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ABSTRACT

This article concerns the minimal knotting number for several types of lattices, includ-
ing the face-centered cubic lattice (fcc), two variations of the body-centered cubic lattice
(bcc-14 and bcc-8), and simple-hexagonal lattices (sh). We find, through the use of a
computer algorithm, that the minimal knotting number in sh is 20, in fcc is 15, in bcc-14
is 13, and bcc-8 is 18.

Keywords: Knots; minimal knotting numbers; lattices; knot reductions.

Mathematics Subject Classification 2000: 57M27, 03G10

1. Introduction

Knots in the simple cubic lattice (sc or Z
3) have received some attention in past

articles (see [2,13–16]). These lattice knots are simple closed polygonal curves made
from unit segments whose endpoints lie in Z

3. One of the most obvious questions to
ask is how many unit edges it takes to form a nontrivial knot in Z

3. This question
was answered by Diao in [2]; the answer is 24. That is, the minimal knotting number
in Z

3 is 24. Such a minimal knot is shown in Fig. 1.
Natural lattice-specific invariants can be defined for knot types, such as the

number of unit edges required to form a knot of the given type in Z
3 (the minimal

step number of a knot type). Janse van Rensburg used simulated annealing algo-
rithms to estimate these invariants for several knot types of small crossing number
in Z

3 [13].
Our goal in this paper is to generalize the result of Diao concerning minimal

knotting numbers to other three-dimensional point lattices. It was conjectured by
Janse van Rensburg in [16] that the minimal knotting number in the face-centered
cubic lattice is 16. We show this conjecture is false, and we will give the minimal
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Fig. 1. A minimal Z
3-lattice knot.

knotting numbers of other lattices as well. In order to do so, some definitions will
be needed.

1.1. Definitions

A point lattice in R
3 is a Z-module L = {a1v1 + a2v2 + a3v3|ai ∈ Z, vi ∈

R
3}. The simple cubic lattice, denoted sc or Z

3, is a point lattice with
basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. If we define the neighbors of (0, 0, 0) to be
{(±1, 0, 0), (0,±1, 0), (0, 0,±1)}, we can then obtain the neighbors of any other
point in Z

3 by translation as lattices are invariant up to translations along direc-
tions which are linear combinations of the basis vectors.

In this paper, we consider knots in four other point lattices, which we will define
by giving a basis and neighbors of (0, 0, 0). These lattices are the simple hexagonal
lattice (sh), the face-centered cubic lattice (fcc), and two versions of the body centered
cubic lattice which we call bcc-8 and bcc-14. For sh the basis is

{h1, h2, h3} =

{
(1, 0, 0),

(
1
2
,

√
3

2
, 0

)
, (0, 0, 1)

}

and the eight neighbors of zero are{
±(1, 0, 0),±

(
1
2
,

√
3

2
, 0

)
,±
(
−1

2
,

√
3

2
, 0

)
,±(0, 0, 1)

}
,

and for fcc the basis is

{f1, f2, f3} =
{

(1, 0, 0), (0, 1, 0),
(

1
2
,
1
2
,

1√
2

)}
and the twelve neighbors of zero are

± (1, 0, 0), ±(0, 1, 0), ±
(

1
2
,
1
2
,

1√
2

)
,

±
(
−1

2
,
1
2
,

1√
2

)
, ±

(
1
2
,−1

2
,

1√
2

)
, ±

(
−1

2
,−1

2
,

1√
2

)
.

Each of these lattices is well-known, and for more details we point the reader
to [8, 17].
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For the body centered cubic lattice we have basis

{b1, b2, b3} = {(1, 0, 0), (0, 1, 0), (1, 1, 1)}
and consider two different ways of defining the neighbors of (0, 0, 0). The first of
these, which we will call bcc-8, is the one typically used by chemists, and results in
a total of eight neighbors of (0,0,0):

{±(1, 1, 1),±(−1, 1, 1),±(1,−1, 1),±(−1,−1, 1)},
again we refer the reader to [17]. While this notion of neighbors works well for
describing crystallographic structures of atoms, we were motivated by the connec-
tion between lattices and their corresponding Voronoi tessellations [18], which is
what led us to think about different versions of bcc. Briefly, there are only five
combinatorially distinct convex polyhedra which tessellate 3-space by translation,
and the centroids of these polyhedra in a tessellation determine a point lattice.
It seems natural to define neighbors in a lattice in such a way that two points in
the lattice are neighbors if their polyhedra share a face. The tessellation of 3-space
by cubes gives the sc lattice, the tessellation of 3-space by hexagonal prisms gives
the sh lattice, and the tessellation of 3-space by rhombic dodecahedra gives the fcc
lattice. We point out that a tiling of space by elongated dodecahedra corresponds
to a point lattice which, for our purposes, is combinatorially equivalent to fcc, so
we did not consider it separately. Finally, the tessellation by truncated octahedra
gives the points of bcc, but the neighbors determined by polyhedra sharing a face
results not in the eight neighbors of (0, 0, 0) given above, but rather in the following
fourteen neighbors:

{±(1, 0, 0),±(0, 1, 0),±(1, 1, 1),±(−1, 1, 1),±(1,−1, 1),±(−1,−1, 1),±(2, 0, 0)},
giving bcc-14.

Given two neighboring lattice points, the straight line segment joining them is
called a step. We point out that in bcc-14 there are two distinct step lengths:
the ratio of the distance between neighbors corresponding to hexagonal faces
of the truncated octahedron to neighbors corresponding the square faces is 1 :

√
3.

The minimum number of steps required to form a knot in a given lattice is the
minimal knotting number of the lattice.

2. Main Result

Theorem 2.1. The minimal knotting numbers are summarized below:

(1) The minimal knotting number in sh is 20.
(2) The minimal knotting number in fcc is 15.
(3) The minimal knotting number in bcc-14 is 13.
(4) The minimal knotting number in bcc-8 is 18.
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Fig. 2. Minimal knots (left to right) in sh, fcc, bcc-14, and bcc-8.

The knots in Fig. 2 certainly establish upper bounds on the minimal knotting
numbers for sh, fcc, bcc-14, and bcc-8. To verify that knots (other than the unknot)
formed from fewer steps in each of these lattices do not exist, our approach was to
use a computer program to form every simple closed curve in each lattice of length
less than or equal to the minimal knotting number for that lattice. We then used
a loop reduction algorithm to verify that (1) all closed loops of length less than
the claimed minimal knotting number can be shrunk via ambient isotropy to the
point where they are trivial and (2) nontrivial knots of the claimed minimal length
exist. This resulted in a listing of nontrivial knots of minimal length. Many of the
knots in this list were congruent, so the list of knots could be reduced somewhat by
factoring out obvious congruences. Upon visual inspection of these remaining knots,
all appear to be trefoil knots. The algorithms used are described in the next section.

3. Details of the Computations

3.1. Metrics in sh, fcc, and bcc

In order for our algorithm to operate efficiently, we need metrics for each of the
lattices; that is, for each of the lattices, we need a function that can count the
minimum number of steps required to connect two lattice points. Such a function
for fcc was demonstrated in [12], but to the best of the authors’ knowledge, no such
functions have been previously demonstrated for sh, bcc-14, or bcc-8. In a separate
paper, we derive the metrics for sh, bcc-14, and bcc-8 and prove that they do in
fact count the minimum number of steps required to connect two lattice points [11].
One way to express these metrics involves using coordinates relative to the bases
given above. For example, for sh we would write xh1 +yh2 +zh3 as simply (x, y, z).
Also, for simplicity our metrics measure the distance from the lattice point (x, y, z)
to the origin. Some of the metrics are given in the following theorem:

Theorem 3.1 (Lattice Metrics #1). Define

(1) [sh] dsh(x, y, z) = max{|x|, |y|, |x + y|} + |z|.
(2) [fcc] dfcc(x, y, z) = max{|x + y + z|, |x − y|, |z|, 1

2 (|x + y + z|+ |x − y| + |z|)}.
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Then, dsh and dfcc are metrics that measure the minimum number of steps
required to connect the point (x, y, z) expressed in terms of basis of sh and fcc
(respectively) to the origin.

Part 2 of Theorem 3.1 is given in [12]. Using the Conway–Sloan characterization
of the fcc (the subset of points (x, y, z) in Z

3 for which x + y + z is even), a second
metric for fcc was found as well. In [11], we give a simplified version of that metric,

d̄fcc(x, y, z) = max
{
|x|, |y|, |z|, 1

2
(|x| + |y| + |z|)

}
,

and go on to give metrics for both bcc-14 and bcc-8. Since fcc, bcc-14, and bcc-8
are geometrically and combinatorially similar, we can model bcc-14 and bcc-8 as fcc
with added or removed adjacencies. Thus, using the Conway–Sloan characterization
of fcc to model bcc-14 and bcc-8, we get the following theorem:

Theorem 3.2 (Lattice Metrics #2). Define

(1) [bcc-14] dbcc-14(x, y, z) = max
{|x|, |y|, 1

2 (|x| + |y| + |z|)}.
(2) [bcc-8] dbcc-8(x, y, z) = max{|x|, |y|, |z|}.
Then dbcc-14 and dbcc-8 are metrics that measure the minimum number of steps
required to connect the point (x, y, z) expressed in terms of the Conway–Sloan
description of bcc-14 and bcc-8 (respectively) to the origin.

3.2. The knot reduction algorithm

In each of the lattices studied, surrounding each lattice point is a set of neighbors,
and corresponding to each of these neighboring points is a direction vector. So, each
lattice L has associated with it a set of neighbor vectors, AL. A polygonal curve
formed from edges connecting neighboring lattice points can then be represented
by a list

(x1, x2, x3, . . . , xn),

where xi ∈ AL. This is, essentially, the data structure for polygonal lattice curves
that we used in our program. We note that the neighbor vectors of the lattice can
be expressed in terms of a basis for the lattice so that all arithmetic needed to be
performed in the algorithm can be done with integers.

If (x1, x2, x3, . . . , xn) is a closed lattice curve, to determine whether or not this
curve is knotted, we developed an algorithm that attempts to reduce the curve via a
sequence of transformations that do not change the knot type of the curve (i.e. the
transformations never introduce self intersection and never allow one strand to pass
through another). Thus, the original loop and the reduced loop will be isotropic.
If this sequence of transformations reduces the given loop to a length of four or
less, then we are assured that the original loop is isotropic to the unknot. If the
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original loop does not reduce to length four or less, we record the original loop as
a suspected knot, which is later checked for knottedness by other means.

For sh, fcc, and bcc-14, there are only two kinds of transformations needed. We
call these parallel moves and triangular moves. bcc-8 requires parallel moves along
with two more kinds of transformations we call square moves and flip moves. We will
illustrate parallel and triangle moves for sh only. They are similar in fcc and bcc-14.
In sh, the neighbor vectors are a1 = (1, 0, 0), a2 = (−1, 0, 0), a3 =

(
1
2 ,

√
3

2 , 0
)
, a4 =(

− 1
2 ,−

√
3

2 , 0
)
, a5 =

(
− 1

2 ,
√

3
2 , 0

)
, a6 =

(
1
2 ,−

√
3

2 , 0
)
, a7 = (0, 0, 1), a8 = (0, 0,−1).

Let Ash = {a1, a2, . . . , a8}. We note that a2 = −a1, a4 = −a3, a6 = −a5, and
a8 = −a7. Let K = (x1, x2, . . . , xn) with xi ∈ Ash be a closed loop in sh.

3.2.1. Parallel moves

A parallel move on K in the direction of ai is any transformation of K of the form

(x1, . . . , xj−1, ai, xj+1, . . . , xk−1,−ai, xk+1, . . . , xn)
↓

(x1, . . . , xj−1, xj+1, . . . , xk−1, xk+1, . . . , xn).

Thus, a parallel move on K in the direction of ai simply deletes an instance
of ai and an instance of −ai in K. This move reduces the number of steps in the
curve by 2.

For example, the knot at left in Fig. 3 is then given by

(a7, a7, a1, a6, a8, a8, a8, a2, a2, a5, a7, a3, a7, a6, a4, a6, a8, a8, a5, a5, a7, a7).

Upon deleting the first instance of the pair (a7, a8), we get the knot at left,
given by

(a7, a1, a6, a8, a8, a2, a2, a5, a7, a3, a7, a6, a4, a6, a8, a8, a5, a5, a7, a7).

Fig. 3. A parallel move.
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ai aj

ak

Fig. 4. ai + aj = ak .

It is certainly recognized that such a move may result in self-intersection. In
our reduction algorithm, each time such a move is performed, the resulting curve
is checked to see if it is simple.

3.2.2. Triangular moves

Let ai, aj , and ak be three neighbor vectors for which ai + aj = ak, as in Fig. 4. A
triangular move is any move of one of the following two forms (the front triangular
move and the back triangular move corresponding to the relation ai + aj = ak):

(x1, . . . , xj−1, ai, xj+1, . . . , xk−1, aj , xk+1, . . . , xn)
↓

(x1, . . . , xj−1, ak, xj+1, . . . , xk−1, xk+1, . . . , xn)
or

(x1, . . . , xj−1, ai, xj+1, . . . , xk−1, aj , xk+1, . . . , xn)
↓

(x1, . . . , xj−1, xj+1, . . . , xk−1, ak, xk+1, . . . , xn).

We note that a triangular move reduces the length of the curve by one step.
As an example, in Fig. 5, we see the following triangular move being performed

Fig. 5. A triangular move.
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(using the relationship a4 + a5 = a2):

(a7, a7, a5, a3, a1, a6, a4, a6, a8, a8, a2, a2, a5, a7, a3, a1, a6, a4, a6, a8, a8, a5, a5, a7)
↓

(a7, a7, a3, a1, a6, a2, a6, a8, a8, a2, a2, a5, a7, a3, a1, a6, a4, a6, a8, a8, a5, a5, a7).

3.2.3. Square moves (bcc-8 only)

In bcc-8, the neighbor vectors are a1 = (1, 1, 1), a2 = (−1,−1,−1), a3 = (−1, 1, 1),
a4 = (1,−1,−1), a5 = (−1,−1, 1), a6 = (1, 1,−1), a7 = (1,−1, 1), a8 = (−1, 1,−1).
Exactly as before, let Abcc-8 = {a1, a2, . . . , a8} so that a curve K in bcc-8 can be
expressed as K = {x1, x2, . . . , xn} where xi ∈ Abcc-8. Suppose that xi, xj , and xk

are consecutive edges of K for which the initial point of xi and the terminal point
of xk are neighbors. Then a square move is a move of the form

(x1, x2, . . . , xi, xj , xk, . . . , xn)
↓

(x1, x2, . . . , xm, . . . , xn)

where xm is the edge connecting the initial point of xi to the terminal point of xk.
We illustrate a square move in Fig. 6.

3.2.4. Flip moves (bcc-8 only)

A flip move is a transformation of a given closed loop in bcc-8 which does not
change the length of the closed loop. In bcc-8, there exist closed curves which are
clearly trivial knots but to which none of the previous moves apply. For example,
consider the curve {a1, a1, a8, a8, a5, a5, a3, a3} depicted at left in Fig. 7. The idea of
a flip move is to change the closed loop without changing its knot type to a different
closed loop to which one of the previous moves does apply. All flip moves replace
a pair of consecutive edges between which the angle is θ = arccos(1/3) by rotating
them about the axis through the initial point of the first edge and the terminal
point of the second edge by an angle of either π/2 or π. In Fig. 7, we illustrate such
a transformation.

3.2.5. The algorithm

For a given lattice, there are only a handful of possible types of moves. Thus, the
basic idea for our reduction algorithm is to apply all of these possible moves in

Fig. 6. A square move in bcc-8. The points A and B are neighbors.
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Fig. 7. A flip move in bcc-8.

some order until one of the moves successfully changes the closed curve, and then
repeat this until either the closed curve reduces all the way or it cannot be reduced
any further. For the purpose of illustrating our ideas, we will focus on how this is
done in sh, with the other lattices being done similarly.

Let the parallel move in the direction of ai be denoted by [ai,−ai]. The triangu-
lar moves corresponding to the relation ai + aj = ak will be denoted by [ak, ai, aj ]
or [ai, aj , ak] (for the front and back triangular moves, respectively). In sh we have
a total of 16 possible moves (see Table 1).

The algorithms then goes as follows:

(1) Start with a simple closed lattice curve x = (x1, x2, . . . , xn).
(2) Starting with m1 and going in order to m16, apply the moves to x until either

one of the following happens:

(a) x is successfully reduced by mi (i.e. reduced without introducing self inter-
section or allowing strand passage). Let x = mi(x)

(i) If x has been reduced completely, then x is the unknot.
(ii) If x has not been completely reduced, return to the beginning of step 2.

(b) x is not reduced by any of the moves. If this happens, we store x as a
probable knot and analyze it later.

Note that in our enumeration of moves we listed the parallel moves first. This
makes the algorithm more efficient because parallel moves reduce the number of
steps in the curve by 2, while triangle moves reduce the number of steps in the curve

Table 1. sh moves.

Parallel Front triangular Back triangular

m1 = [a1, a2] m5 = [a3, a1, a5] m11 = [a1, a5, a3]
m2 = [a3, a4] m6 = [a6, a1, a4] m12 = [a1, a4, a6]
m3 = [a5, a6] m7 = [a5, a2, a3] m13 = [a2, a3, a5]
m4 = [a7, a8] m8 = [a4, a2, a6] m14 = [a2, a6, a4]

m9 = [a1, a3, a6] m15 = [a3, a6, a1]
m10 = [a2, a4, a5] m16 = [a4, a5, a2]
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by 1. We also point out that this reduction algorithm is not capable of reducing
all unknots, regardless of their length or complexity (see [7, pp. 13–14] for an
example of such a long tangled unknot). However, since we are using the algorithm
to find minimal knotting numbers, we consequently do not attempt to reduce knots
of great length, and hence our algorithm never encounters such unknots which it
cannot reduce.

3.3. The exhaustive knot finding algorithm

The program utilized to determine the minimal knotting number for each of these
lattices is fairly straight forward. The gist of it is the following: Given a positive
integer N ≥ 4, the program forms all possible closed polygonal curves (up to some
rigid motions) of length less than or equal to N in the lattice (using a so-called
“worm” algorithm) and attempts to reduce each of these closed curves to the unknot
using the previously discussed reduction algorithm. Any closed curve that cannot
be reduced is saved to disk and analyzed later. So, for example, when we wanted
to show that the minimal knotting number is 13 in bcc, we ran the program with
N = 13, which generated a list of irreducible curves of length at most 13. One
then checks that (1) at least one of the length 13 irreducible curves is a knot, and
(2) this list does not contain length 12 or less knots. Each of the knots this list can
then be visually checked for knot type as a final step.

As a stand alone program running on a single CPU, the outline of the program
is as follows:

(1) Start with a polygonal curve of length 1 consisting of the first neighbor vector
from AL.

(2) Add a vector onto the end of the currently formed polygonal curve, starting
with the first neighbor vector in AL.

(a) If the last neighbor vector added causes the curve to self-intersect, then
remove this vector and replace it the next vector in AL.

(i) If no more unused vectors are available in AL, then the last vector (in
the curve) is deleted and replaced with the direction in AL whose index
follows the index of the vector just deleted. This process may cascade
for several steps, and if it cascades until all of the vectors are deleted,
then the program has completed its search.

(b) If the distance (measured in steps) from the endpoint of the newly expanded
curve to the origin is greater than the difference in the current length of the
curve and the maximum length allowed, this means that the curve cannot
close itself off without using more than N vectors. So remove the newly
added vector and replace it with the next vector in AL.

(i) If no more unused vectors are available in AL, then the last vector is
deleted and replaced with next direction in AL that comes after the
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vector just deleted. This process may cascade for several steps, and if
it cascades until all of the vectors are deleted, then the program has
completed its search.

(3) If a vector was successfully added in step 2, then check to see if the resulting
polygonal curve is closed.

(a) If the curve is closed, the knot reduction algorithm is applied to that closed
curve to detect whether or not it is the unknot. If the algorithm fails to
reduce the curve to the unknot, the curve is recorded to disk for later
inspection.

(i) After checking for knottedness, the last vector of the curve is incre-
mented to the next vector in AL and tested as in step 2.

(b) If the curve is not closed, then return to step 2.

This algorithm is called a “worm” algorithm because one can visualize a
polygonal worm of initial length 1 that can grow to a maximal length of N . With
its tail attached at the origin, it stretches along the lattice, its head searching out
all possible ways through the lattice to make it back to its tail without biting itself
in two.

Obviously, the number of steps required for this program to exhaustively find
and check each closed polygonal curve is exponential in the number of primary
directions in the lattice and the maximum length. For this reason, we found that a
single desktop computer could not complete the job required to verify the minimum
knotting numbers in Theorem 2.1 in a reasonable amount of time. We instead used
a computing cluster along with the program PVM (Parallel Virtual Machine) [6]
to break up the big computing job into lots of smaller jobs and distributed those
smaller jobs to many computing nodes. To demonstrate our strategy, consider fcc
with minimal knotting number 15. We pre-computed the complete list of all closed
curves in fcc of length less than or equal to 8. This is a fairly long list, but not
astronomically large. Because the program essentially orders the curves, we used
this pre-computed list of curves as starting and stopping points for the algorithm.
Using PVM, a master program which has access to the pre-computed list of length
8 curves starts a certain number of slave programs. The master program then reads
the first two lines of the list and sends them to slave program #1, the second and
third lines to slave program #2, and so on, until all of the slave programs have a
job. Each slave program then processes all closed curves of length less than or equal
to 15 “between” the the start and stop values it received. When a slave program has
completed its search, it sends a message back to the master that it has completed
its job, and the master sends it another job. This goes on until the master has sent
out all lines of the list of length 8 curves and has received messages that all jobs
have been completed. A cluster of 45 dual processor computing nodes (90 CPUs)
reduced jobs that would have taken months or years on a single computer to a
week or so.
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A web page where the computer code for this program along with the output
can be seen at

http://www.math.uttyler.edu/cmann/knotprograms/.

4. Program Results and Postprocessing

For each lattice, the program produced a list of irreducible simple closed lattice
curves. Many of these curves were congruent to one another. As a postprocessing
step, we checked for some congruences (e.g. cyclic permutation of the vectors defin-
ing the knot, or a cyclic permutation of a lattice symmetry transformation of the
knot) to reduce the number of knots. In the sh lattice we found 496 irreducible
knotted curves, which reduced to 124 distinct knotted lattice curves after removing
lattice symmetric duplications. In the fcc lattice we found 160 irreducible knotted
lattice curves, 32 of which were unique after removing lattice symmetric duplica-
tions. In the bcc-8 lattice we found 7128 irreducible knotted curves, which reduced
to 132 distinct knotted lattice curves after removing lattice symmetric duplications.
Finally, in the bcc-14 lattice we found 80 irreducible knotted lattice curves, of which
52 remained after removing lattice symmetric duplications. All irreducible curves
were knotted and appear to be trefoil knots.

These lists of knots are given in Tables 2–5 (and at the web site given above).

5. Related Open Questions

(1) We define the L-minimum step number of a knot type K to be the minimum
number of steps required to form a knot of type K in L. Very little is known
about minimal step numbers of knot types in lattices other than Z

3. In Z
3,

Janse van Rensburg [13] estimated, using simulated annealing, the minimum
step number of several knot types with low crossing number. His estimates
show that the minimal step number increases less than linearly in the number
of crossings. (Preliminary investigations of our own point toward a similar trend
in fcc.) Diao and Ernst [3] provide a particular family of torus knots in which
the minimal step numbers grow on the order of n3/4 where n is the minimal
crossing number of a knot. Diao, Ernst and Thistlethwaite [4] establish that
the aforementioned growth does not always happen by giving a family of knots
in which the minimal step numbers grow linearly with respect to the minimal
crossing numbers.

(2) In [10] a relationship between the minimal step number of a knot in Z
3 and the

minimal number of cubes required to form a knot of the same type is given:
The number of cubes required is twice the number of steps required. Are there
similar relationships between knots formed in sh, fcc and bcc-14 and knots
formed from hexagonal prisms, rhombic dodecahedra, or truncated octahedra
(respectively)?
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Table 2. List of irreducible bcc-8 knots using the convention of 0 = (1, 1, 1), 1 = (−1,−1,−1),
2 = (−1, 1, 1), 3 = (1,−1,−1), 4 = (−1,−1, 1), 5 = (1, 1,−1), 6 = (1,−1, 1), and 7 = (−1, 1,−1).

002713460057144135 002713460357244135 002713463057244135 002713463507244135
002713463552244135 002713463570244135 002713466557244135 002713566427553144
002713566427571166 002713566427571346 002713566427571364 002713566427571436
002713566427571463 002714135004271363 003314127506631722 003314172506631722
003314175004631722 003314175026631722 003314175206631722 003314177006631722
003314217506631722 003314227536624175 003314227536631722 003314227536641275
003314227536641725 003314227536641752 003314227536641770 003314227536642175
003314227536644775 006315722463557144 006316427550641177 020631127506421135
020631127506441375 020631127506441735 020631127506443175 020631127506447135
020631127506461175 027511360247753646 027511460502711636 027511460551724636
027511460557124636 027511460557214636 027511460557241636 056351724660571142
056357124660571142 056357214660571142 056357744660571142 056361427550641172
056364127550641172 056364217550641172 056364271550641172 056364477550641172
064477133002241355 064477135602241355 064477136502241355 064477153602241355
066117350244635772 066117420533642775 066117500241331720 042775364122053136
042775364420753136 042775364422553136 042775364427053136 042775364472053136
053112200631771460 053112226635771460 053112240635771460 053112246035771460
053112246350771460 053112246655771460 063177146005317420 063177146005371420
063177146005731420 063177204635311220 063177204635314225 063177204635314270
063177204635317420 063177204635371420 063177204635511420 063177204635731420
063177226635311220 063177226635314225 063177226635314270 063177226635317420
063177226635371420 063177226635511420 063177240635311220 063177240635314225
063177240635314270 063177240635317420 063177240635371420 063177240635511420
063177240635731420 063177246035511420 063177246035731420 063377224635077146
063377224635527146 065315724660571142 065317224635527146 072414360577246335
072414603577246335 072414630577246335 072414665577246335 004411350220631175
004411350221463575 004411350224163575 004411350224631575 036424137500641775
036424173500641775 036424713500641775 042471350064177536 057172046335724436
057172406335724436 057174206335724436 006341720053144175 006341720753644175
022175364122053136 022175364400571136 022175364402753136 022175364472053136
022175364602571136 022175364605721136 042753714600271336 050631127206351142
050634177206351142 005371460027133142 053314200271336427 053314200571346427
055724163550241146 055724163605271146 055724613560271146 063642715506413772

Table 3. List of irreducible bcc-14 knots using the convention that 0 = (1, 0, 0), 1 = (−1, 0, 0),
2 = (0, 1, 0), 3 = (0,−1, 0), 4 = (1, 1, 1), 5 = (−1,−1,−1), 6 = (−1, 1, 1), 7 = (1,−1,−1),
8 = (−1,−1, 1), 9 = (1, 1,−1), a = (−1, 1, 1), b = (1,−1,−1), c = (0, 0, 1), and d = (0, 0,−1).

4c1d3c42d31d0 40313d24c3d12 4031d1c40d312 42bd3cc0db13a 4c1d3d24c31d0
4c31d042133d2 40311d04c13d2 40311d04c31d2 40311d04c35b2 40311d04c3d12
40311d04c85d2 46137d2cc1d70 4a351200c15d2 4c3d3124031d2 4a31bd0cc3db2
4c1d3042131d0 4c1d3042133d2 40751c42d3312 4c3dd1c4031d2 4c3dd1c403d12
4c3dd1c407512 4c3dd1c40d312 4c3d1c40d13d2 4c3d1d04c13d2 40d58c42d3312
42133d24c13d0 42133d24c1570 42133d24c85d0 4c3d1304213d2 40d13c42d3312
421d3c40d1130 421d3c42d3130 461d73c221370 4213d1c40d130 4c1dd3c4213d0
4c1dd3c421570 4c1dd3c421d30 4c1dd3c42d130 42d31c40d1130 4213d04c1d130
4031d04c1d312 40d31c42d3312 407d1cc2d7316 40d53c2203516 4213d3c42d130
42d58c40d1130 46153022c35d0 42d13c40d1130 42b53c40d1130 403d1c40d1312
403d1c42d3312 4031d3c42d312
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Table 4. List of irreducible sh knots using the convention that 0 = (0, 0, 1), 1 = (0, 0,−1),
2 = (1, 0, 0), 3 = (−1, 0, 0), 4 = (1/2,

√
3/2, 0), 5 = (−1/2,−√

3/2, 0), 6 = (1/2,−√
3/2, 0), and

7 = (−1/2,
√

3/2, 0).

02611550047142653374 02611550074142653374 02611560077142653374 02621133000241155374
02621133000421155374 02651135004412653774 02653771426500331124 02653771426500351144
02653771426500531144 02477356212400331156 02477356214200331156 02477356214400351156
02477356214400531156 02653117700621653744 02653177426503311240 02653177426503311420
02653177426503511440 02653774126500331124 02653774126500331142 02653774126500351144
02653774126500531144 02655374212600331174 02655374216200331174 02655374216600371174
02655374216600731174 02473556124700331126 02473556124700331162 02473556124700731166
02421133000261177356 02421133000621177356 02611770005611447356 02611770006511447356
02611770035612447356 02611770035621447356 02611770356242113300 02611770356244113500
02611770356244115300 02611770356244173560 02265137440056111370 02265137440056111730
02265137440065111370 02265137440065111730 02265137470066111370 02265137470066111730
02426153770026111330 02426153770062111330 02611147005516247330 02611147005561247330
02611147005562147330 02611147005562417330 02611147005562471330 02611153004412653770
02611153004421653770 02611153004426513770 02611153004426531770 02411330056214773562
02426531770026111330 02426531770062111330 02653311240005511474 02653311240005611774
02653311420005511474 02653311420005611774 02653311420006511774 02411740055162473356
02611330074216553742 02611773056242113300 02611773056244113500 02611773056244115300
02216537440056111370 02216537440265311370 02216537442605311370 02216537470066111370
02611133002412653770 02611133002421653770 02611133002426513770 02611135004426513770
02611135004426531770 02247315660047111350 02247315660047111530 02247315660074111530
02265317440056111370 02265317440056111730 02411550004711665374 02411550007411665374
02411550037412665374 02411133002612473550 02411133002624173550 02411133002624713550
02411133002624731550 02214735650044111350 02214735650044111530 02214735660047111350
02214735660047111530 02214735660074111530 02214735662407311350 02473711660004711556
02211137006621473530 02211137006624173530 02211173006621473530 02211173006624173530
02426513770062111330 02411770056162473356 02411770065162473356 02421653770062111330
02211350374266117300 02624173550042111330 02473551142000331126 02611653074426531770
02611653704426531770 02624731550042111330 02211370005611447356 02211370006511447356
02211370035612447356 02211370035621447356 02473311260004711556 02211350004711665374
02211350037412665374 02411137006624173550 02411137006624731550 02655114700062113374
02655117400026113374 02211530007411665374 02211530037412665374 02624713550042111330

Table 5. List of irreducible fcc knots using the convention that 0 = (1, 0, 0), 1 = (−1, 0, 0), 2 =
(0, 1, 0), 3 = (0,−1, 0), 4 = (1/2, 1/2, 1/

√
2), 5 = (−1/2,−1/2,−1/

√
2), 6 = (−1/2, 1/2, 1/

√
2),

7 = (1/2,−1/2,−1/
√

2), 8 = (−1/2,−1/2, 1/
√

2), 9 = (1/2, 1/2,−1/
√

2), a = (1/2,−1/2, 1/
√

2),
b = (−1/2, 1/2,−1/

√
2).

407b168a792b13a 407b168a792b58a 407b1683092b13a 407b1683092b58a 4095168a792b13a
4095168a792b58a 42153702681590a 4618a79b2483579 4618a79b26a3579 4a83592640351b9
4a8359264a751b9 4a85b2903861590 4a85b2903861b70 42153794681590a 4a38129704815b9
4a3812970a615b9 42613790481b530 42613790a61b530 4815b94a386b970 4a751b94a837b26
4a837b2640351b9 4a07b1862073512 4a0951862073512 42685790481b530 42685790a61b530
48375b640a85b92 483751240a31b92 483751240a85b92 40a31b926a37512 429b58a04215738
4815b20a386b970 421573a629b58a0

(3) Changing the definition of neighbors so that two points are neighbors if their
Voronöi cells intersect (rather than just sharing a facet as before) results in
some interesting open questions. For example, in the cubic lattice there would
be 26 neighbors around each lattice point (think of a Rubik’s cube). What



August 18, 2009 16:27 WSPC/134-JKTR 00737

Minimal Knotting Numbers 1173

would the minimal knotting number be in this lattice? What are the distance
functions in these lattices? Open questions 1 and 2 would apply as well.
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