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Abstract—One goal for future Mars missions is to navigate a 
rover to science targets not visible to the rover, but seen in 
orbital or descent images. In order to support and improve 
long-range navigation capabilities, we generate 3D terrain 
maps using all available images, including surface images 
from the lander and/or rover, descent images from the 
lander, and orbital images from current and future Mars 
orbiters. The techniques used include wide-baseline stereo 
mapping for terrain distant from the rover, bundle 
adjustment for high-accuracy mapping of surface images, 
and structure-from-motion techniques for mapping using 
descent and orbital images. The terrain maps are compiled 
using a system for unifying multi-resolution models and 
integrating three-dimensional terrains. 
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 1. INTRODUCTION 
For a Mars rover capable of long-range mobility, it is highly 
desirable to travel to science targets observed in orbital or 
descent images. However, current rover technologies do not 
allow rovers to autonomously navigate to distant targets 
with a single command. Since communication with Mars 
rovers usually occurs only once per day, navigation errors 
can result in the loss of an entire day of scientific activity.   
 
In order to improve long-range navigation capabilities, we 
generate 3D terrain maps using all available images, 
including surface images from the lander and/or rover, 

descent images from the lander, and orbital images from 
current and future Mars orbiters. Laser rangefinder data 
from rovers and/or landers can also be integrated with this 
methodology.   
 
We apply bundle adjustment techniques to overlapping 
stereo images from panoramic image sets in order to create 
highly accurate maps of terrain nearby the rover. This 
method automatically determines corresponding features 
between multiple pairs of stereo images, even in cases where 
the overlap is small. These correspondences are used to 
update the camera positions precisely. Finally, seamless 
maps are constructed from the stereo data. 
 
Distant terrain is mapped using a combination of rover, 
lander, and orbital images. Onboard the rover, maps of 
distant terrain can be created using wide-baseline stereo 
vision. In addition, we create maps using images collected 
as a lander descends to the surface or from orbital images. 
 
While conventional stereo vision performed on the rover has 
limited accuracy for distant terrain owing to the small 
distance between the stereo cameras (known as the baseline 
distance), we can achieve accurate mapping for distant 
terrain using wide-baseline stereo vision. In this technique, 
images from the same camera, but at different rover 
positions, are used to generate a virtual pair of stereo images 
with a large baseline distance. In this work, we overcome 
two significant problems. First, the relative positioning 
between the cameras is not well known, unlike conventional 
stereo vision, where the cameras can be carefully calibrated. 
In addition, the problem of determining the matching 
locations between the two images is more difficult owing to 
the different viewpoints at which the images are captured. 
 
Images captured during the descent of a lander to the surface 
can be mapped using similar techniques. This data faces the 
additional difficulty that the direction of movement is 
towards the terrain being imaged, complicating image 
rectification. We determine the terrain height by resampling 
one image several times according possible terrain heights 
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and selecting the height at which the best match occurs for 
each image location. 
 
Techniques similar to wide-baseline stereo vision are 
applied to the creation of terrain maps using 
correspondences between descent images and orbital images 
or between orbital images from different sensors. In this 
case, the different sensors have different responses to 
various terrain features.  For this reason, we use a 
representation of the images that is based on local entropy to 
perform matching. 
 
The terrain maps computed from the various images are 
compiled using SUMMITT (System for Unifying Multi-
resolution Models and Integrating Three-dimensional 
Terrains), which is designed to merge disparate data sets 
from multiple missions into a single multi-resolution data 
set.  
 
A considerable amount of previous work has been done on 
robotic mapping.  However, much of it concerns indoor 
robots, while we are concerned with mapping natural terrain 
with rovers and spacecraft.  We also concentrate on the use 
of cameras for mapping, but other sensors have also been 
used for mapping Mars, including laser altimeter [1] and 
delay-Doppler radar [2].  Aside from our own work, much 
of the early and recent work on terrain mapping for rovers 
has been performed at CMU [3, 4, 5, 6].  Also of note is 
work at CNRS, where stereo mapping is performed using an 
autonomous blimp [7, 8]. 
 
In Section 2, we discuss the use of wide-baseline stereo 
mapping for terrain that cannot be mapped effectively using 
conventional stereo vision. Section 3 describes our approach 
to mapping surface terrain close to the rover using locally 
captured stereo panoramas. Methods by which images 
captured during a spacecraft descent to the planetary surface 
are given in Section 4. Section 5 discusses techniques by 
which multi-model image pairs (such as from different 
orbiters or orbital/descent image pairs) can be used to create 
three-dimensional maps. The SUMMITT system for 
integrating multi-resolution data sets is described in Section 
6. We give our conclusions in Section 7. 
 
 2. WIDE-BASELINE STEREO VISION 
The accuracy of stereo vision decreases with the square of 
the distance to the terrain position. For this reason, 
conventional stereo vision cannot accurate map terrain many 
meters away. One solution to this problem is to use a larger 
baseline distance (the distance between the cameras), since 
the depth accuracy is inversely proportional to this distance. 
This is problematic, however, since a rover with limited size 
cannot have two cameras with a large baseline distance. 
 
We achieve an arbitrarily large baseline distance using two 
images captured by the rover at different positions. While 
this improves the accuracy of the range estimation, it 

introduces two new problems. First, stereo systems typically 
use a pair of cameras that are carefully calibrated so that the 
relative position and orientation between the cameras are 
known to high precision. This is not possible with wide-
baseline stereo, owing to rover odometry errors. Second, the 
change in the viewpoint between the images makes stereo 
matching more difficult, since the terrain no longer has the 
same appearance in both images.  Our algorithm addresses 
these problems using a motion refinement step based on the 
structure-from-motion problem of computer vision [9] and 
robust matching between the images [10]. 
 
Motion Refinement 

We assume that an initial estimate of the motion between the 
positions at which the images were captured is available 
from the rover odometry (or other sensors). We refine this 
estimate by determining matching points between the 
images and updating the motion to enforce geometrical 
constraints that must be satisfied if the points are in 
correspondence. 
 
Once the corresponding matches have been found (using, 
for example, normalized correlation), we seek precise values 
for the translation T and rotation R relating the positions of 
the rover camera at the two locations. In this procedure, we 
include in the state vector not only the six parameters 
describing the relative camera positions (only five are 
recoverable, since the problem can be scaled to an arbitrary 
size), but also the depth estimates of the features for which 
we have found correspondences. With this augmented state 
vector, the objective function that we minimize becomes the 
sum of the squared distances between the detected feature 
position in one image and the estimated feature position 
calculated using backprojection from the other image 
according to the current motion estimate. We use the 
Levenberg-Marquardt optimization technique [11] to adjust 
the motion parameters in order to minimize this function. 
 
After we have determined the new motion estimate, we 
apply a rectification process that forces corresponding points 
between the images to lie on the same row in the images 
[12]. Figure 1 shows an example of matching features that 
were detected in an image pair with a baseline distance of 20 
meters. Figure 2 shows the images after motion refinement 
and rectification has been performed. In this example, the 
camera pointing angles converged by 20 degrees from 
perpendicular so that the same rock was located at the center 
of both images. 
 
It can be observed that there is relatively little movement 
between the features matched in the middle of the image.  
Features on the mountains move considerably to the right 
and foreground features move in the opposite direction.  
Recent work allows robust matching to performed in these 
cases also.  After rectification, all of the corresponding 
features lie on the same image row, facilitating dense 
matching. 
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Figure 1: Matching features detected in a wide-baseline stereo pair. 

 

   
Figure 2:  Wide-baseline stereo pair after rectification.  Corresponding features now line on the same image row. 

 
Disparity Estimation 

Image disparity is a measure of the difference in x-
coordinate for corresponding points between two images. It 
has an inverse relationship to the depth of the terrain point 
represented by the corresponding image points.  Given a 
pair of rectified images, we can compute the disparity for 
any point that is present in both images by searching along 
the corresponding row of the other image. We combine 
robust template matching [10] with an efficient stereo search 
algorithm in order to compute a dense disparity map. Every 
position in one image is given a disparity estimate, unless no 
corresponding match can be found in the other image. 
 
In order to determine which points are in correspondence 
between the two images, we could use a measure such as 
normalized correlation or the sum-of-squared differences 
(SSD) applied to a small window (or box) around each 
point. However, owing to the difference in viewpoints, these 
measures do not produce good results [9]. Instead, we use a 
maximum-likelihood measurement that improves upon 
normalized correlation (and SSD) in two ways. First, 
normalized correlation compares only the pixels between the 
two images that are directly overlapping at some disparity of 
the image window with respect to the other image. If camera 
motion or perspective distortion causes pixels to move by 
different amounts between the two images, it will not be 
possible to find a window position where all of the pixels 
are correctly overlapped. Our distance measure allows pixels 

that are not directly overlapping to be matching by linearly 
combining the distance in the image with the difference in 
intensity. Computing the best distance for a pixel is no 
longer trivial with the formulation, since the best match may 
not be the overlapping pixel from the other image. However, 
efficient computation of the distances can be performed by 
precomputing a three-dimensional distance transform of the 
input data [10]. 
 
The second improvement over normalized correlation is that 
the possibility of an outlier is explicitly represented. In this 
application, any terrain feature that is visible in one image, 
but not in the other is an outlier for the matching process.  
Such outliers occur frequently for images taken from 
different viewpoints. In order to model such outliers, we use 
a probability density function for each pixel distance that 
has two terms, one for inliers and one for outliers, where 
each is weighted by an estimate of the probability of an 
outlier. 
 
In order to perform dense matching between the rectified 
images using the measure described above, we use an 
efficient search strategy common in stereo vision. This 
strategy makes use of the observation that a brute-force 
implementation performs many redundant computations for 
adjacent positions of the template at the same displacement. 
We eliminate the redundant computation by storing the 
information for reuse as necessary for fast matching. Figure 
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3 shows a result of performing dense matching using the 
images from Figures 1 and 2.  The results are displayed on 
the positions at which the points lie in the right image.  High 
quality results are achieved on the right side of the image, 
since this is the area in which the terrain features are also 
present in the left image.  Towards the left side (and bottom) 
of the image, the results degrade, since there is no matching 
feature (or the match is difficult to find). 
 

 
Figure 3: Color-coded disparity map computed from 

wide-baseline stereo pair. The largest (positive) disparities 
are red, while the smallest (negative) disparities are 

purple. Black values indicate that no match was found. 
 
 3. MAPPING SURFACE PANORAMAS 
We map surface panoramas using an automatic procedure 
that first selects candidate tie points in stereo images.  
Matches are detected both within stereo pairs and between 
adjacent stereo pairs to create an image network.  Bundle 
adjustment is applied to the image network in order to 
improve the estimates of the camera and landmark positions. 
Finally, elevations maps and orthophotos are generated 
using dense matches detected between image pairs. 
 
Automatic Selection of Tie Points 

We have developed a systematic method for automatic tie 
point selection [13, 14, 15]. The procedure for selecting tie 
points within one stereo pair (intra-stereo tie points) 
includes interest point extraction using the Förstner 
operator, interest point matching using normalized cross-
correlation coefficients, verification based on the 
consistency of parallaxes, and final selection by gridding. 
Figure 4 shows an example of automatically selected intra-
stereo tie points from IMP (Imager for Mars Pathfinder) 
images. Tie points between adjacent stereo images (inter-
stereo tie points) are extracted and selected with the help of 
a coarse elevation map generated from individual stereo 
pairs using the approximate orientation parameters. Figure 5 
shows an example of automatically selected inter-stereo tie 
points from IMP images. Figure 6 shows an example of tie 
points automatically selected from rover images. Ultimately, 
the selected intra- and inter-stereo tie points build an image 
network.  

 
Figure 4: Intra-stereo tie points in lander IMP (Imager for 

Mars Pathfinder) images. 
 

 
Figure 5: Inter-stereo tie points in lander IMP (Imager for 

Mars Pathfinder) images. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Bundle Adjustment 

A bundle adjustment is applied to the image network to 
improve the accuracy of image orientation parameters as 
well as the 3D ground positions of the tie points. To ensure 
a high accuracy, we model the correlation between the 
position and attitude of the stereo camera and use this 
correlation as constraints in the least squares adjustment. 
 
In an experiment on IMP data, the entire panorama consists 
of 129 images that form either an upper panorama and a 

Figure 6: Automatically selected tie points from rover 
images (Blue crosses are intra-stereo tie points and red 

crosses are inter-stereo tie points.) 
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Figure 7: Elevation map and orthophoto of the Mars Pathfinder landing site. 

 
lower panorama with horizontal links, or an entire panorama 
with both horizontal and vertical links. In the image 
network, there are 655 tie points, 633 of which are 
automatically selected and 22 that have been manually 
selected. Before adjustment, the precision is 4.61 pixels in 
the image space (distance between measured and back-
projected image points) and 0.067 meter in the object space 
(distance between 3D positions triangulated from adjacent 
stereo pairs). After bundle adjustment, the precision is 0.80 
pixels in the image space and 0.05 meter in the object space.  
 
In an experiment processing terrestrial rover data, a 
panoramic image network was built by linking 36 mast 
images (18 pairs) with 220 automatically selected intra- and 
inter-stereo tie points. Before adjustment, the precision is 
2.61 pixels in the image space and 1.62 meter in the object 
space. After bundle adjustment, the precision is 0.55 pixels 
in the image space and 0.08 meter in the object space.  We 
can see that precision is improved in both the image space 
and the object space by the bundle adjustment. The 
improvement in image space (generally at a subpixel level) 
is larger than the improvement in the object space.  
 
Elevation Map and Orthophoto Generation 

After bundle adjustment, image matching is performed to 
find dense conjugate points for elevation map generation. 
The epipolar geometry and a coarse-to-fine matching 
strategy are applied to achieve both high speed and high 
reliability. The 3D ground coordinates of the matched points 
are then calculated by photogrammetric triangulation using 
the adjusted image orientation parameters. Finally, based on 
the 3D points, the elevation is generated using the Krigging 
interpolation method.  
 
The orthophoto is generated by back-projecting the grid 
points of the refined elevation map onto the left (or right) 
image. A corresponding grayscale value is found and 
assigned to the grid point. In the area of overlap for adjacent 

images, the grid points will be projected to two or more 
images. The grayscale value is picked from the image in 
which the projected point is closest to its image center.  The 
resultant elevation map and orthophoto of the Mars 
Pathfinder landing site are shown in Figure 7. The 3D 
visualization of the rover data is shown in Figure 8. Through 
visual checking of the orthophotos, we find no seams 
between image patches. This demonstrates the effectiveness 
of the bundle adjustment. 

Figure 8: 3D visualization of terrestrial rover test site. 
 
 4. MAPPING DESCENT IMAGES 
In addition to images captured by a rover or lander on the 
planetary surface, we can perform mapping using images 
captured above the surface. This is not limited to orbital 
images; it can also include the sequence of images captured 
by a spacecraft as it descends to the surface. An example of 
descent imagery of the moon from the Ranger 9 mission can 
be seen in Figure 9. Figure 10 shows a descent image 
sequence captured using a helicopter in the Mojave Desert 
for rover testing. Such descent images provide a link 
between the lower resolution images captured from orbit 
and the higher resolution images captured on the surface. 



 6

      
Figure 9:  Images of the moon captured by the Ranger 9 

spacecraft during descent to the surface. 
 

      
Figure 10:  Three images from a descent sequence of the 

Mojave Desert captured from a helicopter. 
 
For matching between pairs of consecutive descent images, 
we can use techniques similar to those described for wide-
baseline stereo, including motion refinement and dense 
disparity estimation [16]. For this case, the use of robust 
matching techniques for disparity estimation is less 
important, but a different problem arises. The images are 
captured in the direction in which the spacecraft is traveling 
(down towards the surface).  In this case, the focus-of-
expansion (the fixed point at which a terrain location 
appears at the same location in both images) is within the 
image boundaries. (For conventional stereo imaging, this 
point is at infinity.) This has two consequences. First, we 
cannot rectify the images along epipolar lines, since they 
pass through the focus-of-expansion, and this would 
resample the image highly unevenly. In addition, the depth 
cannot be accurately recovered near this point, since the 
computation is numerically unstable. 
 
For the above reasons, our approach to recovering an 
elevation map from this data is somewhat different from 
wide-baseline stereo vision. We examine a discrete set of 
virtual planar surfaces perpendicular to the camera pointing 
axis that slice through the three-dimensional terrain. For 
each of these surfaces, one image is warped to appear as it 
would from the second camera position if all of the terrain 
was at this elevation. The warped image is compared to the 
second image at each position and the elevation the 
produces the closest match at each position is stored as the 
elevation estimate for that position. Increased accuracy is 
obtained through parabolic fitting of the scores achieved 
near the peak for each location. 
 
Figure 11 shows an example of a map created from the 
descent images in Figure 10. The map was generated by 
rendering an image according to the elevations computed by 
the algorithm. A channel can clearly be seen running 

through the bottom of the image. However, the location of 
the focus-of-expansion can be seen in the center where the 
elevation estimates become somewhat unstable. 
 

 
Figure 11:  Map extracted from Mojave Desert images. 

 
5. MULTI-MODAL DATA 

After considering surface images and descent images, one 
might wonder whether similar techniques might be used for 
orbital images. In general, the answer is yes. We can even 
generate depth maps by performing matching between a 
descent image and an orbital image. If the same terrain 
location is imaged by the same sensor from a different 
location, then mapping can be performed using one of the 
previously described techniques. (If it is not imaged from a 
different location, we cannot extract any depth information.) 
On the other hand, if we want to perform matching between 
images captured from different sensors, then the problem 
becomes more complex, since the terrain will not necessarily 
have the same appearance in images from different sensors. 
Matching between images captured with different sensors is 
often called multi-modal matching. 
 
When we perform matching between images captured with 
different sensors, we must use a measure for matching small 
image windows that is insensitive to the difference between 
the sensors, since different sensors have different responses 
to the various wavelengths of light. Our approach is to 
transform the images into a new representation that is less 
sensitive to sensor characteristics. The new representation 
replaces each pixel in the image with a local measure of the 
entropy in the image near the pixel [17].  This is based on 
the idea that each neighborhood in the image can be treated 
as a set of samples from a random variable. The entropy of 
the random variable is estimated from the sample values. 
Figure 12 shows an image and the same image after each 
pixel has been replaced with the local entropy computed 
using this method. 
 

  
Figure 12: An aerial image and its representation using a 

local entropy measure. 
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Figure 13: Matches found between an orbital image (left and right sides) and a descent image (center). 

 
This entropy representation is very insensitive to sensor 
characteristics. In fact, it has been used to perform matching 
between infrared images and conventional images that have 
a very different appearance [17]. Once the images have been 
transformed into the entropy representation, the images can 
be compared in a straightforward manner using normalized 
correlation. An example of matches detected between an 
aerial image and an orbital image can be seen in Figure 13. 
 

6. INTEGRATING DATA SETS 
In this work, we have used SUMMITT for integrating maps 
from various sensors.  SUMMITT (the System for Unifying 
Multi-resolution Models and Integrating Three-dimensional 
Terrains) is a suite of software tools for registering and 
merging terrain models from a variety of sources.  The 
terrain models are then output in a variety of formats to 
support activities requiring visualization of the terrain. 
 
The fundamental data structure for the terrain data is the 
octree.  Octrees were chosen due to their inherent support of 
multi-resolution data, their ability to support rapid searches 
for nearest neighbors, and their small memory footprint.  
Multi-resolution support is necessary due to the disparate 
sources of terrain information that must be merged.  Orbital 
cameras may be used to collect imagery and produce terrain 
models through stereo processing.  In this case, the 
resolution of the terrain models could range from one meter 
up to multiple kilometers based on the quality and resolution 
of the optics, the orbital dynamics, and atmospheric 
constraints.  Typically the resolution of terrain models 
produced from orbital cameras will be relatively constant as 
the range to the terrain is generally fixed by roughly circular 
orbits.  Descent cameras, on the other hand, are constantly 
moving during data collection and their range to the terrain 
is varied.  Thus, a camera in the early stages of data 
collection, at a higher altitude, might be capable of 
producing models with a resolution near one meter.  The 
same camera might produce models at one centimeter 
resolution at a very low altitude.  Finally, rover and lander 

cameras may produce models with sub-centimeter 
resolution.  For example, on the Mars Exploration Rovers 
(MER) mission, the rovers carry three sets of stereo cameras 
ranging from nearly 180 degrees FOV down to about 15 
degrees FOV. Given that the stereo baseline for each pair of 
cameras is comparable, the resolution of the terrain models 
produced will vary considerably among the cameras on a 
given platform.  In addition, the models produced by a 
single camera will vary considerably in resolution due to the 
wide range of distances of the terrain from the camera.  
Thus, near-field objects may have up to 30 times finer 
resolution than far-field objects. 
 
The terrain models are inserted into the octree by assuming 
that each sample is a volume with a cross-section equivalent 
to the model resolution.  The coarser model data remains 
near the root of the tree while the finer data traverses nearer 
the leaves of the octree. 
 
Each individual model, except the first, must be registered to 
the overall terrain model contained within the octree, prior 
to being merged into the octree.  The registration process 
uses the Iterative Closest Points (ICP) algorithm, as 
described by Zhang [18] and applied by Nishino and 
Katsushi [19] and Miyazaki et al. [20], to compute an 
alignment transform.  This transform is then applied to each 
sample in the model prior to inserting it into the octree.  
Since the ICP algorithm is an iterative process that requires 
finding nearest neighbors, the octree's support for rapid 
searches is very important to the success of the ICP 
algorithm. 
 
Once models have been merged into the octree, terrain 
models can be generated.  For many applications, multi-
resolution triangle meshes are used.  By treating the octree 
as a cloud of points, a variety of algorithms are available for 
this process, including those of Hoppe et al. [21] and Hilton 
et al. [22].  For rover missions, corresponding height maps 
are also required.  The height maps are produced by binning 

Descent 

Orbital 
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Figure 14: Elevation map generated from registered rover panorama data. 

 
the octree data in the (x, y) plane and then selecting the 
largest z value within each bin.  The bins can be of any 
desired resolution to support the visualization requirements. 
 Repeated extraction of height maps at different resolutions 
produces multi-resolution maps for applications requiring 
such support. 
 
Figure 14 shows an example of an elevation map generated 
using SUMMITT.  In this case, panoramic stereo images 
were registered, integrated and, finally, rendered with the 
original image data. 
 

7. CONCLUSIONS 
Obtaining accurate maps of the terrain is critical for long-
distance traverses on Mars. Without such maps, a rover may 
spend much time and energy venturing along what turns out 
to be a dead end. Maps are also critical for rover localization 
in long-distance traverses, since estimates from odometry 
and other sensors will grow in error without bound unless 
corrected using a global map.  
 
We have described techniques for generating three-
dimensional terrain maps spanning many resolutions, from 
the high-resolution maps generated using conventional 
stereo on-board a rover, through medium resolution maps 
generated using wide-baseline stereo or descent images, to 
the lower resolution (but wider area) maps generated from 
high-altitude descent images and/or orbital images. 
 
The data sets are combined using a system (SUMMITT) that 
efficiently registers and integrates the data sets in a multi-
resolution context. SUMMITT also provides tools for map 
visualization that are useful for planning. 
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