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Abstract In the book Tilings and Patterns by B. Grunbaum and G. S. Shep-
hard, the problem of classifying the uniform edge-c-colorings of Archimedean
tilings of the Euclidean plane is posed. This article provides such a classifica-
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1 Preliminaries

A plane tiling T is a countable family of closed topological disks T =
{T1, T2, ...} that cover the Euclidean plane E2 without gaps or overlaps; that
is, T satisfies
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1.
⋃
i∈N

Ti = E2, and

2. int(Ti) ∩ int(Tj) = ∅ when i 6= j.

The Ti are called the tiles of T . The intersection of any two distinct tiles can
be a set of isolated arcs and points. These isolated points are called the vertices
of the tiling, and the arcs are called the edges of the tiling. In this paper, only
tilings whose tiles are regular polygons are considered. The straight segments
comprising the boundary of a polygon will be called sides and the endpoints
of these straight segments will be called corners. If the corners and sides of
the polygons in a tiling coincide with the vertices and edges of the tiling, then
the tiling is said to be edge-to-edge.

In an edge-to-edge tiling in which every tile is a regular polygon, a vertex
v is of vertex type a1, a2, . . . , an if an a1-gon, an a2-gon, . . . , and an an-gon
meet at v in that order (any cyclic permutation or reverse ordering is equiva-
lent). Any tiling in which every vertex is of type a1, a2, . . . , an is said to be of
Archimedean type (a1, a2, . . . , an). It is well known that there exist precisely
11 distinct edge-to-edge tilings by regular polygons such that all vertices are of
the same type, and these are (36), (34.6), (33.42), (32.4.3.4), (3.4.6.4), (3.6.3.6),
(3.122), (44), (4.6.12), (4.82), and (63) (Fig. 1, [1]). These tilings are called the
Archimedean tilings or uniform tilings. While these two terms describe the
same 11 tilings, the terms “Archimedean” and “uniform” confer two differ-
ent meanings. Archimedean refers to edge-to-edge tilings by regular polygons
that are monogonal (that is, a tiling in which every vertex, together with its
incident edges, forms a figure congruent to that of any other vertex and its
incident edges). On the other hand, uniform refers to edge-to-edge tilings by
regular polygons that are isogonal (that is, a tiling in which the vertices of the
tiling are all in the same transitivity class with respect to the symmetry group
of the tiling). It is coincidence that these two notions produce the same 11
tilings. However, if the ideas of uniform and Archimedean are generalized in
the natural way to k-uniform and k-Archimedean, it is known that k-uniform
is more restrictive than k-Archimedean when k ≥ 2 [1]. Two vertices that
are in the same transitivity class with respect to the symmetry group of the
tiling will be called equivalent vertices. So, in a uniform tiling, all vertices are
equivalent.

Let T be a uniform tiling. If each edge of T is assigned one of c colors so
that each of the c colors is represented in the tiling, the resulting edge-colored
tiling Tc is an edge-c-coloring of T . Tc is Archimedean if every vertex of
Tc, together with its incident edges, forms a figure that can be mapped by a
color-preserving isometry to any other vertex in Tc and its incident edges. Tc is
uniform if for any two vertices in Tc, there is a color-preserving symmetry of Tc

that maps the first vertex onto the second. In the case of edge-c-colored tilings,
it will be seen that there are only finitely many uniform edge-c-colorings, but
there are infinitely many distinct Archimedean edge-c-colorings.

Let Tc be a uniform edge-c-coloring in which the underlying uncolored
uniform tiling is of type (a1.a2. . . . .an). If for an arbitrary vertex V of Tc the
color of the edge meeting V between polygon ai and polygon ai+1 is denoted
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(36) (34.6) (33.42)

(32.4.3.4) (44) (3.4.6.4)

(3.6.3.6) (63) (3.123)

(4.6.12) (4.82)

Fig. 1: The 11 uniform tilings.

by ci, then we will say V has vertex color configuration a1c1a2c2 · · · ancn
. Since

Tc is uniform, every vertex will have the same vertex color configuration, so
we will say Tc is of type (a1c1a2c2 · · · ancn

).
Two vertex color configurations are considered to be equivalent if one can

be obtained from the other via a combination of cyclic permutations, reverse
orderings (including the placement of subscripts), and trivial label renaming.
For example, in Fig. 2, the edges incident to a vertex of type 33.42 have
been assigned colors a, b, c, and d. Starting with the edge labeled a and
working clockwise, the vertex has color configuration 3a3b3c4d4c. Starting from
the edge labeled b and working counterclockwise yields the equivalent vertex
color configuration 3b3a3c4d4c; this equivalence can be seen as first cyclically
permuting and then reversing the order of this vertex color configuration:

3a3b3c4d4c = 3c4d4c3a3b = 3b3a3c4d4c

(the colored text is intended to help reader keep track of the changes). Also,
by interchanging the labels c and d in the previous vertex color configuration,
we obtain the equivalent vertex color configuration 3b3a3d4c4d.
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Fig. 2: Vertex color configuration 3a3b3c4d4c = 3b3a3c4d4c = 3b3a3d4c4d

2 Main Results

Theorem 1 There are a total of 109 uniform edge-c-colorings of the uniform
tilings.

In Table 13 the vertex color configurations admitting uniform edge-c-colorings
and the corresponding number of edge-c-colorings admitted are given. Figures
for each of the 109 colorings are presented in Section 5.1.

Clearly the maximum possible number of colors for any uniform edge-c-
coloring is c = 6, and the only uniform tiling that could possibly have a vertex
with incident edges of 6 different colors is (36). But, it is quickly seen that
no edge-6-colorings of (36) exists. Fig. 3a shows a vertex V of type 36 whose
incident edges have 6 colors, and Figures 3b and 3c show that if any vertex W
sharing a common edge with V is colored in the same way, a second vertex X
sharing a common edge with V will be forced to have its incident edges colored
in a way not consistent with the coloring indicated in Fig. 3a. Therefore only
values of c satisfying 1 ≤ c ≤ 5 need to be considered.

a b

c

de

f V

(a)

a ab b

c

d de e

f fV W

X

(b)

a eb d

c

d be a

f fV W

X

(c)

Fig. 3: No uniform (or Archimedean) edge-6-colorings of (36) exist.

There are two steps in finding all edge-c-colorings of the uniform tilings

1. For each of the 11 vertex types of the uniform tilings and for each value of
c, 1 ≤ c ≤ 5, determine the complete list of possible vertex color configu-
rations.

2. For each vertex color configuration, determine all symmetrically distinct
uniform edge-c-colorings admitted.

Step 1 of that process is straight forward and will be illustrated by example
in Section 3. Step 2 is complicated somewhat by the fact that some vertex
color configurations admit an uncountable number of nonuniform Archimedean
edge-c-colorings. For example, the vertex color configuration in Fig. 4 admits
uncountably many nonuniform Archimedean edge-3-colorings of (44).
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In order to overcome this difficulty, it is first observed that a uniform
edge-c-coloring is periodic. A tiling is periodic if its symmetry group contains
two translations in nonparallel directions. Similarly, a uniform edge-coloring
is color-periodic if its symmetry group contains at least two color-preserving
translations in nonparallel directions. While the (uncolored) uniform tilings
are periodic and the symmetry group of any uniform edge-coloring overlay-
ing a uniform tiling is a subgroup of the symmetry group of the underyling
uncolored uniform tiling, it is not obvious that a uniform edge-coloring of a
uniform tiling is periodic. Indeed, there are many nonperiodic Archimedean
edge-colorings. For example, Fig. 4 shows an Archimedean but nonuniform
edge-3-coloring of (44) that is nonperiodic with respect to color preserving
symmetries. Conveniently, uniform edge-c-colorings are isogonal, and isogonal
tilings have been classfied into 93 types, all of which are periodic [1]. Hence,
a uniform edge-c-coloring is color-periodic. It is further established in Lemma
1 that a “small” period parallelogram (i.e. a patch of tiles in the tiling that
tiles the plane by translations) can be found for any uniform edge-c-coloring,
ensuring that there are only finitely many uniform edge-c-colorings.

Fig. 4: An example of a nonuniform Archimedean edge-coloring of (44) that is
not color-periodic.

Before stating Lemma 1, a few definitions are necessary. A vector τ of
minimal magnitude that specifies a translational symmetry of a uniform (un-
colored) tiling T is a called minimal translation of T . Two vertices in the
tiling that are equivalent by a minimal translation (or its inverse) will be
called translationally adjacent. If V is a vertex of T , then τ (V ) will be called
its successive vertex in the dirction of τ and −τ (V ) will be called its preceding
vertex in the dirction of τ . Let Tc be a uniform edge-c-coloring of T and let
V0 be any vertex of Tc. The vertices of Tc that are color-preserving translates
of V0 are said to be in the same aspect as V0. Note that two vertices that are
in the same aspect in Tc are not necessarily equivalent in Tc. Because the
uniform tiling underlying Tc is periodic, there is a bi-infinite sequence of ver-
tices in T , . . . V−2, V−1, V0, V1, V2, . . . such that Vi is translationally adjacent
to Vi−1 and Vi+1. While the Vi are translates of one another in the under-
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lying uniform tiling, in the uniform edge-c-coloring Tc, the Vi may appear
in several possible aspects, so there is a corresponding sequence of aspects,
. . . α−2, α−1, α0, α1, α2, . . .. Again, it is emphasized that even when two ver-
tices in the sequence Vi are in the same aspect, the symmetry that takes one
to the other may be a translation, a rotation, a reflection, or a glide-reflection.

Lemma 1 If τ is a minimal translation in a uniform tiling T , then any
uniform edge-c-coloring Tc of T admits a translation of magnitude m ≤ 6 ‖τ‖.
Moreover, Tc is periodic and has a period parallelogram of dimensions at most
6 ‖τ1‖ × 6 ‖τ2‖ where τ1 and τ2 are minimal translations of T .

Proof Let Tc be a uniform edge-c-coloring of T . Let V0, V1, . . . , V4 be consec-
utive translationally adjacent vertices of T with minimal translation τ and
let γi be the color preserving symmetry of Tc that maps Vi to Vi+1. If γi is τ ,
the result is immediate, so suppose none of the γi is τ . Also note that if γi is
a glide reflection parallel to τ , then γ2i is a translation parallel to τ with mag-
nitude 2 ‖τ‖. So also suppose that none of the γi is a glide reflection parallel
to τ .

The proof will proceed by cases based the types of the inner two isometries,
γ1 and γ2.

– Case 1: γ1 and γ2 are both glide reflections. If γ1 and γ2 are parallel glide
reflections, the collinearity of V0, V1, and V2 and a routine computation
reveal that γ2 ◦ γ1 is a translation parallel to τ with magnitude 2 ‖τ‖. If,
γ1 and γ2 are nonparallel glide reflections, then γ21 and γ22 are nonparallel
translations of Tc of maginude m ≤ 4 ‖τ‖, and the period parallelogram
spanned by these translations has dimensions 4 ‖τ‖ × 4 ‖τ‖.

– Case 2: γ1 is a reflection and γ2 is a glide reflection. Then there must be
a color preserving glide reflection from V1 to V0, and so this case reduces
to Case 1.

– Case 3: γ1 and γ2 are reflections. In this case, γ2◦γ1 is a translation parallel
to τ and of magnitude 2 ‖τ‖.

– Case 4: γ1 is a rotation and γ2 is a glide reflection. First, note that if the
rotation is not 180◦, then there exist two nonparallel glide reflections, γ2
and γ2 ◦ γ1, and this reduces to Case 1. If, however, the rotation is 180◦,
then consider the γ3. If this is a reflection, then it reduces to Case 3. If it
is a glide reflection, then this reduces to Case 1. If on the other hand it is
a rotation, then it must be 180◦ since it would otherwise reduce to Case 1.
Then the composition γ3 ◦ γ1 is a translation parallel to τ of magnitude
4 ‖τ‖.

– Case 5: γ1 is a rotation and γ2 is a reflection. First note that if the rotation
is 180◦, then the composition γ2 ◦γ1 is a glide reflection defined by 2τ , and
thus there is a translation defined by 4τ . If γ1 is not a 180◦ rotation, then
γ2 ◦ γ1 and γ2 ◦ γ21 are nonparallel glide reflections and this case reduces to
Case 1.

– Case 6: γ1 and γ2 are both rotations. It may be assumed that all symmetries
along the line in question are rotations, for if they were not, the problem
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would reduce to a previous case. The only rotational symmetries of the
unform tilings are of angles that are multiples of 60◦ and 90◦. From this it
is seen that every sequence of 6 rotations has a subsequence whose angles
sum to a multiple of 360◦; first note that each proper rotation has, from
among the possible rotational angles, a positive additive inverse modulo
360◦ (e.g. the positive additive inverse of 120◦ is 240◦). In enumerating all
length-6 sequences of rotations that do not contain a subsequence whose
angles sum to a multiple of 360◦, it is seen that that there are at most
5 choices for the first rotation, and because each rotation has a positive
inverse modulo 360◦, there are at most 4 choices for the second rotation. For
the third rotation, there are at most 3 choices left since the third rotation
cannot be the positive additive inverse modulo 360◦ of the second rotation
and the sum of the first two rotations. Similarly, there are at most 2 choices
left for the fourth rotation, and 1 for the fifth. And so it is seen that every
length-6 sequence of rotations has a subsequence whose angles sum to a
multiple of 360◦. Since the composition of rotations is a translation if the
angles sum to a multiple of 360◦, there is a translation in the direction of
τ whose magnitude is m ≤ 6 ‖τ‖.
Since T is periodic, there is a second minimal translation σ that is not

parallel to τ . In each case above, either a translation of Tc in the direction
of τ of no more than 6 ‖τ‖ was identified or a pair of nonparallel translations
of magnitude less than 4 ‖τ‖ was identified, and the same arguments may be
applied to a line of consecutive vertices in the direction of σ. Thus, a period
parallelogram of Tc of dimensions no more than 6 ‖τ‖ × 6 ‖σ‖ exists.

Next, we provide a local condition for determining if a given Archimedean
edge-c-coloring is uniform.

Lemma 2 Let Tc be an Archimedean edge-c-coloring of T and let V be a
vertex in Tc. If V can be mapped to each adjacent vertex by a color-preserving
symmetry of Tc, then Tc is uniform.

Proof Let W be any vertex of Tc. Let γ be a edge path in Tc from V to
W . Then there is a finite sequence of vertices V, V1, V2, . . . , Vn,W on γ such
that consecutive vertices in this sequence are endpoints of the same edge. By
hypothesis there is a symmetry α1 of Tc taking V to V1. The same symmetries
that take V to its adjacents also take V1 to its adjacents, and in particular,
there is a symmetry of Tc, α2, taking V1 to V2. Continuing in this way, it is
seen that there is a sequence of symmetries α1, α2, . . . , αn+1 whose composition
takes V to W .

3 Illustrating the Enumeration Process

3.1 Enumerating the Vertex Color Configurations

For each vertex type, there is a small finite number of vertex color config-
urations. The process of enumerating the vertex color configurations will be
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illustrated for vertex types 4.6.12 and 36, and the other vertex types are han-
dled in exactly the same way, and the results are given in Tables 1 - 11. For
both cases, let C be the number of colors under consideration. The colors will
be called a, b, c, d, and e, and |a|, |b|, |c|, |d|, and |e| will denote the number
of edges colored a, b, c, d, and e, respectively.

3.1.1 Enumerating Vertex Color Configurations of Type 4.6.12

If C = 1, the only vertex color configuration (up to trivial equivalence) is
4a6a12a.

If C = 2, then there are two cases to consider: |a| = 2 and |b| = 1, or
|a| = 1 and |b| = 2. However, since trivially interchanging the colors a and b
yields equivalent vertex color configurations, only the case |a| = 2 and |b| = 1
needs to be considered. Thus, the placement of the b determines the vertex
color configuration, and so there are three possibilities: 4a6a12b, 4a6b12a and
4b6a12a. In the interest of listing our possible vertex color configurations in
lexicographical order in Table 10, the vertex color configuration 4b6a12a has
been converted to the equivalent 4a6b12b. These three possibilities are clearly
distinct since, for instance, an edge between a square and a hexagon is in
a different edge-transitivity class in the underlying uniform tiling than an
edge between a hexagon and a 12-gon. Contrast this with the vertex color
configuration 6a6a6b of type 63; In this case, 6a6a6b = 6a6b6a = 6b6a6a =
6a6b6b is the only vertex color configuration with c = 2 for vertex type 63,
owing to the fact that all three edges are in the same transitivity class in the
underlying uniform tiling.

If C = 3, the only vertex color configuration is 4a6b12c.

3.1.2 Enumerating Vertex Color Configurations of Type 36

If C = 1, the only vertex color configuration is 3a3a3a3a3a3a.
If C = 2, let the two colors be a and b. Because the colors a and b can be

interchanged to generate trivially equivalent vertex color configurations, we
may assume |b| ≤ 3. If |a| = 5 and |b| = 1, the placement of the b determines
the vertex color configuration, and since in the underlying uniform tiling all
edges are equivalent, there is only one vertex color configuration in this case;
namely 3a3a3a3a3a3b. If |a| = 4 and |b| = 2, then the angle between the two
edges labeled b may be 60◦, 120◦, or 180◦, yielding vertex color configurations
3a3a3a3a3b3b, 3a3a3a3b3a3b, and 3a3a3b3a3a3b. Lastly, if |a| = 3 and |b| = 3,
notice that there are two vertex configuration in which two edges labeled a
are adjacent, 3a3a3a3b3b3b and 3a3a3b3a3b3b, and if no two edges labeled a
are adjacent the only vertex configuration is 3a3b3a3b3a3b. Thus, when c = 2,
there are a total of 7 vertex color configurations for 36.

If C = 3, let the three colors be a, b, and c. Without loss of generality,
assume that |c| ≤ |b| ≤ |a|. Thus, there are three possibilities:

– |a| = 4, |b| = 1, |c| = 1
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– |a| = 3, |b| = 2, |c| = 1
– |a| = 2, |b| = 2, |c| = 2.

In the case that |a| = 4, the angles between the edges labeled b and c can be
60◦, 120◦, or 180◦, yielding 3a3a3a3a3b3c, 3a3a3a3b3a3c, and 3a3a3b3a3a3c. In
the case that |a| = 3, if all three of the edges labeled a are consecutive, there
are two possible ways to arrange the remaining edges, giving 3a3a3a3b3b3c
and 3a3a3a3b3c3b. If only two edges labeled a are adjacent, the possible con-
figurations are 3a3a3b3a3b3c, 3a3a3b3a3c3b, and 3a3a3c3a3b3b. In Table 13,
3a3a3c3a3b3b is changed to 3a3a3b3a3c3c to accomodate listing the vertex
configurations in lexicographical order. If none of the 3 edges labeled a are
adjacent, the only possible configuration is 3a3b3a3b3a3c. Finally, in the case
that |a| = 2, the vertex configurations in which the two edges labeled a are
adjacent are 3a3a3b3b3c3c, 3a3a3b3c3b3c, and 3a3a3b3c3c3b. If the angle be-
tween the two edges labeled a is 120◦, the corresponding vertex configuration
is 3a3b3a3c3b3c. If the angle between the two edges labeled a is 180◦, then the
one vertex configuration is 3a3b3c3a3b3c.

If C = 4, the edges of the vertex color configurations will be marked a, b,
c, and d. Assuming |d| ≤ |c| ≤ |b| ≤ |a|, there are two cases:

– |a| = 3, |b| = |c| = |d| = 1
– |a| = 2, |b| = 2, |c| = |d| = 1

In the case where |a| = 3, proceed as before and consider the possibilities
that the three edges labeled a are either consecutive, two are adjacent, or no
two are adjacent. This gives 3a3a3a3b3c3d, 3a3a3b3a3c3d, and 3a3b3a3c3a3d. In
the case where |a| = 2, there are the three possibilities that the angle between
the two edges labeled a is 60◦, 120◦, or 180◦, and these three possibilities give
the following vertex color configurations.

3a3a3b3b3c3d
3a3a3b3c3b3d
3a3a3c3b3b3d = 3a3a3b3c3c3d
3a3a3b3c3d3b
3a3b3a3b3c3d
3a3b3a3c3b3d
3a3c3a3b3d3b = 3a3b3a3c3d3c
3a3b3c3a3b3d

If C = 5, with edge colors a, b, c, d, and e, it may be assumed that |a| = 2
and |b| = |c| = |d| = |e| = 1. There are three possible vertex configurations:
3a3a3b3c3d3e, 3a3b3a3c3d3e, and 3a3b3c3a3d3e.

Lastly, when C = 6 there is a single vertex color configuration:
3a3b3c3d3e3f .

3.2 Finding the Edge-c-Colorings Admitted by a Vertex Color Configuration

To find all uniform edge-c-colorings admitted by a given vertex color configu-
ration, Lemma 1 guarantees that it is sufficient to find all edge-colorings of a
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Table 1: vertex color configurations of type 36

3a3a3a3a3a3a 3a3a3b3a3a3b 3a3a3b3c3b3c 3a3b3a3c3a3d
3a3a3a3a3a3b 3a3a3b3a3a3c 3a3a3b3c3b3d 3a3b3a3c3b3c
3a3a3a3a3b3b 3a3a3b3a3b3b 3a3a3b3c3c3b 3a3b3a3c3b3d
3a3a3a3a3b3c 3a3a3b3a3b3c 3a3a3b3c3c3d 3a3b3a3c3d3c
3a3a3a3b3a3b 3a3a3b3a3c3b 3a3a3b3c3d3b 3a3b3a3c3d3e
3a3a3a3b3a3c 3a3a3b3a3c3c 3a3a3b3c3d3e 3a3b3c3a3b3c
3a3a3a3b3b3b 3a3a3b3a3c3d 3a3b3a3b3a3b 3a3b3c3a3b3d
3a3a3a3b3b3c 3a3a3b3b3c3c 3a3b3a3b3a3c 3a3b3c3a3d3e
3a3a3a3b3c3b 3a3a3b3b3c3d 3a3b3a3b3c3d 3a3b3c3d3e3f
3a3a3a3b3c3d

Table 2: vertex color configurations of type 3.4.6.4

3a4a6a4a 3a4a6b4b 3a4b6a4c 3a4b6c4a
3a4a6a4b 3a4a6b4c 3a4b6b4a 3a4b6c4d
3a4a6b4a 3a4b6a4b 3a4b6b4c

Table 3: vertex color configurations of type 3.122

3a12a12a 3a12a12b 3a12b12a 3a12b12c

Table 4: vertex color configurations of type 44

4a4a4a4a 4a4a4b4b 4a4b4a4b 4a4b4c4d
4a4a4a4b 4a4a4b4c 4a4b4a4c

period parallelogram of the underlying Archimedean tiling. The uniform col-
orings so generated can then be detected using Lemma 2. However, in practice
the process of enumerating all uniform edge-c-colorings admitted by a given
vertex color configuration can almost always be accomplished more efficiently.
Typically, the colorings are found by starting with a “blank” tiling, coloring
the edges surrounding a few adjacent vertices, and seeing what is forced by
the geometry and symmetry of the underlying tiling. It is almost always the
case that very few options are possible.

To illustrate this, consider the vertex color configuration 4a4b4a4c. The
process given here is representative of how the remaining vertex color config-
urations are handled. At left in Fig. 5, a random vertex of the Archimedean
tiling (44) labeled P has been colored with configuration 4a4b4a4c. With this
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Table 5: vertex color configurations of type 4.82

4a8a8a 4a8a8b 4a8b8a 4a8b8c

Table 6: vertex color configurations of type 34.6

3a3a3a3a6a 3a3a3b3a6c 3a3a3b3c6c 3a3b3a3b6c 3a3b3c3b6b
3a3a3a3a6b 3a3a3b3b6a 3a3a3b3c6d 3a3b3a3c6c 3a3b3c3a6d
3a3a3a3b6b 3a3a3b3b6b 3a3b3a3a6a 3a3b3a3c6d 3a3b3c3b6d
3a3a3a3b6c 3a3a3b3b6c 3a3b3a3a6b 3a3b3c3a6a 3a3b3c3c6d
3a3a3b3a6a 3a3a3b3c6a 3a3b3a3a6c 3a3b3c3a6b 3a3b3c3d6d
3a3a3b3a6b 3a3a3b3c6b 3a3b3a3b6b 3a3b3c3a6c 3a3b3c3d6e

Table 7: vertex color configurations of type 33.42

3a3a3a4a4a 3a3a3b4b4b 3a3b3a4b4a 3a3b3b4a4c 3a3b3c4a4d
3a3a3a4a4b 3a3a3b4b4c 3a3b3a4b4c 3a3b3b4b4c 3a3b3c4b4d
3a3a3a4b4a 3a3a3b4c4b 3a3b3a4c4a 3a3b3b4c4a 3a3b3c4c4c
3a3a3a4b4b 3a3a3b4c4d 3a3b3a4c4b 3a3b3b4c4c 3a3b3c4c4d
3a3a3a4b4c 3a3b3a4a4a 3a3b3a4c4c 3a3b3b4c4d 3a3b3c4d4c
3a3a3b4a4b 3a3b3a4a4b 3a3b3a4c4d 3a3b3c4a4c 3a3b3c4d4e
3a3a3b4a4c 3a3b3a4a4c 3a3b3b4a4a

Table 8: vertex color configurations of type 32.4.3.4

3a3a4a3a4a 3a3a4b3b4a 3a3b4a3a4b 3a3b4a3c4d 3a3b4c3b4c
3a3a4a3a4b 3a3a4b3b4b 3a3b4a3a4c 3a3b4b3b4b 3a3b4c3b4d
3a3a4a3b4a 3a3a4b3b4c 3a3b4a3b4b 3a3b4b3b4c 3a3b4c3c4b
3a3a4a3b4b 3a3a4b3c4b 3a3b4a3b4c 3a3b4b3c4b 3a3b4c3c4d
3a3a4a3b4c 3a3a4b3c4c 3a3b4a3c4b 3a3b4b3c4c 3a3b4c3d4b
3a3a4b3a4b 3a3a4b3c4d 3a3b4a3c4c 3a3b4b3c4d 3a3b4c3d4e
3a3a4b3a4c

choice of aspect for P , any other vertex in an edge-3-coloring containing P
may be in one of two aspects (blue up or blue down). Notice that the aspects
of the vertices on the vertical line containing P are completely determined
(right, Fig. 5). Thus, any edge-3-coloring of type (4a4b4a4c) corresponds to
a choice of aspects of the vertices on the horizontal line containing P (Fig.
6). Any such choice yields an edge-3-coloring, and thus there are uncountably
many edge-3-colorings of type (4a4b4a4c). Some of these coloings are periodic,
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Table 9: vertex color configurations of type 3.6.3.6

3a6a3a6a 3a6a3b6c 3a6b3a6c 3a6b3c6a
3a6a3a6b 3a6b3a6b 3a6b3b6a 3a6b3c6d
3a6a3b6b

Table 10: vertex color configurations of type 4.6.12

4a6a12a 4a6a12b 4a6b12a 4a6b12b 4a6b12c

Table 11: vertex color configurations of type 63

6a6a6a 6a6a6b 6a6b6c

but by Lemma 1, only those with small periods may be uniform. In this par-
ticular case the small period can be quickly determined: On the horizontal
line containing P , there cannot be more than two consecutive vertices in the
same aspect, for if there were vertices A, B, C, and D on this line where A,
B, and C are in the same aspect and D is in a different aspect, then there is
not symmetry of the coloring taking D to B. Thus, the possible patterns of
aspects on the line containing P are limited to

. . . α, α, α, . . . ,

. . . , α, β, α, β, . . . ,

or

. . . , α, α, β, β, α, α, β, β, . . . .

It is easily checked (using Lemma 2) that these three patterns all correspond
to uniform edge-3-colorings of type (4a4b4a4c), as depicted in Fig. 7.

PP

Fig. 5: The coloring of P determines the coloring surrounding vertices above
and below P .
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P P P

Fig. 6: A choice of aspects on the horizontal containing P determines the
coloring of the tiling. This edge-3-coloring is not uniform.

Fig. 7: The three edge-3-colorings of type (4a4b4a4c)

4 Nonuniform Archimedean Coloring

As was demonstrated earlier (Fig. 4), some vertex color configurations admit
nonuniform Archimedean colorings. While every occurrence of nonunformity
was not cataloged, the occurrences observed were all very similar. To illustrate
the mechanism, consider the vertex color configuration 4a4b4a4c, as in Fig. 6.
After placing an initial copy of 4a4b4a4c so that the edges marked a are oriented
horizontally, the other vertices along this horizontal line must be assigned a
vertex color configuration with the edges marked a oriented horizontally as
well; thus, the other two colors (b and c) must be oriented vertically, and
either choice of orientation (b up or b down) is possible. Once a choice has been
made for each vertex along our initial horizontal line, the rest of the coloring
is determined. So, the set of all Archimedean colorings of type (4a4b4a4c)
correspond the set of vertices along a horizontal line, which can be thought of
as a binary digits, and the whole line can be thought of as a bi-infinite string
of 0’s and 1’s. Clearly there are uncountably many such strings.

The vertex color configuration 4a4b4a4c admits both uniform and nonuni-
form Archimedean edge colorings, but a few vertex color configurations admit
nonuniform Archimedean edge colorings but no uniform edge colorings. For
example, consider 3a3a3a4b4b. In Fig. 8a, adjacent vertices P and Q lying at
the ends of an edge between a triangle and a square have been chosen and
their incident edges colored as 3a3a3a4b4b. Without loss of generality, suppose
that PQ has been assigned color a (black). The only color-preserving symme-
try of that takes P to Q is a reflection γ across the perpendicular bisector
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of PQ. But, by considering the effect of γ on the horizontal edges incident
to point R, exactly one of which must be colored b (red), we see that γ is
not a color-preserving symmetry of any Archimedean coloring in which every
vertex has color configuration 3a3a3a4b4b. There are, however, uncountably
many nonuniform Archimedean colorings of this type as each row of squares
can be be colored in independent ways. In Fig. 8b is such a coloring.

Several other vertex color configurations admit uncountably many nonuni-
form Archimedean edge colorings as well. We report those found in Table 12.

P Q

R

(a) The only possible color-preserving
symmetry from P to Q must fix R.

(b) A nonuniform Archimedean edge-2-
coloring of type (3a3a3a4b4b).

Fig. 8

Table 12: Some vertex color configurations admitting uncountably many
nonuniform Archimedean edge colorings. x and y represent wildcards. Those
marked with ∗ admit no uniform edge colorings.

3a3a3a3a3a3b 3a3b3x4y4x 3a3b3c4c4c 3a3a3b4a4∗c
3a3a3a4b4

∗
c 3a3a3b4b4

∗
c 3a3a3a4b4

∗
b 4a4a4a4b

4a4b4a4c 4a4b4c4d 4a8a8b 4a8b8
∗
b

4a4b8c 6a6a6b 6a6b6c

5 The 109 Uniform Edge-c-Colorings

5.1 Figures of the 109 Uniform Edge Colorings
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Table 13: vertex color configurations admitting uniform edge-c-colorings

Vertex Color Number of Vertex Color Number of
Configuration Colorings Configuration Colorings
3a3a3a3a3a3a 1 3a3a3a3a6a 1
3a3a3a3a3a3b 3 3a3a3a3b6b 1
3a3a3a3a3b3b 2 3a3a3b3a6a 1
3a3a3a3a3b3c 2 3a3a3b3b6b 1
3a3a3a3b3a3b 1 3a3a3b3c6c 1
3a3a3a3b3a3c 2 3a3a3a4a4a 1
3a3a3b3a3a3b 1 3a3a3a4b4a 1
3a3a3b3a3a3c 1 3a3a3b4a4b 1
3a3a3b3a3b3b 3 3a3a3b4b4b 1
3a3a3b3a3b3c 2 3a3a3b4c4b 1
3a3a3b3a3c3b 4 3a3b3a4a4a 2
3a3a3b3a3c3c 2 3a3b3a4b4a 2
3a3a3b3a3c3d 1 3a3b3a4c4a 2
3a3a3b3b3c3c 1 3a3b3c4a4c 2
3a3a3b3c3c3b 1 3a3b3c4c4c 2
3a3a3b3c3d3b 2 3a3b3c4d4c 2
3a3b3a3c3b3c 1 3a3a4a3a4a 1
3a3b3a3c3b3d 2 3a3a4a3b4b 1
3a3b3c3a3b3c 1 3a3a4b3a4b 1
3a3b3c3a3b3d 1 3a3b4b3b4b 1
3a3b3c3a3d3e 1 3a3b4b3c4c 1

3a4a6a4a 1 3a3b4c3b4c 1
3a4a6b4a 1 3a6a3a6a 1
3a4b6b4a 1 3a6b3b6a 1
3a4b6c4a 1 4a6a12a 1
3a12a12a 1 4a6a12b 1
3a12b12a 1 4a6b12a 1
4a4a4a4a 1 4a6b12b 1
4a4a4a4b 3 4a6b12c 1
4a4a4b4b 4 6a6a6a 1
4a4a4b4c 4 6a6a6b 3
4a4b4a4b 1 6a6b6c 3
4a4b4a4c 3
4a4b4c4d 4 Total 109
4a8a8a 1
4a8a8b 2
4a8b8a 1
4a8b8c 2
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(36a) (35a3b)1 (35a3b)2 (35a3b)3

(34a32b)1 (34a32b)2 (33a3b3c)1 (33a3b3c)2

(33a3b3a3b) (33a3b3a3c)1 (33a3b3a3c)2 (32a3b32a3b)

(32a3b32a3c) (32a3b3a32b)1 (32a3b3a32b)2 (32a3b3a32b)3

(32a3b3a3b3c)1 (32a3b3a3b3c)2 (32a3b3a3c3b)1 (32a3b3a3c3b)2

(32a3b3a3c30b)3 (32a3b3a3c3b)4 (32a3b3a3c32)1 (32a3b3a3c32)2

(32a3b3a3c3d) (32a32b32c) (32a3b32c3b) (32a3b3c3d3b)1
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(32a3b3c3d3b)2 (3a3b3a3c3b3c) (3a3b3a3c3b3d)1 (3a3b3a3c3b3d)2

(3a3b3c3a3b3c) (3a3b3c3a3b3d) (3a3b3c3a3d3e) (3a4a6a4a)

(3a4a6b4a) (3a4b6b4a) (3a4b6c4a) (3a122a)

(3a12b12a) (44a) (43a4b)1 (43a4b)2

(43a4b)3 (42a42b)1 (42a42b)2 (42a42b)3

(42a42b)4 (42a4b4c)1 (42a4b4c)2 (42a4b4c)3

(42a4b4c)4 (4a4b4a4b) (4a4b4a4c)1 (4a4b4a4c)2
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(4a4b4a4c)3 (4a4b4c4d)1 (4a4b4c4d)2 (4a4b4c4d)3

(4a4b4c4d)4 (4a82a) (4a8a8b)1 (4a8a8b)2

(4a8b8a) (4a8b8c)1 (4a8b8c)2 (34a6a)

(33a3b6b) (32a3b3a6a) (32a32b6b) (32a3b3c6c)

(33a42a) (33a4b4a) (32a3b4a4b) (32a3b42b)

(32a3b4c4b) (3a3b3a42a)1 (3a3b3a42a)2 (3a3b3a4b4a)1

(3a3b3a4b4a)2 (3a3b3a4c4a)1 (3a3b3a4c4a)2 (3a3b3c4a4c)1
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(3a3b3c4a4c)2 (3a3b3c42c)1 (3a3b3c42c)2 (3a3b3c4d4c)1

(3a3b3c4d4c)2 (32a4a3a4a) (32a4a3b4b) (32a4b3a4b)

(3a3b4b3b4b) (3a3b4b3c4c) (3a3b4c3b4c) (3a6a3a6a)

(3a6b3b6a) (4a6a12a) (4a6a12b) (4a6b12a)

(4a6b12b) (4a6b12c) (63a)

(62a6b)1 (62a6b)2 (62a6b)3

(6a6b6c)1 (6a6b6c)2 (6a6b6c)3
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