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Selecting Landmarks for Localization in Natural Terrain
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Abstract. We describe techniques to optimally select landmarks for performing mobile robot localization by
matching terrain maps. The method is based upon a maximum-likelihood robot localization algorithm that efficiently
searches the space of possible robot positions. We use a sensor error model to estimate a probability distribution over
the terrain expected to be seen from the current robot position. The estimated distribution is compared to a previously
generated map of the terrain and the optimal landmark is selected by minimizing the predicted uncertainty in the
localization. This approach has been applied to the generation of a sensor uncertainty field that can be used to plan
arobot’s movements. Experiments indicate that landmark selection improves not only the localization uncertainty,

but also the likelihood of success. Examples of landmark selection are given using real and synthetic data.
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1. Introduction

A robot must know where it is in the environment in
order to perform useful tasks. Unfortunately, simple
techniques for maintaining position knowledge, such
as integrating odometry sensors and dead-reckoning
are prone to significant errors. For this reason, position
updates using other sensors such as vision or sonar are
commonly used. Probabilistic methods such as Markov
localization (Cassandra et al., 1996; Fox et al., 1998;
Koenig and Simmons, 1996; Nourbakhsh et al., 1995;
Simmons and Koenig, 1995; Thrun et al., 1998) are
a useful tool for performing such updates. We have
previously developed such a probabilistic method for
performing localization by matching dense range maps
of natural terrain (Olson, 2000a). This method operates
under the assumption that the local range map is gen-
erated with a stereo range sensor that was pointed at
recognizable terrain containing distinctive landmarks.
In this paper, we extend this method to use a previously
developed map of the terrain to automatically select the
positioning of the sensor in order to improve the local-
ization performance.

Several recent papers have discussed strategies for
sensor placement or landmark selection for use in

navigation and localization. A common approach is
to consider which landmarks, from a pre-determined
set of landmarks, will yield the best localization re-
sult. Sutherland and Thompson (1994) developed one
of the earliest methods for landmark selection. They
applied heuristic functions to select a landmark triple,
from the set of such triples, that is likely to yield a good
localization result. Greiner and Isukapalli (1996) learn
a function to select landmarks that minimize the ex-
pected localization error. A related technique is given
by Thrun (1998), who trains a neural network to learn
landmarks that optimize the localization uncertainty.
Fox et al. (1998) describe a strategy for both determin-
ing the robot motion and sensing direction in order to
improve robot localization.

Yeh and Kriegman (1995) select the subset of pos-
sible features that minimizes a Bayesian cost of local-
ization. Deng et al. (1996) select a set of landmarks
in order to minimize the cost of sensing over a path
segment. Murphy et al. (1997) first select candidate
landmark triples using heuristics. The highest ranked
candidate (and others, if necessary) are tested using
experimentation with a robot. Sim and Dudek (1998)
consider image locations with high edge density as
possible landmarks, which are represented using an
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appearance-based method. Landmarks are detected by
matching in the image subspace and the resulting es-
timates are combined in a robust manner. Little et al.
(1998) find stable landmarks by first detecting image
corners. The corners that lie on depth discontinuities
are eliminated using stereo vision.

Each of these papers considers a problem where the
landmarks are selected from a pre-determined set of
possible landmarks. Research that does not assume
a pre-determined set of landmarks includes work by
Simhon and Dudek (1998). They choose regions in
which good metric maps can be established accord-
ing to a distinctiveness measure. Grudic and Lawrence
(1998) learn a mapping between an image and the robot
location, but they do not address the problem of where
to best place the camera to obtain the image.

The closely related problem of maintaining low un-
certainty (in the position of the robot or the representa-
tion of the world) over some course of action has also
been examined. Whaite and Ferrie (1997) discuss au-
tonomous exploration strategies that can plan the robot
sensing steps in order to improve the robot’s internal
representation of the world. Roy et al. (1999) give tech-
niques for determining robot paths that take into ac-
count the uncertainty along the path, thus reducing the
average localization error.

Little of the research to date can be successfully ap-
plied to localization in unstructured outdoor terrain,
which is the problem that we address. We describe a
technique that selects the best landmark to view for lo-
calization when the robot has only an elevation map of
the terrain and an estimate of the robot’s position. We
assume that the robot is equipped with a limited field-
of-view (FOV) range sensor, such as stereo cameras or
sonar. Our method selects the position to aim the range
sensor in order to optimally perform localization in the
unstructured three-dimensional terrain.

The landmark selection technique that we use is
based upon performing uncertainty estimation using
a maximum-likelihood localization method (Olson,
2000a). This method uses a probabilistic technique to
perform localization using dense range data in natu-
ral environments. Prior to performing localization, the
robot analyzes the terrain in the global map to select
a localization target, which is the position in the ter-
rain that the robot senses in order to generate a local
map to compare against the global map. We desire a
location that has distinctive terrain and thus allows the
localization to be performed with a low uncertainty.
This assumes that the error in the robot position is not

so large that the localization target will be outside of
the view of the robot when it attempts to sense this lo-
cation. Active vision techniques can be used if, after
the robot attempts to sense the localization target, no
distinctive terrain is seen.

The first step in determining the localization target is
estimating the error present in the global map and the
error expected from sensing the terrain at the robot’s
current position. These errors are encoded in a prob-
ability map of the terrain expected to be seen by the
robot. Each cell in this map contains an estimate of the
probability that the cell will be seen as occupied by
the robot, if the robot performs sensing with the cell in
the field-of-view. By treating this probability map as
a terrain map, we can apply previously developed un-
certainty estimation techniques (Olson, 1999) to pre-
dict the uncertainty that will occur for any target in the
probability map. The location with the lowest predicted
uncertainty is selected as the localization target.

In addition to improving localization, these tech-
niques can be applied to determining a sensor uncer-
tainty field for the robot. The sensor uncertainty field is
a concept introduced by Takeda et al. (1994) that mea-
sures the expected distribution of errors in the robot po-
sition as the robot moves through some environment,
performing sensing periodically in order to improve
localization. Given the uncertainty estimation and tar-
get selection methods, we can determine the expected
localization uncertainty for any robot position in the
environment.

These techniques have been applied to localization
for Rocky 7, which is a research prototype for Mars ex-
ploration and science operations. In addition to body-
mounted stereo cameras on the front and back, Rocky 7
has a stereo pair of cameras on a retractable mast that
allows it to survey the terrain. See Fig. 1. We, thus,
concentrate on localization using stereo range data.
However, this methodology is also applicable to other
range sensors. Experiments on Rocky 7 and with syn-
thetic data indicate that the landmark selection not only
decreases the robot’s localization uncertainty, but also
increases the probability of achieving a qualitatively
correct localization result.

In the following section, we review the terrain match-
ing methodology that we have previously developed
for performing localization using dense terrain maps
in natural environments. Section 3 describes a new
representation for the terrain maps using a probabilis-
tic scheme to predict the probability of each terrain
location being seen as occupied by the robot after



Figure 1. The Rocky 7 Mars rover prototype with its mast deployed
in the JPL Mars yard.

moving and performing sensing at a new location and
Section 4 describes the use of these probability maps in
our localization framework for selecting landmark po-
sitions that are likely to yield good localization results.
Section 5 describes results that we have achieved using
synthetic data and gives an example of the use of this
technique with real images. Section 6 summarizes and
concludes the paper.

2. Terrain Matching

The basic localization technique that we use is to com-
pare a map generated at the current robot position (the
local map) to a previously generated map of the envi-
ronment (the global map) (Olson and Matthies, 1998).
This section reviews this method. The following section
generalizes these maps using the concept of a probabil-
ity map that captures both the error present in the global
map and the error expected in generating a new local
map. The pose likelihood function and uncertainty es-
timation technique described here will then be applied
to the probability map in order to predict the terrain
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patch that can be viewed in order to achieve the lowest
localization uncertainty.

We generate both the local map and the global map
(which may be the combined result of previous lo-
cal maps) using stereo vision on-board the robot. The
range image is converted into a digital elevation map
under the assumption that we know the robot orien-
tation through other sensors, although this restriction
can be removed, if desired (Olson, 2000a). To further
simplify the problem, we use a high-pass filter on the
terrain heights, so that the search for the robot position
only needs to be performed in the x and y directions.
The generated representation is then converted into a
three-dimensional occupancy grid.

2.1.  Map Similarity Measure

We formulate the map matching problem in terms of
maximum-likelihood estimation. A convenient set of
measurements that can be used for this problem are the
distances from the occupied cells in the local map to
their closest occupied cells in the global map accord-
ing to some relative position between the maps. These
distances are a function of the estimated robot position,
since this affects the relative position between the maps.
We maximize the likelihood of the observed distances
over the space of possible robot positions in order to
determine the maximum-likelihood position estimate.
Denote the distances DY, ..., D’ for the robot position
X, where n is the number of occupied cells in the local
map. The likelihood function for the robot position can
be formulated as the product of the probability distri-
butions of these distances (Olson and Matthies, 1998).
We find the maximum of this pose likelihood function
in order to localize the robot. For convenience, we work
with the logarithm of the likelihood function:

In L(X) :anlnp(DiX). €))

For the uncertainty estimation to be accurate, it is im-
portant that we use a probability distribution function
(PDF) that closely models the sensor uncertainty. This
can be accomplished using a PDF that is the weighted
sum of two terms (Olson, 2000b):

p(d) =ap(d)+ (1 —a)p.(d). @

The first term describes the error distribution when
the cell is an inlier (in the sense that the terrain position
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under consideration in the local map also exists in the
global map). In this case, the distance d is a function
of errors in both the local map and the global map at
this position. To evaluate the likelihood function (1)
for a position X, we use the values DY, ..., D¥ asd in
this PDF. In the absence of additional information with
respect to the sensor error, we approximate p,(d) as a
normal distribution:

1 )
p(d) = — e P 3)
o T

The second term in Eq. (2) describes the error dis-
tribution when the cell is an outlier. In this case the
position represented by the cell in the local map does
not appear in the global map (e.g. due to range shad-
ows or stereo outliers). In practice, we have found that
modeling this term as a constant is both convenient and
effective (Olson, 2000b).

p.d) =K. “4)

Although, p,(d) is not a probability distribution (it does
not integrate to one), using the expected probability
density for a measurement generated by a random out-
lier point yields excellent results:

K = /5C /5C p(d)dx dy. (5)

This value can be estimated quickly through exami-
nation of the Euclidean distance transform of the map
(Olson, 2000b).

In Eq. (2), « is the probability that any particular cell
in the local map is an inlier. For our occupancy grids, we
assume that this value is relatively large (o« = 0.95). In
practice, the localization is insensitive to small changes
in this value. Finally, o is the standard deviation of
the measurements that are inliers. This value can be
determined from the characteristics of the sensor, or it
can be estimated empirically by examining real data,
which is the method that we have used for localization
with Rocky 7.

2.2.  Search Strategy

We locate the most likely robot position by adapting
a multi-resolution search strategy that has been ap-
plied to image matching using the Hausdorff distance
(Huttenlocher and Rucklidge, 1993; Olson and
Huttenlocher, 1997; Rucklidge, 1997). We first test the

nominal position of the robot given by dead-reckoning
(or any other position, if no initial estimate is avail-
able) so that we have an initial position and likelihood
to compare against. Next, the pose space is divided
into rectilinear cells. Each cell is tested using a con-
servative test to determine whether it could contain a
position that is better than the best position found so
far (or any threshold, in general). Cells that cannot be
pruned are divided into smaller cells, which are exam-
ined recursively. Further details can be found in (Olson,
2000a).

2.3.  Uncertainty Estimation

We determine the uncertainty in the localization esti-
mate by fitting a parameterized surface to the likeli-
hood function in the neighborhood of the highest peak
(Olson, 1999). Since the likelihood function measures
the probability that each position in the pose space is
the actual robot position, the uncertainty in the local-
ization is measured by the rate at which the likelihood
function falls off from the peak.

We assume that the likelihood function can be ap-
proximated as a normal distribution in the neighbor-
hood around the peak location. Fitting a normal dis-
tribution to the computed likelihoods yields both an
estimated variance in the localization estimate and a
subpixel estimate of the peak location. We, thus, fit the
peak in the likelihood function with:

! o a7 2 CE ]
2w0.0,4/1 — p?

(6)

where ., and p, represent the subpixel position esti-
mate, o, and o, are the standard deviations along the
axes, and p describes the orientation of the axes with
respect to the global coordinate frame. The function is
fit using the peak value and the eight neighboring val-
ues using a least-squares criterion in the log-likelihood
domain.

In addition to estimating the uncertainty in the lo-
calization estimate, we can use the likelihood scores to
estimate the probability of a failure to detect the correct
position of the robot (Olson, 1999). This is particularly
useful when the terrain yields few landmarks for local-
ization and, thus, many positions appear similar to the
robot.



3. Probability Mapping

In order to predict the uncertainty achievable by sensing
some location (or combination of locations) in the ter-
rain, we make a probabilistic prediction of the appear-
ance of the terrain to the sensor. Each cell in this map
stores a probability estimate that the cell will be seen as
occupied in the sensed map. We call this the probabil-
ity map of the terrain. This mapping should encompass
the errors present both in the generation of the global
map and the expected errors in the new local map.

For the case of stereo vision, Matthies and Shafer
(1987) has found that the position errors are well ap-
proximated by a two-dimensional normal distribution
with the major axis aligned away from the cameras.
We, thus, convolve the global map with two normal
distributions, one representing the error in the global
map and one representing the error in the local map.'
Note, however, that the error in the map is a function
of the location being sensed. The expected error grows
with the square of the distance to the camera. We must,
therefore, allow the width of the normal distributions
to vary with the position in the environment.

Our position-variant spreading function is given by:

N(x,y;i,J)
_ ! ORI CCIRCIN]
2w 0,0,4/1 — p?

(7N
where

O—|=Enl[x+i»y+j]’ 02=E02[x—|—i,y+j],

p= <i> tanf[x + i,y + jl.
0,

In this equation, E, [x + i,y + j] and E, [x + i,
y + j] are the expected standard deviations at the loca-
tion (x +1i, y+ j),and O[x +i, y+ j] is the orientation
of the distribution (i.e. the direction of the sensor po-
sition with respect to (x + i, y + j) when the map is
created).

To estimate the error in the global map, we apply the
spreading function separately to each height plane (af-
ter also smoothing in the height dimension, if desired):

w

Poi, D)= Y M&x+i,y+ HN(x, yii, j), (3

x=—W y=—W

where M (x, y) is the global map, 2W + 1 is the size
of the convolution window, and N (x, y;i, j) is the
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distribution described above. Incorporating the ex-
pected error in the local map, we get:

w

PG, )= Y Pex+i,y+HN&, y:ii, j). 9

x=—W y=—W

Of course, the instances of N(x, y; i, j) in (8) and
(9) will be somewhat different, since the expected stan-
dard deviations and orientations will be different for the
points in the global map versus the local map.

4. Landmark Selection

Given the probability map of the terrain, we can now
estimate the uncertainty that will result from pointing
the range sensor at some location in the environment
and performing localization using the visible terrain.
This is performed by treating the corresponding terrain
patch in the probability map as a potential local map
and comparing it the previously generated global map
using the uncertainty estimation equations described
above.” The landmark selection step considers every
possible terrain patch of some specified size in the prob-
ability map and performs uncertainty estimation at the
correct position of the terrain patch in order to deter-
mine the terrain patch that yields the lowest uncertainty.
This operation can be time-consuming if it is not per-
formed carefully. We use several methods to improve
the efficiency of this method.

In our implementation, we approximate the general
normal distribution used to model the sensor error as a
rotationally-symmetric 2-D normal distribution. While
the error due to stereo vision is much greater along the
direction parallel to the camera axes, error in the robot’s
knowledge of its orientation will increase the error in
the perpendicular direction. The shape of the error sur-
face will, thus, become less elliptical due to the uncer-
tain knowledge of the robot orientation. Furthermore,
our experiments indicate that the precise shape of the
distribution does not have a large effect on the landmark
selected. The use of rotationally-symmetric normal dis-
tributions makes the convolution kernel separable and
this allows the convolutions to be performed efficiently
by examining the x- and y-directions sequentially. On
the other hand, it is crucial to use a wider and flatter
distribution at locations further from the sensor, in or-
der to model the increase in error with distance. We,
therefore, must continue to vary the distribution as a
function of the location in the space.
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‘We can make the computation even more efficient by
discretizing the space of allowable standard deviations
for the normal distributions in Eq. 7. This allows us to
pre-compute each of the distributions prior to comput-
ing the probability map. In our implementation, we se-
lect ten standard deviations (related by powers of +/2).
For each position in the terrain, we select the distribu-
tion with the closest standard deviation to the desired
value in order to estimate the probability map. This
approximation allows the probability map to be com-
puted quickly upon demand for a region of the terrain
map.

Finally, we use dynamic programming to compute
the likelihood function from Section 2.1 for each of the
terrain regions considered as a possible landmark for
performing localization. This is performed at the op-
timal localization position for each possible landmark
and the neighboring locations in the pose space in or-
der to apply the uncertainty estimation techniques from
Section 2.3. The terrain landmark yielding the lowest
localization uncertainty is selected as the localization
target.

The overall computation required by this method,
including generation of the probability map, is linear
in the number of cells examined in the occupancy grid
representation of the global map. Note that when the
occupancy grid represents a wide field of terrain, only
those positions relatively close to the robot need to be
examined, since the localization accuracy falls off with
the distance of the landmark selected, in general. In ex-
periments ona 10.28 m x 6.44 m map with square cells
2 cm wide, landmark selection requires approximately
2 seconds on a 333 MHz Sun UltraSPARC.

5. Results

This section describes the results of experiments where
we have applied these techniques to perform localiza-
tion using real and synthetic data.

5.1. Synthetic Data

An example using a synthetically generated elevation
map is shown in Fig. 2. This case models a scenario
where the robot is moving in a terrain consisting of
rocks of various sizes, as a rover would encounter on
the surface of Mars. The positions near large rocks are
considered to be good targets, as shown by the uncer-
tainty scores in Fig. 2(b). The target that is chosen is

Start Target

()

Finish

Figure2. Landmark selection example. The small boxes are the (in-
terchangeable) robot beginning and ending positions. The selected
target region is marked by a larger box. (a) Digital elevation map.
(b) Estimated uncertainty with each possible landmark location.
Light values are low uncertainties. (c) Three-dimensional terrain
map.

a position that contains not only a large rock, but also
smaller rocks that are useful in performing the local-
ization. The scale of this mapis also 10.28 m x 6.44 m,
with square cells 2 cm wide.

In order to test the localization performance when
using the target selection techniques, we simulated lo-
calization problems by sampling local maps from the



distribution specified by the probability map of the
terrain and then performing localization against the
global map. This experiment selected robot positions
at random from the terrain with the constraint that the
beginning and ending positions were 5 m apart. We
next performed target selection and, finally, localiza-
tion using the selected target. In addition, we tested
localization by sensing a target at the position directly
between the robot starting and ending positions, and
eight other targets on an evenly spaced grid around this
position.

The results of this experiment are dramatic. When
the target selection techniques were used in 1000 trials
with the terrain shown in Fig. 2, the localization pro-
cess found the qualitatively correct position in 97.8%
of the trials, where the correct position was said to
be found if the localization error was below 10 cm.
However, when target selection was not used, the lo-
calization succeeded in only 29.5% of the trials, since
much of the terrain provides little useful information
for localization. In addition, the successful cases were,
on average, 15.3% closer to the correct localization re-
sult when target selection was used, with an average
error of 1.57 cm. This experiment demonstrates that
target selection was not only useful in reducing the lo-
calization uncertainty, but also important in obtaining
the correct qualitative position.

5.2. Real Data

We have implemented these techniques to run on-board
the Rocky 7 rover prototype (Fig. 1). The techniques
run in real-time and require approximately 30 seconds
on a Motorola 68060 CPU to perform landmark selec-
tion and rover localization (this neglects the time nec-
essary to point the sensor) using a 10 m x 10 m global
map represented by an occupancy grid with square
cells 2 cm wide. In this scenario, it is useful to cap-
ture stereo images to one side of the desired direction
of travel, since landmarks directly between the current
rover position and desired goal often have range shad-
ows overlapping the terrain that is visible from the other
direction. An example of the use of these techniques
to perform target selection for localization is shown in
Fig. 3. In this test, the rover captured six images to the
left of the direction of desired travel. The goal position
is at the right side of the top right image in Fig. 3(a)
approximately 5 m from the initial rover position.
Figure 3(b) shows the terrain map that was generated
on-board the rover using the stereo data in this test. As
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can be observed, their is a significant amount of noise
in the terrain map due to errors in stereo range esti-
mation. The landmark selection techniques were still
able to select a large rock (near the center of the top
middle image) as the best landmark for performing lo-
calization. The rover was then commanded to move to
the goal position using autonomous obstacle avoidance
during the traverse. When the rover state estimate
became close to the commanded position, the rover
halted. In this case, the rover traverse was short of the
desired location owing to errors in the odometry. Local-
ization was then performed using the selected landmark
and the correct position was determined with an error
below 5 cm.

Similar experiments were conducted at several loca-
tions in the JPL Mars Yard, including cases with more
complex terrain. In each case, a useful landmark was
selected for localization and an improved localization
estimate was achieved. While an insufficient number
of experiments (less than 10) were performed to draw
reliably statistical information from, these experiments
suggest that our target selection methodology is robust
to the noise and other errors that occur in real data.

5.3.  Sensor Uncertainty Field

Our approach to predicting terrain appearance and per-
forming uncertainty estimation can be used to generate
a sensor uncertainty field (Takeda et al., 1994) for a
known terrain map. This field is the expected distribu-
tion of error in the sensed robot position as a function
of the robot location. While, in general, the uncertainty
will depend on the path taken to each position, we con-
sider the uncertainty as a function of only the robot
position.

We can, of course, compute the sensor uncertainty
field using a brute-force method, where the best land-
mark is selected for each location of the robot and the
resulting expected uncertainty is stored for each. Un-
fortunately, this process requires much computation.
Note, however, that the uncertainties change slowly as
the robot position that is examined is moved in the pose
space. Our strategy is to first sample the pose space at
a coarse resolution and then examine locations of in-
terest, such as those that yield low uncertainties, sub-
sequently at a finer resolution.

Figure 4 shows an example where a sensor uncer-
tainty field has been generated for the terrain shown
in Fig. 2. As expected, lower uncertainties occur near
large rocks. However, the uncertainty grows large at
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On-board
estimate

Corrected position

Figure 3. Application of the method to real data. (a) Six images taken of Mars Yard terrain near the Rocky 7 rover. (b) Computed terrain map

with annotations.

locations directly on top of rocks, since we use a model
that does not allow the robot to view the terrain directly
beneath it.

6. Summary

We have described a method to select the location
to sense for performing mobile robot localization by
matching terrain maps. The localization method that
we use constructs a likelihood function in the space of
possible robot positions. The uncertainty is estimated

for localization using a local map by fitting a normal
distribution to the likelihood surface generated in the
pose space. We select the best landmark for localization
by minimizing the expected uncertainty in the robot lo-
calization. In order to predict the uncertainty obtained
by localization using various landmarks, our method
constructs a probabilistic representation of the terrain
expected to be sensed at any position in the global map.
Treating the patches of this “probability map” of the
terrain as a local map allows the uncertainty expected
by sensing the terrain patch to be estimated using the



Figure4. Sensoruncertainty field generated for the terrain in Fig. 2.
Light values correspond to low uncertainties.

surface fitting techniques. We have applied this tech-
nique to robot localization in rocky terrain with good
results.

Acknowledgments

The research described in this paper was carried out in
part at the Jet Propulsion Laboratory, California Insti-
tute of Technology, under a contract with the National
Aeronautics and Space Administration. This paper is an
expanded version of a paper that previously appeared
in the International Conference on Robotics and Au-
tomation (Olson, 2000c).

Notes

1. If the global map was a probabilistic representation that modelled
the errors, we would use only the second of these convolutions.
However, we have used a binary representation for the map in
previous work (Olson, 2000a)

2. Note that the probability map has continuous values, while the
original algorithm operated on a binary-valued local map. The
only change to the algorithm is that we must multiply the score for
each position in the probability map by the value of the probability
map at that position.
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