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Abstract

We present some complementary results to Bidian and Bejan (2012). Part

1 provides necessary and sufficient transversality conditions for an agent’s opti-

mization problem. They are extensions to stochastic environments of the con-

ditions given by Kocherlakota (1992), or alternatively, extensions to nonzero

debt constraints of the corresponding conditions in Forno and Montrucchio

(2003). Part 2 presents an elementary proof of the characterization of NTT

debt limits (Theorem 3.5 in the main paper) for the case when debt constraints

bind in bounded time, that requires no martingale techniques or boundedness

assumptions on the discounted debt limits. Part 3 complements results in Sec-

tion 5.1 (in the main paper), showing that all the equilibria that can sustain

bubbles under an interdiction to trade can be achieved from fixed, zero initial

wealth for the agents. Thus endogeneity of debt limits causes multiplicity of

not only asset prices (through bubbles), but also of real equilibrium allocations.

1 Transversality conditions

We analyze the problem Pt(ât, φ, p) of a consumer that faces debt bounds φ, pricing

kernel p and starts with wealth ât (Ft-measurable) at period t (see Section 3 in the
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main text). Let (c̄, ā) ∈ Ct(ât, φ, p) be the optimal consumption (assumed positive)

and asset holdings for the agent. Familiar variational arguments show that (c̄, ā)

satisfies the following Kuhn-Tucker necessary conditions, for all s ≥ t:

u′s(c̄s)− u′s+1(c̄s+1)
ps
ps+1

≥ 0, (1.1)(
u′s(c̄s)− u′s+1(c̄s+1)

ps
ps+1

)
(ās+1 − φs+1) = 0. (1.2)

Let ēs := es + φs − Es ps+1

ps
φs+1, for all s ≥ t. Adapting the arguments of Forno and

Montrucchio (2003), we obtain the following necessary transversality condition:1

Lemma 1.1 (Necessary transversality condition). The optimal path (c̄, ā) satisfies

lim
s→∞

Etu
′
s(c̄s)(ās − φs) = 0. (1.3)

Proof. Fix an ε̄ > 0 a period s > t. Concavity implies that for any 0 < ε < ε̄ and

n ≥ t,

un(c̄n)− un(c̄n + ε(ēn − c̄n)) ≤ ε

ε̄
(un(c̄n)− un(c̄n + ε̄(ēn − c̄n))) .

We construct the alternative asset holdings process (an(ε))∞n=t where an(ε) = ān if t ≤
n ≤ s, and an(ε) = (1− ε)ān + εφn if n ≥ s+ 1. It sustains the feasible consumption

process (cn(ε))∞n=s defined by cn(ε) = c̄n if t ≤ n < s, cs(ε) = c̄s+Es
ps+1

ps
(ās+1−φs+1),

and cn(ε) = c̄n + ε(ēn − c̄n) for n > s. Optimality of c̄ implies that

0 ≤ Et (us(c̄s)− us(cs(ε))) + lim sup
T→∞

Et

T∑
n=s+1

(un(c̄n)− un(cn(ε))) . (1.4)

Notice that

T∑
n=s+1

1

ε
(un(c̄n)− un(cn(ε))) ≤

∞∑
n=s+1

1

ε̄
(un(c̄n)− un(cn(ε̄)))+ ,

and the term
∑∞

n=s+1
1
ε̄

(un(c̄n)− un(cn(ε̄)))+ is integrable, by hypothesis. Fatou’s

1 The proof works for general period utilities ut(·), not necessarily of the discounted and bounded
variety assumed in the text, if one uses a weak optimality criterion (Forno and Montrucchio 2003)
and if there exists ε̄ > 0 such that E

∑∞
s=t (us(c̄s)− us(c̄s + ε̄(ēs − c̄s)))+ <∞.
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lemma gives

lim sup
T→∞

Et

T∑
n=s+1

1

ε
(un(c̄n)− un(cn(ε))) ≤ Et lim sup

T→∞

T∑
n=s+1

1

ε
(un(c̄n)− un(cn(ε)))

≤ Et

∞∑
n=s+1

1

ε̄
(un(c̄n)− un(cn(ε̄)))+ . (1.5)

Dividing both sides of (1.4) by ε and using (1.5),

−Et
1

ε
(us(c̄s)− us(cs(ε))) ≤ Et

∞∑
n=s+1

1

ε̄
(un(c̄n)− un(cn(ε̄)))+ <∞.

By the monotone convergence theorem, when ε↘ 0, the left hand side of the above

equation converges to Etu
′
s(c̄s)

ps+1

ps
(ās+1 − φs+1), which equals Etu

′
s+1(c̄s+1)(ās+1 −

φs+1), due to the Kuhn-Tucker equations (1.1),(1.2). The conclusion follows by

letting s→∞.

We include for completeness the standard proof of sufficiency of the Kuhn-Tucker

and transversality conditions for the optimality of a path.

Lemma 1.2 (Sufficient transversality condition). If a feasible path (c̄, ā) ∈ Bt(ât, φ, p)

satisfies the Kuhn-Tucker conditions (1.1) and (1.2), then for any other feasible path

(c, a) ∈ Bt(ât, φ, p) and any bounded stopping time T ≥ t,

Et

T∑
s=t

(us(cs)− us(c̄s)) ≤ Etu
′
T+1(c̄T+1)(āT+1 − φT+1). (1.6)

Thus a sufficient condition for (c̄, ā) to be optimal for problem Pt(ât, φ, p) is

lim inf
s→∞

Etu
′
s(c̄s)(ās − φs) = 0, (1.7)

Proof. Let µs+1 := u′s(c̄s) − u′s+1(c̄s+1) ps

ps+1
. Consider an arbitrary feasible path
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(c, a) ∈ Bt(ât, φ, p). Using concavity of us(·) and the budget constraints,

Et

T∑
s=t

(us(cs)− us(c̄s)) ≤ Et

T∑
s=t

u′s(c̄s)(cs − c̄s) =

= Et

T∑
s=t

u′s(c̄s)

(
as − φs − Es

ps+1

ps
(as+1 − φs+1)

)
−

−Et
T∑
s=t

u′s(c̄s)

(
ās − φs − Es

ps+1

ps
(ās+1 − φs+1)

)
.

We analyze separately the last two terms. Using the Kuhn-Tucker conditions

(1.1) and (1.2), which show that µs+1 ≥ 0 for all s ≥ t, it follows that

Et

T∑
s=t

u′s(c̄s)

(
(as − φs)− Es

ps+1

ps
(as+1 − φs+1)

)

= Et

T∑
s=t

(
u′s(c̄s)(as − φs)−

(
u′s+1(c̄s+1) +

ps+1

ps
µs+1

)
(as+1 − φs+1)

)
≤ u′t(c̄t)(at − φt)− Etu′T+1(c̄T+1)(aT+1 − φT+1) ≤ Etu

′
t(c̄t)(at − φt).

Similarly, using both (1.1) and (1.2),

Et

T∑
s=t

u′s(c̄s)

(
(as − φs)− Es

ps+1

ps
(as+1 − φs+1)

)
= u′t(c̄t)(āt − φt)− Etu′T+1(c̄T+1)(āT+1 − φT+1).

Moreover at = āt since they equal the initial period t wealth of the consumer, ât.

Thus

lim inf
T→∞

Et

T∑
s=t

(us(cs)− us(c̄s)) ≤ lim inf
T→∞

Etu
′
T+1(c̄T+1)(āT+1 − φT+1) = 0,

and therefore (c̄, ā) is optimal for Pt(ât, φt, p).
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2 The case when debt limits bind in bounded time

We give an elementary proof of Theorem 3.5 (in the paper) that does not use results

from the theory of martingales, for the case when α(t) is bounded, for any t ∈ N.

Assumption 3.1 and Proposition 3.4 are not needed in this case. As in the paper,

continuation utilities after default are the same under the two debt limits φ, φ̄. We

assume that for any period t, there exists a natural number n(t) such that the bounds

φ bind before period n(t) along the optimal path for the problem Pt(φt, φ, p).

The process (M̂s)
α(t)
s=t from STEP 1 can be simply chosen to be M̂s = EsMα(t) (for

any stopping time s such that t ≤ s ≤ α(t)), and shown that M̂ ≤ M by backward

induction. This proof is given in Proposition 2.1 below. Thus (3.12) (in the main

text) follows therefore directly from the construction of M̂ . In STEP 2, (M̂s)
∞
s=t is

obtained as before by letting M̂s := EsMαk+1(t) for each k ≥ 1 natural and each finite

stopping time s such that αk(t) + 1 ≤ s ≤ αk+1(t). The optimal solution (c̄, ā) to the

problem Pt(φt, φ, p) is also an optimal solution for the “relaxed” problem Pt(φt, φ̂, p)

(with φ̂ = φ̄+ M̂/p ≤ φ), since for any feasible (c, a) ∈ Bt(φt, φ̂, p),

Ut(c)−Ut(c̄) = lim inf
k→∞

Et

αk(t)−1∑
s=t

(us(cs)−us(c̄s)) ≤ lim inf
k→∞

Etu
′
αk(t)(c̄αk(t))(āαk(t)−φ̂αk(t)) = 0.

The inequality above follows from āαk(t) − φ̂αk(t) = āαk(t) − φαk(t) = 0. An identical

argument shows that Mt = M̂t, hence Mt = EtMα(t). STEP 3 is unchanged.

Proposition 2.1. Assume that φ are NTT. Let T ∈ N and ω ∈ Ω such that there

exists n ∈ N with the property that α(T ) ≤ T + n on FT (ω). Then

MT ≥ ETMα(T ) on FT (ω). (2.1)

Proof. We prove the Proposition by induction on n.

We show, first, that the claim in the Proposition is true for n = 1. When not

explicit, all equalities and inequalities that follow are understood to hold on F(ω).

Since T + 1 ≤ α(T ) ≤ T + n = T + 1, it follows that α(T ) = T + 1. Assume by

contradiction that MT < ETMT+1. Let (c, a) ∈ CT (φT , φ, p). As φ are binding at

T + 1,

cT = eT + φT − ET
pT+1

pT
φT+1 < eT + φ̄T − ET

pT+1

pT
φ̄T+1 =: c̄T .
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Let āT := φ̄T and t > T , choose c̄t, āt such that (c̄, ā) ∈ BT+1(φ̄T+1, φ̄, p). It is

immediate to check that (c̄, ā) ∈ BT (φ̄T , φ̄, p). We reached a contradiction, as the

continuation utility after T of path c̄ is less or equal to V d
T and strictly dominates

the continuation utility after T over c, which equals V d
T :

V d
T (p) = VT (φT , φ, p) = UT (c) = uT (cT )+ETV

d
T+1 < uT (c̄T )+ETV

d
T+1 = UT (c̄) ≤ V d

T .

Suppose now that the claim in the proposition is true for arbitrary T and ω such

that α(T ) ≤ T + n on FT (ω) for some n = 1, . . . , k. Choose T and ω such that

α(T ) ≤ T + k + 1 on FT (ω). We need to show that MT ≥ ETMα(T ) on FT (ω).

Assume, by contradiction, that MT < ETMα(T ).

For any t satisfying T+1 ≤ t ≤ α(T ), using the induction hypothesis and applying

the law of iterated expectations a finite number of times, we get Mt ≥ EtMα(T ). Let

(c, a) ∈ CT (φT , φ, p). Let āt := φ̄T and for t satisfying T + 1 ≤ t < α(T ), construct

āt := at −
1

pt
EtMα(T ) ≥ φt −

1

pt
EtMα(T ) = φ̄t +

1

pt
(Mt − EtMα(T )) ≥ φ̄t.

For t ≥ α(T ), let (c̄, ā) ∈ Bα(T )(φ̄α(T ), φ̄, p). For t ∈ [T, α(T )), let

c̄t := et + āt −
1

pt
Etpt+1āt+1.

Notice that c̄t = ct for T < t < α(T ), and

c̄T = eT + φ̄T −
1

pT
ETpT+1āT+1 = cT −

1

pT
(MT − ETMα(T )) > cT .

Moreover, (c̄, ā) ∈ BT (φ̄T , φ̄, p). It follows that the path c̄ dominates c in terms of

utility after T , and a contradiction is obtained in exactly the same manner as for the

case n = 1 treated above.

3 One period transition to a cyclical equilibrium

All cyclical AJ-equilibrium allocations described in Proposition 5.3 in the main text

(where agents cannot borrow after default) can be achieved with zero initial wealth by

the agents. In contrast, each non-autarchic cyclical equilibrium described in Propo-

6



sition 5.1 in the paper (where agents cannot trade after default) requires specific

non-zero initial wealth for the agents. However, we show here that all such cyclical

equilibrium paths can be reached after a one period transition, when all agents start

with zero wealth. With zero initial wealth, there exists an equilibrium in which the

transfers from the high-type to low-type agents are constant after the first period and

an infinite number of equilibria converging to autarchy. Therefore the endogeneity

of debt limits causes multiplicity of not only asset prices (through bubbles), but also

of real equilibrium allocations, for both types of punishment for default.

For the rest of this section we assume that the penalty for default is the interdic-

tion to trade. We add an extra period and assume that time starts at −1 and that,

in agreement with our convention, the even agent has low endowment at −1 while

the odd agent has high endowment at −1. We investigate the equilibria where the

high-type agent at period −1 (the odd agent) is a saver, transferring an amount x−1

to the the low-type at period −1, and the transfers (xt) from high-type to low type

agents for periods greater or equal to zero (and consumption, asset holdings, debt

limits and bond prices) are described in Proposition 5.1.

Proposition 3.1. Let
(

(pt), (c
i
t), (a

i
t), (φ

i
t), (V

i,d
t )
)
t≥0

be a cyclical non-autarchic AJ-

equilibrium associated to a sequence of transfers (xt)t≥0, as in Proposition 5.1 (in

the main text). Let η := min{x̄−1, y
H − yL − x0}, where x̄−1 is chosen such that

f(x̄−1, x0) = 0 (see (5.8) in the paper). Let x−1 ∈ [0, η]. Then (xt)t≥−1 are transfers

from high-type to low-type agents in an AJ-equilibrium
(

(pt), (c
i
t), (a

i
t), (φ

i
t), (V

i,d
t )
)
t≥−1

with initial wealth levels ai−1 for the agents, where2

p−1 :=
u′(yH − x−1)

βu′(yL + x0)
, ao−1 = ao0/p−1 − x−1, a

e
−1 = ae−1 := −ao−1.

The initial wealth ae−1 of the even agent is strictly increasing in x−1, and ae−1 < 0 for

x−1 = 0 and ae−1 > 0 for x−1 = η.

Proof. The first order condition of the high-type (odd) agent at −1 are satisfied, by

the construction of p−1. By (5.5) (in the paper), the first order condition for the low-

type (even) agent at −1 is satisfied since x−1 +x0 ≤ yH−yL−x0 +x0 ≤ yH−yL. The

2The outside option at period −1 is autarchy, that is V i,d
−1 :=

∑
t≥−1 β

tu(ei
t), and φi

−1 is chosen
to be NTT, that is V i

−1(φi
−1, (φ

i
t)t≥0, (pt)t≥−1) = V i,d

−1 .
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participation constraint at −1 of the even agent is satisfied, since x−1 ≥ 0, therefore

he receives a positive transfer at −1 and at 0 his continuation utility is equal to that

provided by autarchy. The participation constraint at −1 if the odd agent is also

satisfied, since f(x−1, x0) ≤ f(x̄−1, x0) = 0. Agents’ budget constraints at −1 hold

by construction, and their transversality conditions hold, being the same as in the

equilibrium starting at 0.

Finally, ae−1 = x−1−ao0/p−1 and is therefore strictly increasing in x−1, since p−1 is

strictly decreasing in x−1 and ao0 > 0. Indeed, by (5.12) (in the paper), the sequence

(ptxt)t≥0 is strictly decreasing, and therefore

ao0 ≥ L1 := lim
t→∞

2t−1∑
s=0

(−1)spsxs > p0x0 − p1x1 > 0.

If x−1 = 0, then clearly

ae−1 = −ao0
βu′(yL + x0)

u′(yH)
< 0.

Assume now that x−1 = η. If x̄−1 ≤ yH−yL−x0, then x−1 = x̄−1 and f(x−1, x0) =

0. It follows that

u′(yH − x−1)x−1 > u(yH)− u(yH − x−1) = β
(
u(yL + x0)− u(yL)

)
> βu′(yL + x0)x0,

and thus p−1 > x0/x−1. Therefore

ae−1 =
p−1x−1 − ao0

p−1

>
p−1x−1 − x0

p−1

> 0,

since

ao0 ≤ L2 := lim
t→∞

2t∑
s=0

(−1)spsxs < p0x0 = x0.

If x̄−1 > yH − yL − x0, then x−1 = yH − yL − x0. Hence p−1 = 1/β, and

ae−1 = yH − yL − x0 − βao0 > yH − yL − x0 − βx0 > yH − yL − (1 + β)
yH − yL

2
> 0,

where we used the inequality x0 ≤ (yH − yL)/2.
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Proposition 3.1 implies that all the cyclical equilibrium paths described in Propo-

sition 5.1 in the main text (including the autarchic one) can be achieved after a one

period transition if agents start with zero wealth.
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