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Abstract

We propose two non-cooperative mechanisms that deliver aspira-
tion core allocations (Cross 1967, Bennett 1983) together with their
supporting coalitions. The equilibrium concepts used are strong and
subgame perfect Nash equilibria. Overlapping coalition configurations
are allowed and our bargaining procedures interpret this fact in differ-
ent ways. The first mechanism allows players to participate simultane-
ously in more than one coalition, while the second assigns probabilities
to the formation of different (and potentially overlapping) coalitions.
Both procedures generalize previous core implementation results.

Keywords: Coalition formation, non-cooperative implementation, aspira-
tion core
JEL Classification Numbers: C71, C72.

1 Introduction

This work brings together two distinct branches of the literature. The first
refers to the non-cooperative implementation of the core, while the second
deals with coalition formation. Which coalitions arise is a non-issue for bal-
anced games: it can be assumed that the grand coalition always forms, since
it generates the highest total surplus for the players of the game. However, if
balancedness (or super-additivity) is not satisfied, it is desirable to endoge-
nously determine not only payoffs but also coalitional outcomes. We adapt
ideas from well-known core implementation procedures to a setting in which
the grand coalition is not assumed to form. Our mechanisms deliver, as equi-
librium outcomes, the aspiration core1 vectors (Cross 1967, Bennett 1983)
and their supporting coalitions.

Aspirations can be interpreted as price vectors resulting from demands
placed by the players for participating in any formed coalition. An aspiration
cannot be improved upon by any coalition but, compared to a core vector,
has a much weaker feasibility requirement: each player’s payoff must be low
enough so at least one coalition is able to support it. In particular, aspiration
payoffs may not be feasible for the grand coalition, allowing the possibility
for other coalitions to be formed.

1The aspiration core is also known as the balanced aspiration set.
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The aspiration core is defined as the set of aspirations of minimal sum
and it is a non-empty core extension. Our bargaining procedures are re-
lated to previous core implementation results (e.g., (Perry and Reny 1994,
Serrano 1995, Serrano and Vohra 1997, Pérez-Castrillo 1994, Moldovanu and
Winter 1994, Okada and Winter 2002)) but with an added coalition forma-
tion dimension to the problem. Still, if the game is balanced, the grand
coalition forms and equilibrium payoffs coincide with the core.

Coalitions supporting a given aspiration are not necessarily disjoint. The
literature on coalition formation has generally discarded this type of outcome
as lacking predicting power. Greenberg (1994), for example, noted: “Clearly,
the set of coalitions that support an aspiration is not a partition. Thus,
despite its appeal, an aspiration fails to predict which coalition will form, and
moreover, it ignores the possibility that players who are left out will decide to
lower their reservation price.” Both of our aspiration core implementations
deal with this criticism, albeit in different ways.

In our first bargaining game aspiration core payoffs are attained via frac-
tional coalition participation. While belonging to a single coalition is an
appropriate assumption to model some situations (one person cannot belong
to the Democrat and the Republican party simultaneously), there are other
instances in which it is reasonable to assume that an agent would divide
his time, or other resource, among several coalitions. For example, people
might work for more than one firm, invest in multiple ventures, or belong
to a number of clubs. Such situations are not covered by solution concepts
specifically designed to deal with partitions. We depart from the traditional
approach to coalition formation by allowing a single player to participate in
multiple coalitions.

Our first mechanism starts by players simultaneously announcing a payoff
for themselves and a distribution of their time across coalitions. For example,
a player might divide her available time among two or more non-disjoint
coalitions. A coalition forms when all of its members choose to spend a
positive fraction of their time on it, and their demands are less than or equal
to its worth. The coalition is active for a period of time equal to the minimum
participation by one of its members. A player who participates in a coalition
that operates a fraction � of time gets a fraction � of his demand. It is
assumed that time not spent in an active coalition is spent alone. Along
the lines of (von Neumann and Morgenstern 1944, Kalai, Postlewaite, and
Roberts 1979, Hart and Kurz 1983, Borm and Tijs 1992, Young 1998), we
focus on strong Nash equilibria. We show that strong Nash equilibrium
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strategies in our game correspond to aspiration core payoffs and, conversely,
any aspiration core vector can be generated by a strong Nash equilibrium. In
equilibrium, players organize into efficient, overlapping coalition structures.

Our second game illustrates a probabilistic approach to the overlapping
coalition issue. Instead of claiming that non-disjoint coalitions form simulta-
neously, they are assigned a positive probability of actually forming. Ex-post,
a single coalition forms. For example, if we consider the three-player simple
majority game2 the prediction is that coalitions {1, 2}, {1, 3}, and {2, 3}, will
form, each with a probability of 1

3
. The set of coalitions that may form is a

balanced family, and the vectors of probabilities and balancing weights are
proportional to each other.

As opposed to the first game, the second is not played by the original
players, but by (at least) three principals. This type of construction is similar
to (Aumann 1989, Pérez-Castrillo 1994, Gómez 2003, Morelli and Montero
2003). Our story is as follows: one principal is the owner of a set of machines
(the players of the original cooperative game), but lacks the knowledge to
operate them. Instead, she rents them to potential entrepreneurs in the
market, who will set up firms (i.e., create “coalitions” of machines) and
operate them to produce the output. The game has two stages. In the
first stage, the interested entrepreneurs submit bids to the owner. A bid
represents the total amount an entrepreneur is willing to pay to get the
machines. The entrepreneur with the highest bid wins and enters stage 2,
while the others leave the game. In the second stage the owner and the
winning entrepreneur play the following simultaneous-move zero-sum game.
The owner puts a price on each machine so that the sum equals the winning
bid, while the entrepreneur selects a set of machines that she wants to buy.
The transaction takes place, with the entrepreneur paying for the machines
she wants at the prices set by the owner. The game implements the aspiration
core allocations in subgame perfect equilibria.

Our mechanisms are related to the proposal-making bargaining game in-
troduced by Selten (1981) and extended by Bennett (1997) which, for a very
particular class of games,3 supports aspirations (semi-stable payoff vectors
in Selten’s (1981) terminology) as outcomes of stationary subgame perfect
equilibria. With additional restrictions, the outcome is refined to the set of

2In this game coalitions of two and three players have a worth equal to one and the
remaining coalitions are worth zero.

3Selten (1981) requires that the complement of any productive coalition must have zero
worth.
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partnered aspirations (or stable payoff vectors in Selten’s (1981) terminol-
ogy). However, our approach applies to a much more general class of games,
generates efficient outcomes, and coincides with the core in balanced games.

The paper is organized as follows. Section 2 introduces notation and basic
definitions. Section 3 describes the mechanism that implements the aspira-
tion core in strong Nash equilibria, while section 4 focuses on the subgame
perfect implementation. Section 5 concludes.

2 Definitions and Notation

Let N = {1, ..., n} be a finite set of players, where n ∈ ℕ ∖ {0}. Let N
be the collection of all non-empty subsets of N and, for every i ∈ N , let
Ni = {S ∈ N ∣ S ∋ i}. Let ΔN be the unit simplex in ℝn, ΔN the unit
simplex in ℝ2n−1 and ΔNi

= {� ∈ ΔN ∣ �S = 0 if i /∈ S}. For any S ∈ N ,
let eS ∈ ΔN be the vertex of ΔN corresponding to coalition S. A TU-game
(or simply a game) with a finite set of players N is a mapping v : 2N → ℝ
such that v(∅) = 0. For any S ⊆ N , v(S) is called the worth of coalition S.
The zero-normalization of v is a TU-game, v0, with the same set of players
N , such that for every S ⊆ N, v0(S) = v(S)−

∑
i∈S v({i}).

A possible outcome of the game v is represented by a payoff vector x ∈ ℝn

that assigns to every i ∈ N a payoff xi. Given x ∈ ℝn and S ⊆ N , let
x(S) :=

∑
i∈S xi, with the agreement that x(∅) = 0. A payoff vector x ∈ ℝn

is feasible for coalition S if x(S) ≤ v(S). It is aspiration feasible if for every
i ∈ N , there exists S ⊆ N with i ∈ S such that x is feasible for S. We say that
a coalition S is able to improve upon the outcome x ∈ ℝn if x(S) < v(S). A
vector x ∈ ℝn is called stable if it cannot be improved upon by any coalition.
The core of a game v, denoted C(v), is the set of stable outcomes that are
feasible for N i.e.,

C(v) := {x ∈ ℝn ∣ x(S) ≥ v(S) ∀S ⊆ N, x(N) = v(N)}.

A stable payoff vector x ∈ ℝn that is aspiration feasible is called an
aspiration. We denote by Asp(v) the set of aspirations of game v. It is known
that for any TU-game v, Asp(v) is a non-empty, compact and connected set
(Bennett and Zame 1988). The generating collection of an aspiration x is the
family of coalitions S that can attain x, i.e.,

GC(x) := {S ∈ N ∣ x(S) = v(S)}.
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A collection of coalitions ℬ ⊆ 2N is called balanced (respectively weakly
balanced) if every S ∈ ℬ is associated with a positive (resp. non-negative)
number �S such that for every i ∈ N ,

∑
S∈ℬ,S∋i �S = 1. The numbers �S are

called balancing weights. It is customary to interpret the balancing weight
�S as the fraction of resources each player (in S) devotes to coalition S, or as
the fraction of time coalition S is active (see, for example, (Kannai 1992) ).
Thus, a pair (ℬ, �) consisting of a balanced family ℬ and balancing weights
� := (�S)S∈ℬ can be interpreted as a feasible overlapping coalition struc-
ture, that is, a family of coalitions that can co-exist if players can divide
their resources/time. The total surplus generated by an overlapping coali-
tion structure (ℬ, �) is b(ℬ, �) :=

∑
S∈ℬ �Sv(S). An overlapping coalition

structure (ℬ, �) is called stable if there exists a stable x ∈ ℝn such that
x(N) ≤ b(ℬ, �).

For every TU-game v we define b̄(v) as the maximum total surplus gen-
erated by an overlapping coalition structure:

b̄(v) := max{b(ℬ, �) ∣ ℬ is balanced w.r.t. weights {�S}}. (1)

A coalition structure (ℬ, �) is efficient if b(ℬ, �) = b̄(v). It is known that b̄(v)
is finite and b̄(v) = min{x(N) ∣ x(S) ≥ v(S) ∀S ⊆ N}, (Bennett 1983).
This implies that an overlapping coalition structure is efficient if and only
if it is stable. Moreover, the core of a game v is non-empty if and only if
b̄(v) ≤ v(N) (Bondareva 1963, Shapley 1967). Such games are known as
balanced games.

The aspiration core of a game v is given by

AC(v) := {x ∈ Asp(v) ∣ GC(x) is weakly balanced }.

The aspiration core is non-empty for every TU-game v and it coincides
with the core whenever the latter is non-empty. Two alternative but equiv-
alent definitions of the aspiration core are AC(v) = {x ∈ Asp(v) ∣ x(N) =
b̄(v)} and AC(v) = arg min{x(N) ∣ x ∈ ℝn, x(S) ≥ v(S) ∀S ⊆ N} (See
(Bennett 1983)).

If x ∈ AC(v) and ℬ ⊆ GC(x) is a balanced family with associated weights
�, then b(ℬ, �) = x(N) = b̄(v) and thus (ℬ, �) is efficient. Reciprocally, every
efficient overlapping coalition structure (ℬ, �) is stable, which implies that
there exists x ∈ AC(v) such that x(N) = b̄(v) = b(ℬ, �) and thus ℬ ⊆ GC(x).
Hence, the only efficient (and stable) overlapping coalition structures are
balanced subsets of the generating collections of aspiration core allocations.
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3 Strong Nash Equilibrium Implementation

Fix a TU-game v with a finite set of players N . Given the covariance prop-
erties of the aspiration core, there is no loss of generality in assuming that v
is zero-normalized and thus, v({i}) = 0 for all i ∈ N .4 We associate with v a
non-cooperative game Γ(v), defined as follows. The player set of Γ(v) is N .
Each player i ∈ N is endowed with one unit of a resource (for example, time)
and has to decide how to allocate it among different coalitions. In other
words, player i chooses a resource allocation vector �i ∈ ΔNi

. Additionally,
player i chooses a payoff for himself, xi ∈ ℝ. Thus, player i’s strategy space
is Si = ΔNi

× ℝ. Let S =
∏

i∈N Si be the strategy space of the game.
A coalition is productive only as long as all its members want to invest

resources in it and their payoffs are feasible for S. More formally, given a
strategy profile s = (�, x) ∈ S, a coalition S ∈ N generates a total surplus
for its members of �0(S)v(S), where �0(S) = mini∈S �i(S) if x(S) ≤ v(S)
and �0(S) = 0 otherwise. The payoff to i at s ∈ S is pi(s) := �i(s)xi, where
�i(s) :=

∑
S∋i �0(S) is the fraction of time spent productively. Notice that,

by definition, �i(s) ∈ [0, 1] and thus pi(s) ≤ xi, for all i ∈ N and s ∈ S. We
think of 1−�i(s) as the amount of time agent i is idle or equivalently, given
that v is zero normalized, time dedicated to coalition {i}. Accordingly, we
define the set of formed coalitions as

ℱ(s) := {S ∈ N ∣ �0(S) > 0} ∪
{
{i} ∣ �i(s) < 1

}
.

For any strategic-form game with a finite player set N and any strategy s
we say that a coalition S can improve upon s if there exist strategies (ti)i∈S =
tS such that pi(s) < pi(s−S, tS) for every i ∈ S. We say that the strategy
profile s is a strong Nash equilibrium if s cannot be improved upon by any
coalition, (Aumann 1967).

Assume s∗ = (�∗, x∗) ∈ S is a strong Nash equilibrium of Γ(v). To
simplify notation, for any i ∈ N , let �i(s

∗) = �∗i , pi(s
∗) = p∗i , and ℱ(s∗) =

ℱ∗.

Proposition 3.1 If s∗ is a strong Nash equilibrium of Γ(v), then p∗ is an
aspiration of v.

4The aspiration core is covariant with respect to affine transformations of the game,
that is AC(�v + �) = �AC(v) + � for every game v and every � ∈ ℝ+, � ∈ ℝn.
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Proof. First, we show that p∗ = (p∗i )i∈N is aspiration feasible. For any
j ∈ N , if �∗j = 0 then p∗j = v({j}) = 0 and thus p∗ is aspiration feasible for
j. If �∗j > 0, there must exist S ∈ N with j ∈ S and �0(S) > 0. This implies
that p∗(S) ≤ x∗(S) ≤ v(S), and thus p∗ is aspiration feasible.

We show next that p∗ is stable. Suppose not, so ∃S ∈ N such that
p∗(S) < v(S). Define for every i ∈ S x̂i = p∗i + "

∣S∣ , where " = v(S)−p∗(S) >

0. In this case S improves upon s∗ by using strategies (eS, x̂i)i∈S, which is a
contradiction. We conclude that p∗ is an aspiration of v.

Theorem 3.2 If s∗ = (�∗, x∗) is a strong Nash equilibrium of Γ(v), then
p∗ ∈ AC(v) and ℱ∗ is a balanced subset of GC(p∗). Conversely, if y∗ ∈ AC(v)
then there exists a strong Nash equilibrium s∗ of Γ(v) with p∗ = y∗ and
ℱ∗ = GC(y∗).

Proof. Let s∗ be a strong Nash equilibrium. According to Proposition
3.1, p∗ is an aspiration of v. To show p∗ ∈ AC(v) it is therefore sufficient
to prove that GC(p∗) is balanced. To do so, we show that ℱ∗ ⊆ GC(p∗) and
that ℱ∗ is itself balanced.

Recall that ℱ∗ = {S ∈ N∣�∗0(S) > 0} ∪ {{i}∣ �∗i < 1}. If �∗0(S) > 0, then
x∗ is feasible for S. As p∗(S) ≤ x∗(S) and p∗ is an aspiration, S ∈ GC(p∗).
If S = {i} and �∗i < 1, we show that p∗i = v({i}) = 0. Assume �∗i , x

∗
i > 0,

otherwise the result holds trivially. If p∗i > 0, there exists T ∋ i such that
�∗0(T ) > 0. As �∗i < 1 we have p∗(T ) =

∑
j∈T �

∗
jx
∗
j <

∑
j∈T x

∗
j ≤ v(T ), which

is impossible as p∗ is an aspiration. Therefore, ℱ∗ ⊆ GC(p∗).
Finally, associate weights {�S}S∈ℱ∗ as follows. If �∗0(S) > 0 and S /∈

{{i}∣ �∗i < 1}, let �S := �∗0(S). If �∗i < 1, let �{i} = 1 − �∗i . Clearly, ℱ∗ is a
balanced family of coalitions with the above balancing weights.

Conversely, let y∗ ∈ AC(v), GC(y∗) its corresponding balanced family of
coalitions and {�S}S∈GC(y∗) some balancing weights. Consider the strategy
profile s∗ = (�∗, y∗) such that �∗i (S) = �S if S ∈ GC(y∗) and i ∈ S, and
�∗i (S) = 0 otherwise. Clearly �∗i = 1 for every i ∈ N , so p∗ = y∗. The
strategy profile s∗ is a strong Nash equilibrium because, if ŝ = (�̂, ŷ) improved
upon s∗ on Ŝ, then v(Ŝ) ≥ ŷ(Ŝ) > y∗(Ŝ), so y∗ would not be an aspiration.

The theorem implies that the coalition structure (ℱ∗, �) is stable and
efficient. Therefore, the game delivers not only aspiration core allocations,
but also the efficient coalition structures that support those allocations.

A related strategic game was proposed by Kalai, Postlewaite, and Roberts
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(1979) in the context of a public good economy. They implement core allo-
cations in strong Nash equilibrium. An analogous result can be obtained by
applying Theorem 3.2 in the particular case the game v is balanced.

Corollary 3.3 If v is balanced and s∗ is a strong Nash equilibrium, then
p(s∗) ∈ C(v). Conversely, if x∗ ∈ C(v) then there exists a strong Nash
equilibrium s∗ with p(s∗) = x∗.

The non-cooperative game described above relied on the assumption that
players can divide their resources/time among various coalitions. A natural
question to ask is whether the aspiration core may still be used to predict
coalition formation when agents’ resources are assumed to be indivisible.
Second, it may be argued that strong Nash equilibrium is a very restrictive
solution concept as it assumes that agents are able to coordinate strategically.
Unfortunately, Nash equilibrium outcomes of the non-cooperative game Γ(v)
coincide with the set of individually rational payoff vectors and it is therefore
too weak as a solution concept for this case. To address these concerns we
define next a second mechanism that does not require the co-existence of
non-disjoint coalitions and implements the aspiration core in subgame perfect
equilibrium.

4 The Bidding Game

The game of this section illustrates the role of the aspiration core solution
concept in the context of firm formation. It relates stability of aspirations to
firm profitability and exploits the fact that coalition structures that support
aspiration core allocations are precisely those that maximize the total surplus.

Given a cooperative TU-game v, the following two-stage mechanism, de-
noted by Ψ(v), describes a situation in which an auxiliary set of individuals,
called B1, B2 and X, compete over the n players in the cooperative game.
X is the owner of a set of machines (the players of the original cooperative
game, v), but she lacks the knowledge to operate them. Instead, she rents
them to the potential entrepreneurs in the market, who will set up firms (i.e.,
“coalitions” of machines) to produce the output. As in the previous section,
we assume that v is zero-normalized without affecting the generality of our
results. The description of the game is the following:

Stage 1: Principals B1 and B2 simultaneously bid amounts b1, b2 ≥ 0.
Let b = maxi=1,2 bi and label the winning bidder principal B. If bids are
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equal, a winner is selected at random. The losing bidder gets zero payoff and
leaves the game.

Stage 2: Principals B and X engage in the following zero-sum game:
B chooses a coalition S ∈ N and X chooses x ∈ bΔN . Payoffs for B are
determined according to the excess function uB(x, S) = v(S)−x(S). Payoffs
for X are given by uX = −uB. Denote the zero-sum game by Ω(b).

This mechanism is reminiscent of the game Aumann (1989) used to derive
an alternative proof to Bondareva-Shapley theorem (see also (Gómez 2003)).
The role of stage 1 in our mechanism is to pin down the total surplus achieved
by the most efficient coalition structure. This step is not needed if the objec-
tive is to implement the core, because the grand coalition is always the most
efficient coalition structure in balanced games.

A strategy profile for Ψ(v) is ((b1, �1(b)), (b2, �2(b)), x(b)) in which princi-
pal Bi bids bi ≥ 0 and, for any b ≥ 0, chooses a mixed strategy �i(b) ∈ ΔN
in the second-stage game Ω(b). If the winning bid in stage 1 is b, Principal
X chooses the vector x(b) ∈ bΔN in Ω(b). We now show that this mecha-
nism implements the aspiration core of game v in subgame perfect equilibria
(SPE).

We begin by analyzing the equilibria of the subgames that start after a
winning bid b. The following proposition is a generalization of the min-max
theorem to zero-sum semi-infinite games (i.e., games in which exactly one
player has an infinite strategy set). We refer the reader to (Raghavan 1994)
for a proof of this result.

Proposition 4.1 For any b ≥ 0 the semi-infinite zero-sum game Ω(b) has a
value !(b) ∈ ℝ. Moreover, there exists a Nash equilibrium of Ω(b) in which
X plays a pure strategy.

For ease of notation, denote the amount b̄(v) defined in (1) by b̄.

Proposition 4.2 The value !(b) is a continuous and strictly decreasing
function of b, with !(b̄) = 0.

Proof. That !(b) is strictly decreasing follows immediately from the
fact that maxx∈bΔN

∑
S∈N �Sx(S) is strictly increasing in b, for every � ∈

ΔN . Continuity is an immediate consequence of Berge’s maximum theorem
(Border 1985, p. 64).

Since b̄ = max{
∑

S∈ℬ �Sv(S) ∣ ℬ is balanced w.r.t. weights {�S}}, there
exists a balanced family ℬ with weights {�̄S} such that

∑
S∈ℬ �̄Sv(S) = b̄.
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Let Λ̄ :=
∑

S∈N �̄S and consider the mixed strategy �̄(b) ∈ ΔN that assigns

probability �̄S(b̄) := �̄S
Λ̄

to S ∈ ℬ and zero to any other S ∈ N . Then, for
any strategy x ∈ b̄ΔN , we have

uB(x, �̄(b̄)) =
∑
S∈ℬ

�̄S
Λ̄

[v(S)− x(S)] =
b̄− x(N)

Λ̄
= 0.

Strategy �̄(b̄) guarantees Player B a non-negative profit, so !(b̄) ≥ 0. On
the other hand, b̄ = min{x(N) ∣ v(S) ≤ x(N) ∀S ⊆ N} implies that ∃x̄ ∈
ℝn such that x̄(N) = b̄ and uB(x̄, S) ≤ 0 for every S ⊆ N . Consequently
!(b̄) ≤ 0. We conclude !(b̄) = 0, as we wanted.

Proposition 4.3 The mechanism Ψ(v) has at least one subgame perfect
equilibrium.

Proof. Proposition 4.1 implies the existence of at least one equilibrium
(x̂(b), �̂(b)) for every zero-sum game Ω(b). We claim that the strategy pro-
file ((b̄, �̂(b)), (b̄, �̂(b)), x̂(b)) is an SPE. Indeed, by definition, second-stage
strategies are equilibria of Ω(b). Additionally, according to Proposition 4.2,
no player can generate positive profits by deviating from his first stage strat-
egy when the opponent bids b̄.

Proposition 4.4 In any SPE, principals B1 and B2 choose bids equal to b̄,
yielding zero profits for Principals B1, B2 and X.

Proof. Let ((b∗1, �
∗
1 (b)), (b∗2, �

∗
2 (b)), x∗(b)) be an SPE strategy profile for

this mechanism. Then b∗1 = b∗2, otherwise, by strict monotonicity of !(b),
the highest bidder has an incentive to bid less. Let b∗ = b∗1 = b∗2. A bid
b∗ > b̄ cannot be part of an equilibrium because, according to Proposition
4.2, !(b∗) < 0 and thus any bidder would prefer to stay out by biding 0. If
b∗ < b̄, since !(b∗) > 0, any bidder has a profitable deviation in announcing
b∗ + " for " > 0 small enough to guarantee !(b∗ + ") > 1

2
!(b∗). Such " > 0

always exists because !(b) is continuous and !(b∗) > 0. Thus b∗ = b̄ and
!(b∗) = 0.

Theorem 4.5 If ((b∗, � ∗1 (b)), (b∗, � ∗2 (b)), x∗(b)) is an SPE for Ψ(v) then x∗(b∗) ∈
AC(v). Conversely, if x̄ ∈ AC(v), then there exists an SPE strategy profile
((b∗, � ∗1 (b)), (b∗, � ∗2 (b)), x∗(b)) such that x∗(b∗) = x̄.
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Proof. The previous proposition shows b∗ = b̄. By definition of b̄ we know
that any vector x such that x(N) < b̄ cannot be an aspiration as it will be
blocked by some coalition. It is then enough to show that x∗(b̄), x∗ for short,
is an aspiration. If x∗(S) < v(S) for some S ∈ N then the winning bidder
could make positive profits choosing S, which would contradict Proposition
4.4. Thus, x∗ is stable. Second, if there ia an i ∈ N such that x∗(S) >
v(S) for every S ∋ i, then coordinate x∗i could be slightly reduced so that
inequalities x∗(S) ≥ v(S) are still satisfied, and definition of b̄ would be
contradicted. Hence, x∗ is also aspiration feasible and therefore an aspiration
core allocation.

Conversely, let x̄ ∈ AC(v). Let b∗ = b̄ and (�(b), x(b)) be a Nash equi-
librium of the game Ω(b). For every b ∕= b̄ and i = 1, 2 define � ∗i (b) = �(b).
As GC(x̄) is balanced, denote its balancing weights by {�̄S}S. Let Λ̄ =∑

S∈GC(x̄) �̄S. Define � ∗i,S(b̄) = �̄S
Λ̄

if S ∈ GC(x̄) and zero otherwise. Finally,

define x∗(b) = x(b) for b ∕= b̄ and x∗(b̄) = x̄.
We show next that both Principals play a best response in the subgame

Ω(b̄). For Principal B, giving positive weight to any T /∈ GC(x̄) offers a lower
payoff (excess), as x̄ is an aspiration. For principal X, similar calculations
to those performed in Proposition 4.2 show that uX(� ∗(b̄), x) is independent
of x ∈ b̄ΔN . Furthermore, we can now use the argument in Proposition 4.3
to show that players cannot benefit from choosing a bid different from b̄. We
conclude that the strategy profile ((b∗, � ∗1 (b)), (b∗, � ∗2 (b)), x̄) is an SPE.

The game suggests a natural probabilistic interpretation of an overlap-
ping coalition structure. Instead of claiming that non-disjoint coalitions form
simultaneously, each coalition is assigned a positive probability of actually
forming. We call this a probabilistic coalition structure. Ex-post, a single
coalition forms. As shown bellow, the set of coalitions that have a posi-
tive probability of forming is a balanced family and the associated vector of
probabilities is proportional to the vector of balancing weights.

Let ((b̄, � ∗1 (b)), (b̄, � ∗2 (b)), x∗(b)) be an SPE for Ψ(v) and define

Pk := {S ∣ � ∗k (b̄)(S) > 0}

to be the associated family of productive coalitions (or firms) that can form,
depending on the identity, k = 1, 2, of the winning bidder. Each firm
S ∈ Pk forms with probability � ∗k (b̄)(S). For every k = 1, 2, define T ∗k :=
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maxi∈N
∑

S∋i �
∗
k (b̄)(S) and let

ℐk := {i ∈ N ∣
∑
S∋i

� ∗k (b̄)(S) = T ∗k }

be the set of players (machines) most likely to be chosen by the winning
bidder Bk. For every S ∈ Pk, define the participation coefficient �S :=
�∗k (b̄)(S)

T ∗
k

. Clearly, for every i ∈ N ,
∑
Pk∋S∋i �S ≤ 1, with equality if and only

if i ∈ ℐk. If N ∖ ℐk ∕= ∅, define �{i} := 1 −
∑
Pk∋S∋i �S for every i /∈ ℐk and

let P̃k := Pk ∪ {{i}∣i /∈ ℐk} .

Proposition 4.6 (P̃k, �) is an efficient and stable coalition structure. If
x∗(b̄) >> 0 then ℐk = N .

Proof. According to Theorem 4.5, x∗ := x∗(b̄) ∈ AC(v) and thus v(S) ≤
x∗(S) for all S ⊆ N . On the other hand, Proposition 4.2 implies that !(b̄) =∑

S∈N �
∗
k (b̄)(S)(v(S)−x∗(S)) = 0 and thus � ∗k (b̄)(S) > 0 only if v(S) = x∗(S),

which proves that Pk ⊆ GC(x∗).
In addition, if i /∈ ℐk then, since x∗ ∈ argmaxx∈b̄ΔN

∑
i xi(

∑
S∋i �

∗
k (b̄)(S)),

it must be that x∗i = 0 and thus {i} ∈ GC(x∗). This implies that P̃k ∈
GC(x∗) and, since P̃k is balanced by definition, (P̃k, �) is an efficient and
thus stable overlapping coalition structure. Moreover, if x∗ >> 0 then agent
X’s maximization problem implies that ℐk = N and thus Pk = P̃k.

There is a simple one-to-one and onto relationship between the set of ef-
ficient overlapping coalition structures as defined in Section 2 and the prob-
abilistic coalition structures that assign each player in N equal probability
of participating in a coalition. Indeed, if (ℬ, �) is an overlapping coalition
structure, then this can be mapped into a probabilistic coalition structure
(ℬ, �) in which each coalition S have a probability �S := �S

Λ
of forming,

where Λ :=
∑

S∈ℬ �S > 0. Reciprocally, if (ℬ, �) is a probabilistic coali-
tion structure with � ≥ 0,

∑
S∈ℬ �S = 1 and

∑
S∋i �S =

∑
S∋j �S for every

i, j ∈ N, i ∕= j, then (ℬ, �) is an overlapping coalitions structure, where
�S := �S

Π
, with Π :=

∑
S∋i �S. The results above show that the equilibrium

family Pk is exactly the family of coalitions that would be selected with a
positive probability by a social planner who is concerned with maximizing
the expected total surplus and who is fair to the players, in the sense of giving
each of them an equal probability of participating in a formed coalition.
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5 Concluding Remarks

This paper has proposed a generalization of the bargaining procedures lead-
ing to outcomes in the core and investigated their predictions in case the
formation of the grand coalition is not efficient. Even though coalition for-
mation is endogenous, the core, when non-empty, still arises as the unique
equilibrium outcome. In different contexts, Morelli and Montero (2003), Sun,
Trockel, and Yang (2008), and Zhou (1994) discuss the need to determine the
payoffs of a cooperative game without the assumption that a given coalition
structure (e.g., the grand coalition) will form. The premise of those papers
and ours is that the payoff and coalition formation processes should occur
simultaneously and take feedback from each other. Our two mechanisms ex-
ploit this idea and deliver, as their equilibrium outcomes, the aspiration core
allocations and their supporting family of coalitions as the only efficient and
stable overlapping (or probabilistic) coalition structures.
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