIFT performed nearly as well with a
descriptor of half the size and will usually be the top choice
for this reason. Most of the color information captured by
RGB-SIFT and OpponentSIFT is already incorporated into
the HoNC descriptor.

When used in combination with other descriptors, the
hue-based descriptor (HOWH) performs better when it is
shortened (reducing its influence). We used a weight of 0.6,
as suggested by van de Weijer and Schmid [5] in their work
using a hue-based descriptor. The HoNC descriptor did not
require rescaling and performs well over a range of vector
lengths, suggesting that it is a more robust descriptor than
HoWH. Interestingly, even though HoWH performed poorly
by itself, it performed well when combined with a shape-
based descriptor.

Unsurprisingly, all of the top performing descriptors com-
bined a color-based descriptor (HoNC or HoWH) with a
shape-based descriptor (SIFT, RGB-SIFT, or OpponentSIFT)
and these combinations performed significantly better than
any individual descriptor. The combination of HoNC with
any other descriptor yielded performance that improved
upon the additional descriptor by itself. This suggests that
any shape-based descriptor could be improved through the
use of color information in this manner, even if gradients
of color channels are already used as in RGB-SIFT and
OpponentSIFT.

SURF, rgSIFT, and C-SIFT were not competitive with the
top performing descriptors in these experiments.

B. Effects of Normalization

It is interesting to examine the effect of the color
normalization by comparing HoNC with HoNC-none (no
normalization) and HoNC-full (normalization separately in
each color channel, and thus invariant to illumination color).
Table III shows a comparison for the Oxford data set. The
standard HoNC descriptor performs better than either of the
variations, although HoNC-full is close. This supports the
observation that full invariance to illumination color is often
unnecessary and can be counter-productive.

C. Finer Histograms

Needless to say, a 2×2×2 color histogram requires a
coarse discretization of the color space. However, finer
histograms require additional space and time. We have tested
a 3×3×3 color histogram in each grid cell that yields a de-
scriptor with 432 dimensions (roughly comparable to RGB-
SIFT and OpponentSIFT). This results in some improvement
in the mean average precision (see Table III). However, the
improvement is small enough that it is unlikely that it be
worth the additional cost in most applications.

D. Sample Images

Figures 5 and 6 show additional keypoint matching ex-
amples from outdoor scenes. In both cases, HoNC+SIFT
significantly improves upon SIFT by itself. For both image
pairs, there is a change in viewpoint. Note also the changes
in lighting on the castle in Fig. 5 and the changed brightness
of the ruins and sky in Fig. 6. Using color normalization,
the HoNC detector is robust to intensity changes caused by
illumination (and also digital bias and gain modifications).

VI. CONCLUSIONS

We have shown that improved keypoint matching perfor-
mance can be achieved using normalized color histograms.
Our new descriptor (HoNC) combines color and location
information in the neighbor of the keypoint in a manner that
is invariant to position, scale, orientation, and illumination
intensity. It can be made invariant to illumination color, if
desired. Improved results were demonstrated on a common
data set and example image pairs. Further experiments
confirmed that the lack of invariance to illumination color
is not a significant drawback on many images.
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