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Abstract

We show that an intrinsic property of a large class of rational bubbles is
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set of pricing kernels, or equivalently, the asset span, has effectively an identical

effect on consumption and real interest rates as an appropriate relaxation of

debt limits, proportional to the size of the bubble. Thus the collapse of a bubble

amounts to a contraction of agents’ debt limits, and conversely, a bubble can

arise to supplement the credit available in the economy.
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1 Introduction

Episodes of large stock market run-ups followed by abrupt crashes, without matching

movements in fundamentals, are referred to as bubbles. Formally, a (rational) bubble

is defined as the price of an asset in excess of its fundamental value, computed as

the discounted (at market rates) present value of dividends.

We show that a large class of rational bubbles are equivalent, from the point of

view of consumption and real interest rates, to a relaxation of agents’ debt limits.

An equilibrium (under some fixed credit limits) with bubbles in the prices of some

assets allows agents the same level of consumption they would get in a no-bubble

equilibrium of an alternative economy with more relaxed credit limits.

We build on the insight of Kocherlakota (2008), who showed that arbitrary dis-

counted (by the pricing kernel) positive martingales can be introduced into asset

prices as bubbles, while leaving agents’ consumption and the pricing kernel un-

changed, as long as the debt limits of the agents are allowed to be adjusted upwards

(that is, tightened) by their initial endowment of the assets multiplied with the bub-

ble term. In other words, although at the bubbly equilibrium agents are subject to

tighter debt limit, they can still enjoy the same level of consumption they would

under more relaxed debt limits (and no bubbles in the asset prices). In that sense,

bubbles are equivalent to a relaxation of debt limits. The modified debt limits bind

in exactly the same dates and states. Kocherlakota (2008) refers to this result as

the “bubble equivalence theorem”, and to this technique of introducing bubbles as

“bubble injections”.

At the heart of the argument is that the introduction of a bubble gives consumers

a windfall, proportional to their initial holding of the asset, which can be sterilized,

leaving their budgets unaffected, by an appropriate tightening of the debt limits.

Conversely, the pricking of a bubble and the resulting drop in agents’ wealth can be

compensated by a relaxation of debt limits.

A major limitation of Kocherlakota’s (2008) result is the assumption that agents

can trade in a full set of state-contingent claims to consumption next period, in

addition to the existing long-lived securities. Hence one might infer that the bubble

equivalence theorem is associated to knife-edge situations, and that it might not

apply to incomplete markets environments or even to economies with dynamically
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complete markets (rather than Arrow-Debreu complete).

We prove that a version of the bubble equivalence theorem holds even when mar-

kets are incomplete, or only dynamically complete. The equivalence has two parts.

The bubble injection direction characterizes completely the set of processes that can

be injected as bubbles in asset prices through a tightening of debt limits, while pre-

serving the real variables. Such processes are called pricing kernel-preserving, or

kernel-preserving, for short. The reverse direction, or the bubble pricking direction,

shows that a large class of bubbles (those that are kernel-preserving) can be pricked

and result in identical real variables, as long as agents’ debt limits are relaxed.

The kernel-preserving processes, as the name suggests, are those nonnegative pro-

cesses that result in an identical set of pricing kernels if added to (bubble-free) asset

prices, or conversely, if subtracted from (bubbly) asset prices. Equivalently, they are

discounted martingales (under some pricing kernel) that preserve the asset span (if

added to bubble-free prices, or deducted from bubbly prices). A kernel-preserving

process is also a martingale when discounted by any pricing kernel associated to the

initial prices or any pricing kernel associated to the prices inflated by the process. In

particular, any nonnegative process which equals the value of a self-financing trading

strategy will generically be a kernel-preserving process.

Our results show that the setup of Kocherlakota (2008) with Arrow-complete

markets and additional, redundant long-lived assets (rather than dynamically com-

plete markets) is not innocuous. In his framework, the pricing kernel with or without

a bubble (in the long-lived assets) is the same and is uniquely pinned down by the

prices of the Arrow securities. With dynamically complete markets, the injection or

the pricking of a bubble can distort the asset span and the pricing kernel, and not

lead to an equivalent equilibrium.

The bubble equivalence theorem has additional appeal in environments with en-

dogenous debt limits, as in Alvarez & Jermann (2000). In these models, agents have

the option to default on debt and receive a predetermined continuation utility, and

the markets (competitive financial intermediaries) select the largest debt limits so

that repayment is always individually rational given future bounds on debt. It turns

out that both the debt limits of the bubble-free equilibrium and the tighter debt limits

of the equivalent bubbly equilibrium are the endogenous bounds allowing for maxi-
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mal credit expansion and preventing default. We allow for more general punishments

after default than in Kocherlakota (2008). In particular, we cover the case where

upon default the agents are forbidden to carry debt (Bulow & Rogoff 1989, Hellwig

& Lorenzoni 2009). Therefore the “incomplete markets” in the title of the paper

refers to both environments with exogenously, respectively endogenously incomplete

(due to limited enforcement) markets.

It is easy to misinterpret the injection direction of the bubble equivalence theorem

as a “license” to create bubbles freely. However, bubbles in positive supply assets

cannot exist in economies with high interest rates, that is with finite present value of

aggregate consumption (Santos & Woodford 1997, Werner 2014, Kocherlakota 1992),

as long as agents are not prevented from reducing their share holdings, that is if

their debt limits are nonpositive. Intuitively, bubbles grow on average at the rate of

interest rates. With high interest rates, the bubble must become very large relative

to aggregate endowment, even if this happens with small probability. But this is

incompatible with the presence of optimizing, forward looking agents, who do not

allow their financial wealth to exceed the present value of their future consumption.

As shown by Bidian (2011, Chapter 2) and Bidian (2014a), this argument against

the existence of bubbles in economies with high interest rates is extremely robust

and applies to environments with asymmetric information, heterogeneous beliefs and

quite general portfolio constraints.

Therefore with high interest rates, the tighter debt bounds needed to sterilize

the wealth effects of a bubble injection in an asset in positive supply must be posi-

tive at some dates and states (even though this may happen with arbitrarily small

probability). However, if an asset is in zero supply, and initially none of the agents

hold any shares, a bubble injection has no wealth or allocational effects. One can

inject “freely” any (nonnegative) kernel-preserving process as a bubble into the price

of that asset, while preserving real interest rates and agents’ consumption and debt

limits.

Low interest rates arise naturally with the enforcement limitations studied in

Section 4, since in equilibrium the interest rates adjust to a lower level to entice

agents to repay their debt and prevent default. Hellwig & Lorenzoni (2009) (see

also Werner (2014)) show that if the penalty for default is an interdiction to borrow,
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then all non-autarchic equilibria must in fact have low interest rates, and bubble

injections with nonpositive debt limits are possible. Bidian (2011, Chapter 4) and

Bidian (2014b) show that low interest rates can arise in equilibrium and that bubble

injections with nonpositive debt limits are possible for the other common penalties

for default encountered in the literature: a permanent or a temporary interdiction to

trade after default. All the mentioned examples of bubble injections with nonpositive

debt limits feature complete markets.

The bubble pricking direction of Theorem 3.3 shows that the intrinsic feature of

kernel-preserving bubbles is to relax financial constraints. Such bubbles must be un-

ambiguous, in that they do not vanish if the present value of dividends (fundamental

value) is calculated using any valid pricing kernel. It follows that, for general en-

vironments with incomplete markets, an unexpected collapse of a kernel-preserving

bubble would not affect agents’ consumption if their debt limits are relaxed by an

amount proportional to the size of the bubble. In the absence of such an increase in

the availability of credit, a bubble collapse amounts to a credit crunch, and therefore

can be contractionary (see, for example, Guerrieri & Lorenzoni 2011).

Therefore kernel-preserving bubbles act as devices that relax agents’ debt limits.

A host of recent papers point out similarly, but in very specific environments, that

bubbles can arise in the presence of financial frictions, and help relax the under-

lying borrowing constraints (Kocherlakota 2009, Martin & Ventura 2012, Giglio &

Severo 2012, Farhi & Tirole 2012). These bubbles facilitate the transfer of resources

from unproductive entrepreneurs to the productive ones, by increasing the borrowing

capacity of the latter. Miao & Wang (2011) make a related point, but they emphasize

the multiplicity of equilibria in economies with limited enforcement, studied also in

Hellwig & Lorenzoni (2009) and Bidian (2014b). In their model, bubbles are defined

as the difference between the value of the firm and the value predicted using the q

theory of investment. These papers analyze the production sector, shutting down

(non-entrepreneurs) consumers from borrowing and lending. By contrast, we inten-

tionally focus squarely on the consumer sector, allowing consumers to borrow and

lend to each other, in a Bewley-Aiyagari environment.
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2 Model

Time periods are indexed by the set N := {0, 1, . . .}. The uncertainty is described

by a probability space (Ω,F , P ) and by the filtration (Ft)∞t=0, which is an increasing

sequence of finite partitions Ft ⊂ F on the set of states of the world Ω with F0 =

{∅,Ω}. We interpret Ft as the information available at period t.

Let X be the set of all stochastic processes adapted to (Ft)∞t=0,
1 and denote

by X+ (respectively X++) the processes x ∈ X such that xt ≥ 0 P -almost surely

(respectively xt > 0 P -almost surely) for all t ∈ N. All statements, equalities, and

inequalities involving random variables are assumed to hold only “P -almost surely”,

and we will omit adding this qualifier. When K,L ∈ N \ {0}, let XK×L, respectively

XK×L
+ be the set of vector (or matrix) processes (yij)1≤i≤K,1≤j≤L with yij ∈ X,

respectively yij ∈ X+.

There is a single consumption good and a finite number, I, of consumers. An

agent i ∈ {1, 2, . . . , I} has preferences represented by a utility U : X+ → R given by

U i(c) = E
∑∞

t=0 u
i
t(c

i
t), where cit is the consumption of i, and E(·) is the expectation

operator with respect to probability P . The per-period utility uit : R+ → R is strictly

increasing. The conditional expectation given the information available at t, Ft, is

denoted by Et(·). Since there is no information at period 0, E0(·) = E(·). The

continuation utility of agent i at t provided by a consumption stream c ∈ X+ is

U i
t (c) := Et

∑
s≥t u

i
s(cs).

There is a finite number J of infinitely lived, disposable securities, traded at

every date. The dividend and price vector processes are d = (d1, . . . , dJ) ∈ X1×J
+

and p = (p1, . . . , pJ) ∈ X1×J
+ .

Consumer i has an initial endowment θi−1 ∈ RJ
+ of securities and his trading

strategy is represented by a process θi ∈ XJ×1. Fix some debt bounds φi ∈ X for

agent i and define the budget constraint and indirect utility of an agent i from period

s ≥ 0 onward, when faced with prices p ∈ X1×J
+ , debt bounds φi ∈ X and having an

1This is the set of sequences x = (xt)t∈N of random variables xt : Ω → R such that xt is
Ft-measurable.
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initial wealth νs : Ω→ R which is Fs-measurable, as

Bi
s(νs, φ

i, p) = {(ci, θi) ∈ X+ ×XJ×1 | cis + psθ
i
s = eis + νs, (2.1)

cit + ptθ
i
t = eit + (pt + dt)θ

i
t−1, (pt + dt)θ

i
t−1 ≥ φit,∀t > s},

V i
s (νs, φ

i, p) = max
(ci,θi)∈Bi

s(νs,φ
i,p)
U i
s(c

i). (2.2)

Denote by Bi,c
s (νs, φ

i, p) the projection of Bi
s(νs, φ

i, p) on consumption paths:

Bi,c
s (νs, φ

i, p) := {ci ∈ X+ | ∃θi ∈ XJ×1 such that (c, θi) ∈ Bi
s(νs, φ

i, p)}. (2.3)

Definition 2.1. A vector
(
p, (ci)Ii=1, (θ

i)Ii=1

)
consisting of a security price process

p ∈ X1×J
+ , and for each agent i ∈ {1, . . . , I}, consumption ci ∈ X+ and a trading

strategy (portfolios) θi ∈ XJ×1 is an equilibrium given (exogenous debt limits) (φi)Ii=1

(with φi ∈ X) if the following conditions are met:

i. Consumption and portfolios of each agent i are feasible and optimal: (ci, θi) ∈
Bi

0((p0 + d0)θ
i
−1, φ

i, p) and U i(ci) = V i
0

(
(p0 + d0)θ

i
−1, φ

i, p
)
.

ii. Markets clear:
∑I

i=1 c
i
t =

∑I
i=1 e

i
t+dt ·

∑I
i=1 θ

i
−1,

∑I
i=1 θ

i
t =

∑I
i=1 θ

i
−1, ∀t ∈ N.

Consider an equilibrium
(
p, (ci)Ii=1, (θ

i)Ii=1

)
given (φi)Ii=1. Since the utilities of

the agents are strictly increasing in consumption at each date and state, prices p

exclude arbitrage opportunities. Thus there cannot exist θ ∈ XJ×1 and t ∈ N such

that ptθt ≤ 0 and (pt+1 + dt+1)θt ≥ 0, with at least one inequality being strict on

a set of positive probability. Otherwise consumer i would alter his portfolio θit at

t by adding to it the strategy θt, guaranteeing an increase in his consumption at

t and t + 1, and a strict increase in one of the periods, with positive probability.

This modified strategy still satisfies the debt constraints. The absence of arbitrage

opportunities is equivalent to the existence of a process a ∈ X++ such that (Santos

& Woodford 1997)

pt = Et
at+1

at
(pt+1 + dt+1) ,∀t ≥ 0. (2.4)

We denote by A(p) the set of all processes a ∈ X++ satisfying equation (2.4), and we

refer to them as pricing kernels. Equation (2.4) implies that pt = 1
at
Et
∑

s>t asds +
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limT→∞
1
at
EtaTpT , and

bt(a, p) :=
1

at
lim
T→∞

EtaTpT (2.5)

is well defined and nonnegative, and for all t ∈ N,

atbt(a, p) = Etat+1bt+1(a, p). (2.6)

Therefore a · b(a, p) is a nonnegative martingale, and b(a, p) = 0 if and only if

b0(a, p) = 1
a0

limt→∞Eatpt = 0. We interpret the discounted present value of div-

idends d under the state price density a, that is ft(a) := 1
at
Et
∑

s>t asds, as the

fundamental value of d. Hence b(a, p) represents the part of asset prices in excess

of fundamental values, and will be called a bubble whenever b0(a, p) 6= 0. Follow-

ing Santos & Woodford (1997), the bubble b(a, p) is ambiguous if b0(a
′, p) = 0 for

some a′ ∈ A(p) (while b0(a, p) 6= 0). Similarly, the bubble b(a, p) is unambiguous

if b0(a
′, p) 6= 0, for all a′ ∈ A(p). Thus a bubble is ambiguous (unambiguous) if it

vanishes (does not vanish) under a different choice of a pricing kernel.

Kocherlakota (2008) assumed that in addition to trading in long-lived securities,

agents can also trade in each period a full set of state-contingent claims to consump-

tion next period. Of course this means that there is a unique pricing kernel, pegged

down by the price of the Arrow securities. Hence A(p) = {a}. Given an equilibrium

without bubbles in which the asset prices are p and the pricing kernel is a, and given

an arbitrary process ε ∈ X1×J
+ such that a · ε is a martingale, he showed that there

exists an equilibrium with prices p+ ε and with debt limits tightened in proportion

to the size of ε and agents’ initial endowment of assets (that is, agent i’s debt limits

are tightened by εθi−1). This equilibrium is equivalent to the initial one, in the sense

that it has identical consumption paths for the agents and an identical pricing kernel

(A(p) = A(p + ε) = {a}). He dubbed this result the “bubble equivalence theorem”,

since the process ε injected in the asset prices is the bubble component for the new

prices p+ ε, that is ε = b(a, p+ ε).
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3 Bubble equivalence theorem

We extend Kocherlakota’s (2008) bubble equivalence theorem to incomplete markets,

or to dynamically complete (rather than Arrow-complete) markets. With incomplete

markets, pricing kernels are not unique, and by not being pegged down by the price

of Arrow securities, they can be distorted by the presence of a bubble. Therefore

it is unclear what type of processes ε can be added to asset prices as bubbles and

result in an equivalent equilibrium.

Candidate processes ε that could lead to equivalent equilibria if injected in asset

prices must preserve the set of pricing kernels A(p) = A(p+ε) (in addition to agents’

consumption). It turns out that this is also a sufficient condition. We denote by M(p)

the set of all such kernel-preserving (or pricing kernel preserving) processes:

M(p) := {ε ∈ X1×J
+ | A(p) = A(p+ ε)}. (3.1)

The following several equivalent characterizations of kernel-preserving processes will

prove useful. The proof is given in Appendix A.

Proposition 3.1. Fix ε, p ∈ X1×J
+ . The following are equivalent:

(i) ε ∈M(p).

(ii) a · ε is a martingale, for any a ∈ A(p) ∪ A(p+ ε).

(iii) St(p) = St(p + ε), for all t ∈ N, and a · ε is a martingale, for some a ∈
A(p) ∪ A(p + ε), where St(p) is the period t asset span given p, defined as the

set of attainable payoffs at t under p:

St(p) := {(pt + dt)λ | λ : Ω→ RJ and λ is Ft−1 −measurable}. (3.2)

(iv) ε has the property that there exists Λ,Γ ∈ XJ×J such that for all t ≥ 0,

εt = ptΛt = p̂tΓt, (3.3)

(pt+1 + dt+1)Λt − pt+1Λt+1 = (p̂t+1 + dt+1)Γt − p̂t+1Γt+1 = 0,

where p̂ := p+ ε.
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The equivalence (i) ⇔ (ii) shows that a kernel-preserving process ε injected in

(bubble-free) asset prices p will be an unambiguous bubble in the new equilibrium

with prices p+ ε.

The equivalence (i)⇔ (iii) plays a crucial technical role in establishing Theorem

3.3. It guarantees that for any feasible consumption at prices p, one can construct

portfolios supporting that consumption stream at prices p + ε (and conversely). As

we show in Lemma A.1, if ε is a discounted martingale under all pricing kernels in

A(p), then each component of ε is also in the asset span for prices p, in that εjt ∈ St(p)
(for all j), and moreover, if ε is added to prices p, it does not enlarge the asset span:

St(p+ ε) ⊂ St(p). The fact that ε is also a discounted martingale under any pricing

kernel in A(p+ ε) guarantees that each component of ε is also in the asset span for

prices p + ε, thus εjt ∈ St(p + ε), and that ε does not lead to a drop in rank (does

not reduce the asset span): St(p) ⊂ St(p+ ε).

The equivalence (i)⇔ (iv) shows that a kernel-preserving process represents also

the value of two self-financing strategies, one at prices p, and the other at prices p+ε.

This property can be used to construct processes in M(p) (and to conclude that M(p)

is a large set) as follows. Start with an arbitrary Λ0 ≥ 0 with det(I+Λ0) 6= 0, where I

denotes the J-dimensional identity matrix, and det(·) is the determinant of a matrix.

Non-singularity of I + Λ0 is a mild condition (generically satisfied), equivalent with

requiring that −1 is not an eigenvalue of Λ0. Construct then iteratively, for each

t ≥ 0, Λt+1 ≥ 0 such that pt+1Λt+1 = (pt+1 + dt+1)Λt and det(I + Λt+1) 6= 0. Such

Λt+1 always exists. If ε is taken to be the value of the resulting self-financing strategy

Λ ∈ XJ×J
+ (that is, εt := ptΛt ≥ 0 for all t ≥ 0), then ε satisfies condition (iv) of

Proposition 3.1 (just take Γt = (I + Λt)
−1Λt,∀t ≥ 0), and thus ε ∈M(p).2

In order to establish the bubble equivalence theorem (Theorem 3.3), we prove

first that an agent’s feasible consumption paths are identical at prices p, p̂ that differ

by a kernel-preserving process ε (= p̂− p), if his debt limits and initial wealth differ

by an appropriate multiple of ε.

Proposition 3.2. Fix a date t ≥ 0 and an agent i. Let p ∈ X1×J
+ , φi ∈ X and

2It is particularly simple to construct processes ε with only one non-zero component, say the
first (thus a bubble is injected only in the first asset). A self-financing strategy generating such ε
must be of the form Λt = (Λ1

t , 0, . . . , 0), and det(I + Λt) 6= 0 whenever Λ11
t 6= −1, as (I + Λt)

−1 =
I− Λt/(1 + Λ11

t ).
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ε ∈ M(p). Let νt : Ω→ R and θ̄ : Ω→ RJ , assumed Ft-measurable. Set p̂ := p + ε,

φ̂i := φi + εθ̄, ν̂t := νt + εtθ̄. Then

(i) If (ci, θi) ∈ Bi
t (νt, φ

i, p), there exists θ̂i ∈ XJ×1 such that (ci, θ̂i) ∈ Bi
t

(
ν̂t, φ̂

i, p̂
)

.

(ii) If (ci, θ̂i) ∈ Bi
t

(
ν̂t, φ̂

i, p̂
)

, there exists θi ∈ XJ×1 such that (ci, θi) ∈ Bi
t (νt, φ

i, p).

Proof. (i) Let (ci, θi) ∈ Bi
t (νt, φ

i, p). By Proposition 3.1 (i)⇔ (iii), ε preserves the

asset span when added to p. Therefore there exists θ̂i such that for all s > t,

(ps + ds)(θ
i
s−1 − θ̄) = (p̂s + ds)(θ̂

i
s−1 − θ̄). (3.4)

Relation (3.4) is enough to guarantee that if (ci, θi) ∈ Bi
t (νt, φ

i, p), then (ci, θ̂i) ∈
Bi
t

(
ν̂t, φ̂

i, p̂
)

(and conversely). By (3.4), for each a ∈ A(p) = A(p̂) and s ≥ t,

p̂s(θ̂
i
s− θ̄) = Es

as+1

as
(p̂s+1 + ds+1)(θ̂

i
s− θ̄) = Es

as+1

as
(ps+1 + ds+1)(θ

i
s− θ̄) = ps(θ

i
s− θ̄).

It follows that for s ≥ t+ 1,

(p̂s + ds)θ̂
i
s−1 − p̂sθ̂is = (ps + ds)θ

i
s−1 − psθis (= cis − eis),

(p̂s + ds)θ̂
i
s−1 = (ps + ds)θ

i
s−1 + εsθ̄ ≥ φis + εsθ̄ = φ̂is,

Moreover,

ν̂t − p̂tθ̂it = νt + εtθ̄ − (pt + εt)θ̂
i
t = νt − ptθit (= cit − eit),

and we conclude that (ci, θ̂i) ∈ Bi
t

(
ν̂t, φ̂

i, p̂
)

.

(ii) The statement follows in an identical way, switching in all the formulas the

roles of p and p̂, θi and θ̂i, φi and φ̂i, νt and ν̂t, and changing the sign in front of ε

throughout.

We can now state and prove the bubble equivalence theorem for incomplete mar-

kets.

Theorem 3.3. Let p, p̂, ε ∈ X1×J
+ such that p̂ := p+ ε and for all i ∈ {1, . . . , I}, let

φi, φ̂i ∈ X such that φ̂i = φi + εθi−1.
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(i) Let E :=
(
p, (ci)Ii=1, (θ

i)Ii=1

)
be a bubble-free equilibrium given (φi)Ii=1. If ε ∈

M(p), there exist portfolios (θ̂i)Ii=1 such that Ê :=
(
p̂, (ci)Ii=1, (θ̂

i)Ii=1

)
is an

equilibrium given (φ̂i)Ii=1, having an unambiguous bubble ε, since ε = b(a, p̂),

for all a ∈ A(p̂).

(ii) Let Ê :=
(
p̂, (ci)Ii=1, (θ̂

i)Ii=1

)
be an equilibrium given (φ̂i)Ii=1, having a bubble

ε := b(a, p) under some a ∈ A(p̂). If ε ∈ M(p), there exist portfolios (θi)Ii=1

such that E :=
(
p, (ci)Ii=1, (θ

i)Ii=1

)
is a bubble-free equilibrium given (φi)Ii=1.

Proof. (i) By setting t := 0, θ̄ := θi−1 (initial holdings of i) and νt := (p0 + d0)θ
i
−1

(initial wealth of i) in Proposition 3.2, it follows that

Bi,c
0 ((p0 + d0)θ

i
−1, φ

i, p) = Bi,c
0 ((p̂0 + d0)θ

i
−1, φ

i + εθi−1, p̂), where p̂ = p+ ε. (3.5)

Hence ci is optimal in Bi,c
0 ((p̂0+d0)θ

i
−1, φ̂, p̂). We still need to show that the portfolios

(θ̂i)Ii=1 can be chosen so that they satisfy the market clearing condition
∑

i θ̂
i =∑

i θ
i
−1.

By Proposition 3.2 (i), for i ∈ {1, . . . , I − 1}, there exists θ̂i satisfying (3.4) with

θ̄ := θi−1, and such that (ci, θ̂i) ∈ Bi
0((p̂0+d0)θ

i
−1, φ̂, p̂). Let θ̂I :=

∑I
i=1 θ

i
−1−

∑I−1
i=1 θ̂

i.

Therefore θ̂I satisfies (3.4) (for i = I and θ̄ = θI−1). This is enough to guarantee that

(cI , θ̂I) ∈ BI
0((p̂0+d0)θ

I
−1, φ̂, p̂), by repeating the reasoning in the proof of Proposition

3.2 (i). Asset markets clear, as
∑I

i=1 θ
i
−1 =

∑I
i=1 θ̂

i.

Finally, for each a ∈ A(p̂) = A(p),

bt(a, p̂) = lim
s→∞

Et
as
at
p̂s = lim

s→∞
Et
as
at

(ps + εs) = εt + lim
s→∞

Et
as
at
ps = εt.

(ii) Can be established in an identical manner as above, relying again on Propo-

sition 3.2.

Theorem 3.3 (i) represents the bubble injection part of the equivalence result. It

provides a way to construct a bubbly equilibrium starting from a bubble-free equilib-

rium. When a bubble is injected in an asset in zero supply, and when agents’ initial

holdings of that asset are zero, the debt limits of the equivalent bubbly equilib-

rium are identical to those of the bubble-free equilibrium. Indeed, a bubble on such
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an asset produces no wealth effects, and therefore the bubble equivalence theorem

provides an easy method to inject bubbles in such assets. The indeterminacy of equi-

libria (caused by bubbles) with zero-supply assets was uncovered by Kocherlakota

(1992).3

However, bubble injections in positive supply assets create a wealth effect, and

the tighter debt limits φ̂i needed to induce agents to save (rather than consume) this

initial windfall may become positive at some dates and states. This always happens

in equilibria with high-interest rates (making the present value of consumption fi-

nite), and it is a consequence of the non-existence of bubbles results of Santos &

Woodford (1997) (for borrowing constraints) and Bidian (2014a) (for general port-

folio constraints). Their results rule out unambiguous bubbles (which are the only

type of bubbles involved in the bubble equivalence Theorem 3.3) without imposing

the strong impatience assumption on agents used in Werner (2014).

On the other hand, with low interest rates, sufficiently small bubble injections (in

positive supply assets) might be sustained with nonpositive debt limits. In economies

with limited enforcement of debt contracts, low interest rates arise to induce repay-

ment of debt, and bubble injections with nonpositive debt limits are indeed possible.

This type of economies is introduced in the next section, and therefore we offer a de-

tailed discussion of the known examples where equilibrium debt limits of bubble-free

equilibria have martingale components, which can be converted into bubbles in asset

prices using the injection mechanism. All those examples feature complete markets.

Theorem 3.3 (ii) represents the bubble pricking part of the equivalence result.

Kernel-preserving bubbles are effectively equivalent to a relaxation of agents’ debt

limits, proportional with the size of the bubble and agents’ initial endowments of

assets. If those endowments are nonnegative, debt limits are relaxed when the bubble

is pricked and the issue of nonpositivity of debt limits does not have a bite.

We argue, next, that the hypotheses of Theorem 3.3 cannot be relaxed further.

Theorem 2 in Werner (2014) seems to suggest that processes that are a discounted

martingale under one pricing kernel can be injected in asset prices, as long as they

preserve the asset span. However, the equivalence (ii)⇔ (iii) in our Proposition 3.1

3He showed also that bubbles on zero supply assets can also have allocational effects if agents
initial endowments of the asset are non-zero.
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shows that such processes must be discounted martingales under all pricing kernels,

and therefore they will result in unambiguous bubbles. One cannot dispense with

the requirement that ε ∈ M(p) (that ε is kernel-preserving, or alternatively, that it

preserves the asset span), even if only the equivalence of consumption paths is desired.

To illustrate that, consider a deterministic Bewley economy (Kocherlakota 1992,

Huang & Werner 2000) where fiat money is the only asset. There exist two types

of equilibria in this economy: equilibria with valued money (with bubbles), in which

financial markets are (dynamically) complete and thus money enables trade (and

risk-sharing) among agents, and an autarchic equilibrium with unvalued money (and

incomplete markets). Clearly, the two types of equilibria have different consumption

paths. The bubble, whether injected or pricked, alters the asset span. According

to the equivalence (i) ⇔ (iii) of Proposition 3.1, this bubble must alter the pricing

kernel as well. Indeed, since markets are complete with valued money, there is a

unique pricing kernel (and thus the bubble is unambiguous). However, at zero prices

for money, there is a continuum of pricing kernels (any positive sequence is a valid

kernel) and the bubble is a martingale only when discounted by exactly one of them.

The discussion shows that the setup of Kocherlakota (2008) with Arrow-complete

markets and additional, redundant long-lived assets (rather than dynamically com-

plete markets) is not innocuous. In his framework, the pricing kernel with or without

a bubble (in the long-lived assets) is the same and is uniquely pinned down by the

prices of the Arrow securities. Therefore the conditions of Theorem 3.3 are satisfied

and a bubble injection or the pricking of a bubble always results in an equivalent

equilibrium if debt limits are appropriately adjusted.

The pricking of the bubble in the Bewley example discussed above distorted the

asset span, pricing kernel and consumption, but nevertheless, led to an equilibrium

(autarchy). In general, pricking a bubble that is not kernel-preserving may not

even result in an equilibrium. This is illustrated by the Example 4.5 in Santos

& Woodford (1997). The example constructs a bubbly equilibrium in an economy

with incomplete markets. The bubble is ambiguous in that it is non-zero when

dividends are discounted by the risk-free rates (which is a valid pricing kernel in that

economy), but vanishes if fundamental values are calculated using the representative

agent’s marginal utility (which is also a pricing kernel). However, that bubble cannot
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be pricked, as the fundamental value of the asset (calculated using the risk-free

rates) violates the representative agent’s Euler equations and thus it cannot be an

equilibrium price.

Theorem 3.3 leaves unspecified the relation between the portfolios θi, θ̂i in the

equivalent equilibria E , Ê . In general, these portfolios are not unique. However,

they are unique if assets are non-redundant at prices p. Formally, assets are non-

redundant at prices p if for all t ≥ 0, there is no Ft-measurable λ : Ω→ RJ such that

λ 6= 0 and (pt+1 + dt+1)λ = 0. With non-redundant assets, the dependence between

θi, θ̂i can be characterized explicitly as follows:

θ̂it = (I + Λt)
−1 (θit + Λtθ

i
−1
)
,∀t ≥ 0, (3.6)

where Λ ∈ XJ×J
+ is the self-financing strategy that generates ε. The existence of such

strategy is guaranteed by Proposition 3.1. Its uniqueness and the non-singularity of

I+Λt (for all t ≥ 0) are consequences of having non-redundant assets, and are proved

in Proposition A.2 in Appendix A.

Equation (3.6) makes possible an analysis of the portfolio effects of bubbles.

Even though a (kernel-preserving) bubble is equivalent, from the point of view of

consumption and real interest rates, to a relaxation of debt limits, such a bubble

affects portfolios and trading volumes. Bejan & Bidian (2012) and Bidian (2014c)

use this to show that bubbles can cause large increases in trading volume compared

to equivalent bubble-free equilibria.

4 Endogenous debt limits

We allow here for the endogenous determination of debt constraints driven by limited

commitment/imperfect enforcement as in Alvarez & Jermann (2000).

Assume that at any period t, when facing prices p (and dividends d), consumer i

can choose to default on his beginning of period debt and leave the economy, receiving

a continuation utility after default Ṽ i
t (p) (Ft-measurable). We allow this continuation

utility to depend on exogenous variables such as endowments and dividends, but we

make explicit only the functional dependence on prices, which are endogenous. Thus

the default penalty for each agent i is described by a mapping Ṽ i : X1×J
+ → X.
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Alvarez & Jermann (2000), following Kehoe & Levine (1993), worked under the

assumption that agents are banned from trading following default, hence for each

agent i,

Ṽ i
t (p) := U i

t (e
i). (4.1)

Alternatively, Hellwig & Lorenzoni (2009), building on the work of Bulow & Rogoff

(1989), assume that agents can continue to lend but not to borrow following default,

Ṽ i
t (p) := V i

t (0, 0, p), (4.2)

where the second argument in V i
t (0, 0, p) is the process in X identically equal to zero.

As in Alvarez & Jermann (2000), the option to default endogenizes the debt limits

to the maximum level so that repayment is always individually rational given future

debt limits. This leads to the notion of debt limits that are not-too-tight.

Definition 4.1. Debt limits φi faced by agent i are not-too-tight (NTT) given prices

p and penalties Ṽ i : X1×J
+ → X if V i

t (φit, φ
i, p) = Ṽ i

t (p),∀t.

The definition captures the idea that the bounds φi have to be “tight enough”

to prevent default, that is, they have to be “self-enforcing” (V i
t (φit, φ

i, p) ≥ Ṽ i
t (p)),

but they should allow for maximum credit expansion (thus one should not have

V i
t (φit, φ

i, p) > Ṽ i
t (p) on a positive probability set). One can envision the NTT debt

limits as being set by competitive financial intermediaries, with agents unable to

trade directly with each other. The intermediaries set debt limits such that default

is prevented, but credit is not restricted unnecessarily, since competing intermediaries

could relax them and increase their profits.

We extend our definition of equilibrium to allow for the endogenous determi-

nation of debt limits, in the presence of an outside option to default. A vector(
p, (φi)Ii=1, (c

i)Ii=1, (θ
i)Ii=1

)
is an equilibrium with endogenous debt limits given penal-

ties (Ṽ i)Ii=1 if
(
p, (ci)Ii=1, (θ

i)Ii=1

)
is an equilibrium given (φi)Ii=1, and debt limits φi

are NTT given Ṽ i(p), for all i ∈ {1, . . . , I}.
Existence of equilibria with endogenous debt limits in this general environment

is difficult to establish. This is due to the presence of incomplete markets, real (long-

lived) securities and infinite horizon, all of which create existence problems even for
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the equilibria with exogenous debt limits of Definition 2.1. When markets are com-

plete and the punishment for default is given by (4.1), the existence is established by

Kehoe & Levine (1993) and Alvarez & Jermann (2000). With incomplete markets,

Hernandez & Santos (1996) show that in our environment, an equilibrium with ex-

ogenous debt limits exists for a dense subset of endowment and dividend processes,

if agents are impatient, have a nonnegative initial holding of securities, and if their

debt is restricted by the present value of future endowments,

φit = − inf
a∈A(p)

Et
∑
s≥t

as
at
eis. (4.3)

The debt limits in (4.3) are chosen equal to the maximum amount that an agent

can borrow, if he must hold nonnegative wealth after some finite date. With com-

plete markets, they are the NTT debt limits when the punishment for default is the

confiscation of endowment.

We show next that a bubble injection ε as in Theorem 3.3 (i) preserves the NTT

property of the debt limits as long as the penalties for default satisfy Ṽ i(p + ε) =

Ṽ i(p). The extension to endogenous debt limits of Part (ii) of Theorem 3.3 (the

bubble pricking direction) is true under the same assumption on penalties for default,

and is omitted for brevity.

Theorem 4.1. Let
(
p, (φi)Ii=1, (c

i)Ii=1, (θ
i)Ii=1

)
be an equilibrium with endogenous debt

limits given (Ṽ i)Ii=1. Choose ε ∈ M(p) and let p̂ := p + ε, φ̂i := φi + εθi−1 for all

i ∈ {1, . . . , I}. If Ṽ i(p+ ε) = Ṽ i(p) for all i ∈ {1, . . . , I}, then there exist portfolios

(θ̂i)Ii=1 such that
(
p̂, (φ̂i)Ii=1, (c

i)Ii=1, (θ̂
i)Ii=1,

)
is an equilibrium with endogenous debt

limits given (Ṽ i)Ii=1.

Proof. Setting θ̄ := θi−1 and νt := φit in Proposition 3.2, it follows that Bi,c
t (φit, φ

i, p) =

Bi,c
t (φit + εtθ

i
−1, φ

i + εθi−1, p+ ε), and therefore

V i
t (φit, φ

i, p) = V i
t (φit + εtθ

i
−1, φ

i + εθi−1, p+ ε). (4.4)

By (4.4), φ̂i are not-too-tight at prices p̂, since

Ṽ i
t (p̂) = Ṽ i

t (p) = V i
t (φit, φ

i, p) = V i
t (φit + εtθ

i
−1, φ

i + εθi−1, p+ ε) = V i
t (φ̂it, φ̂

i, p̂).
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Theorem 3.3 (i) shows that there exist portfolios (θ̂i)Ii=1 such that
(
p̂, (ci)Ii=1, (θ̂

i)Ii=1,
)

is an equilibrium given (φ̂i)Ii=1, and therefore the conclusion follows.

The requirement Ṽ i(p + ε) = Ṽ i(p) that default penalties are not affected by

a bubble injection is necessary and sufficient to ensure that the equivalence result

in Theorem 3.3 extends to equilibria with endogenous debt limits. Indeed, agents’

continuation utilities when starting with maximal (binding) amounts of debt are

identical in the bubbly and bubble-free equilibrium, and therefore the penalties for

default with and without a bubble have to coincide, by the definition of NTT debt

limits. This condition holds when the continuation utilities after default are of the

form (4.1), or more generally when Ṽ i does not depend on prices. These are the only

types of penalties considered in Kocherlakota (2008). It holds also for the interdiction

to borrow after default (4.2). In fact, it holds for a more general class of penalties,

where after default, an agent i is subjected to some exogenous debt limits φ̃i (equal

to zero for an interdiction to borrow). Indeed, by setting θ̄ := 0 and νt := φit in

Proposition 3.2, it follows that Bi,c
t (φit, φ

i, p) = Bi,c
t (φit, φ

i, p̂), and therefore

V i
t (φit, φ

i, p) = V i
t (φit, φ

i, p+ ε). (4.5)

As a consequence of (4.5),

Ṽ i
t (p+ ε) = V i

t (φ̃it, φ̃
i, p+ ε) = V i

t (φ̃it, φ̃
i, p) = Ṽ i

t (p). (4.6)

The bubble injection ε can only result in nonpositive debt limits φ̂i if the initial

debt limits φi have (discounted) martingale components in them, as one needs to have

φi ≤ −εθi−1. Such an example is provided in Hellwig & Lorenzoni (2009) (see also

Werner (2014)), for the interdiction to borrow (4.2). Bidian & Bejan (2012) show that

debt limits have martingale components also under the class of penalties discussed

above which generalize the interdiction to borrow. Thus, after default, agents are

punished by being subjected to some fixed penalty debt limits (φ̃i)
I
i=1, not necessarily

zero (but potentially arbitrarily close to zero). Bidian (2011, Chapter 4) and Bidian

(2014b) show that bubble injections (with nonpositive debt limits) are also possible

for the interdiction to trade (4.1). That is also the case for a temporary (rather than
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permanent) interdiction to trade upon default, where the duration of exclusion can

be deterministic or stochastic (Bidian 2014b). Interestingly, with a permanent or

temporary interdiction to trade, only some of the non-autarchic equilibria (rather

than all) allow for bubble injections with nonpositive debt limits. All the examples

mentioned feature complete markets.

5 Conclusion

We consider the (large) class of nonnegative processes that preserve the set of pricing

kernels when added to asset prices (“kernel-preserving” processes). Any such process

can be injected as a rational bubble in asset prices, leading to an equilibrium with

identical allocations and pricing kernels, but with debt limits tightened proportion-

ally to the size of the bubble. Moreover, with enforcement limitations, if the debt

bounds are endogenized as in Alvarez & Jermann (2000) to prevent default but to

allow for maximal credit expansion, the modified debt limits in the equilibrium with

bubbles still arise endogenously from the existing enforcement limitations.

Conversely, a kernel-preserving bubble is equivalent from the point of view of

consumption and real interest rates to a relaxation of debt limits. Nevertheless, such

a bubble is non-neutral from the point of view of returns and trading volumes. Bejan

& Bidian (2012) and Bidian (2014c) show that a bubble can cause large increases

in trading volume compared to the equivalent bubble-free equilibrium. High trading

volumes typically accompany bubble episodes (Cochrane 2002).

A Kernel-preserving processes

We characterize the set M(p) of kernel-preserving processes.

Lemma A.1. Let p ∈ X1×J
+ such that A(p) 6= ∅. Let ε ∈ X1×J such that p + ε ∈

X1×J
+ . The following are equivalent:

(i) There exists Λ ∈ XJ×J such that εt = (pt + dt)Λt−1 for all t ≥ 1 and there

exists a ∈ A(p) such that a · ε is a martingale.
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(ii) St(p + ε) ⊂ St(p) for all t ≥ 1 and there exists a ∈ A(p) such that a · ε is a

martingale.

(iii) There exists Λ ∈ XJ×J such that εt+1 = (pt+1 + dt+1)Λt, εt = ptΛt, for all

t ≥ 0.

(iv) A(p) ⊂ A(p+ ε)

(v) For each a ∈ A(p), a · ε is a martingale.

Proof. (i) ⇔ (ii) For the implication (i) ⇒ (ii), let (pt + dt)λ ∈ St(p + ε), with

λ : Ω→ RJ , Ft−1-measurable. Then

(pt + ε+ dt)λ = (pt + dt)(I + Λt−1)λ ∈ St(p).

Conversely ((ii) ⇒ (i)), for any λt−1 : Ω → RJ which is Ft−1-measurable, there

exists λ′t−1 : Ω→ RJ , Ft−1-measurable, such that (pt+dt+εt)λt−1 = (pt+dt)λ
′
t−1. It

follows that εtλt−1 = (pt+dt)(λ
′
t−1−λt−1), and since λt−1 was arbitrary, we conclude

that each of the J components of εt belongs to St(p). Thus εt = (pt + dt)Λt−1 for

some Ft−1-measurable Λt−1 : Ω→ RJ×J .

(i)⇒ (iii) The conclusion is immediate, since for all t ≥ 0,

εt = Et
at+1

at
εt+1 = Et

at+1

at
(pt+1 + dt+1)Λt = ptΛt.

(iii)⇒ (iv) Let a ∈ A(p). The conclusion follows, since

Et
at+1

at
(pt+1 + dt+1 + εt+1) = Et

at+1

at
(pt+1 + dt+1)(I + Λt) = pt(I + Λt) = pt + εt.

(iv)⇒ (v) Let a ∈ A(p). Thus a ∈ A(p+ ε). The conclusion follows, since

pt + Et
at+1

at
εt+1

a∈A(p)
= Et

at+1

at
(pt+1 + dt+1 + εt+1)

a∈A(p+ε)
= pt + εt,∀t ≥ 0.

(v) ⇒ (i) Fix a date t ≥ 0 and a state ω ∈ Ω, and denote by Ft(ω) the atom

of the partition Ft containing ω (that is, the date t “node” containing ω, in the

event-tree language). Assume that Ft+1 has S atoms belonging to Ft(ω) (i.e. there
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are S branches leaving the chosen node). All the Ft+1-measurable random variables,

with the domain restricted to Ft(ω) (that is, given that Ft(ω) occurred), which

will be the case for the rest of the proof, can be viewed simply as elements of RS.

For any two such random variables v1, v2, the conditional expectation Et(v1 · v2)
introduces an inner product on RS, denoted by 〈v1, v2〉. To simplify notation, let

A := {x ∈ RS
++ | pt = 〈x, pt+1 + dt+1〉}. Thus A is the set of all at+1/at with

a ∈ A(p). Similarly, let Â := {x ∈ RS | pt = 〈x, pt+1 + dt+1〉} be the set off all

at+1/at satisfying pt = Et
at+1

at
(pt+1 + dt+1) (strict positivity is not imposed). Thus

A = Â ∩ RS
++. Let Z := St+1(p) be the asset span at t+ 1, and hence a subspace of

RS. In other words, Z := {
∑J

j=1 λj(p
j
t+1 + djt+1) | λ1, . . . , λJ ∈ R}.

We show next that Â = aff(A), where aff(A) is the affine hull of A, defined as

aff(A) := a + span(A − A), for any a ∈ A (and span(A − A) is the linear span

of A − A). Let Z⊥ ⊂ RS be the subspace of all vectors orthogonal to Z, Z⊥ :=

{z′ ∈ RS : 〈z′, z〉 = 0,∀z ∈ Z}. For each a ∈ Â, the definition of Â implies that

Â = {a′ ∈ RS | 〈a′−a, z〉 = 0,∀z ∈ Z}. Therefore for each a ∈ Â, Â = a+Z⊥. Thus

Â is an affine subspace parallel to Z⊥. Since A = Â∩RS
++, it follows that any element

in A is also in the core (algebraic interior) of A relative to Â.4 The convexity of A

implies that A is of full dimension in Â, that is aff(A) = Â (Holmes 1975, Theorem

2.C), and therefore span(A− A) = Z⊥.

Choose a j ∈ {1, . . . , J}. For all a ∈ A, εjt = 〈a, εjt+1〉. Hence for all a, a′ ∈ A, 〈a′−
a, εjt+1〉 = 0. It follows that εjt+1 ⊥ A− A, and therefore εjt+1 ⊥ span(A− A). Since

span(A − A) = Z⊥, εjt+1 ∈ (Z⊥)⊥ = Z. As a consequence, for each j ∈ {1, . . . , J},
there exists λjt = (λj1,t, . . . , λ

j
J,t)
′ ∈ RJ such that εjt+1 = (pt+1+dt+1)λ

j
t =

∑J
k=1(p

k
t+1+

dkt+1)λ
j
k,t. By setting Λt = (λ1t , . . . , λ

J
t ), it follows that εt+1 = (pt+1 + dt+1)Λt. This

concludes the proof, since t ≥ 0 and ω ∈ Ω were chosen arbitrarily.

Proof of Proposition 3.1

Proof. (i) ⇔ (ii) Follows from the equivalence (iv) ⇔ (v) in Lemma A.1. A(p) ⊂
A(p + ε) is equivalent to a · ε being a martingale for any a ∈ A(p). Similarly,

4An element ā ∈ A belongs to the core of A relative to Â if for each a ∈ Â, there exists γa > 0
such that ā + γ(a − ā) ∈ A, for all γ ∈ [0, γa]. It is thus possible to move linearly from ā towards
any point in Â while staying in A.
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A(p+ ε) ⊂ A(p+ ε+ (−ε)) is equivalent to a · (−ε) (hence a · ε) being a martingale

for all a ∈ A(p+ ε).

(i) ⇒ (iii) A(p) ⊂ A(p + ε) implies St(p + ε) ⊂ St(p) and a · ε is a martingale,

for some a ∈ A(p) (Lemma (A.1) (iv)⇒ (ii)). Similarly, A(p+ ε) ⊂ A(p+ ε+ (−ε))
gives St(p) = St(p+ ε+ (−ε)) ⊂ St(p+ ε).

(iii) ⇒ (i) Choose a ∈ A(p) ∪ A(p + ε) such that a · ε is a martingale. This

implies that if a ∈ A(p), then a ∈ A(p + ε), and similarly, if a ∈ A(p + ε), then

a ∈ A(p). Thus a ∈ A(p) ∩ A(p + ε). Since St(p + ε) ⊂ St(p), it follows that

A(p) ⊂ A(p+ ε), by Lemma A.1 (ii)⇒ (iv). Similarly, A(p+ ε) ⊂ A(p+ ε+ (−ε))
since St(p+ ε+ (−ε)) ⊂ St(p+ ε) (Lemma A.1 (ii)⇒ (iv)).

(iii) ⇒ (iv) This is an immediate consequence of the equivalence (iii) ⇔ (ii)

proved above and Lemma A.1 (ii) ⇒ (iii) applied successively for the pairs (p, ε)

and (p̂,−ε).
(iv)⇒ (i) By Lemma (A.1) (iii)⇒ (iv), it follows that A(p) ⊂ A(p+ ε). Notice

that −εt+1 = (p̂t+1 + dt+1)(−Γt) and −εt = p̂t(−Γt), and therefore by Lemma (A.1)

(iii)⇒ (iv) (applied to p̂,−ε,−Γ rather than p, ε,Λ), A(p+ ε) = A(p̂) ⊂ A(p̂− ε) =

A(p).

Proposition A.2. Let ε ∈M(p) and

Λ(ε, p) :=
{

Λ ∈ XJ×J | ∀t ≥ 0, εt = ptΛt, (pt+1 + dt+1)Λt = pt+1Λt+1

}
.

If assets are non-redundant at prices p, then the set Λ(ε, p) is a singleton, Λ(ε, p) :=

{Λ}, and det (I + Λt) 6= 0, ∀t ≥ 0. Moreover, the portfolios θi, θ̂i in the equivalent

equilibria E , Ê of Theorem 3.3 satisfy, for all t ≥ 0,

θ̂it = (I + Λt)
−1 (θit + Λtθ

i
−1
)
.

Proof. If Λ,Λ′ ∈ Λ(ε, p), then for all t ≥ 0, (pt+1 + dt+1)(Λt − Λ′t) = 0. Since

assets are non-redundant at prices p, Λt = Λ′t for all t ≥ 0, and thus Λ(ε, p) is a

singleton, Λ(ε, p) := {Λ}. By Proposition 3.1 (i) ⇒ (iv), there exist Γ such that

εt+1 = (pt+1 + dt+1)Λt = (pt+1 + dt+1) (I + Λt) Γt. Using again non-redundancy of
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assets at prices p, we obtain (I + Λ) Γ = Λ. It follows that

I = I + Λ− Λ = I + Λ− (I + Λ)Γ = (I + Λ)(I− Γ),

and therefore I + Λ is non-singular.

If (ci, θi), (ci, θ̃i) ∈ Bi
0((p0 + d0)θ

i
−1, φ

i, p) are optimal for i, then (pt + dt)θ
i
t−1 =

(pt + dt)θ̃
i
t−1 for all t ≥ 0. Therefore θi = θ̃i, as assets are non-redundant. Indeed, if

for example (pt + dt)θ
i
t−1 > (pt + dt)θ̃

i
t−1, as agents’ utilities are strictly increasing,

V i
t ((pt+dt)θ

i
t−1, φ

i, p) > V i
t ((pt+dt)θ̃

i
t−1, φ

i, p), contradicting the optimality of (ci, θ̃i).

Therefore the portfolios θi, θ̂i in the equilibria E , Ê of Theorem 3.3 are uniquely

determined. They satisfy (see (3.4) and the proof of Theorem 3.3)

(pt + dt)(θ
i
t−1 − θi−1) = (p̂t + dt)(θ̂

i
t−1 − θi−1),∀t ≥ 0, (A.1)

where p̂ = p+ε, and ε ∈M(p). It follows that for all t ≥ 1, (pt+dt)Λt−1 = ptΛt = εt.

Using (A.1),

(pt + dt)(θ
i
t−1 − θi−1 − (I + Λt−1)(θ̂

i
t−1 − θi−1)) = 0,

and therefore θit−1 − θi−1 = (I + Λt−1)(θ̂
i
t−1 − θi−1). Solving for θ̂it−1 leads to (3.6).
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