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Abstract

This paper proposes a model of imperfect competition among privately owned

firms that act in the best interest of their shareholders. The existence of a solution

for the model is proved under weaker conditions than the ones generally used in the

literature. In particular, the results did not require the existence of a continuous

equilibrium price selection or concavity assumptions on the profit function.
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1 Introduction

A firm’s production decisions are typically the result of a group decision process involving

people with (possibly) conflicting interests. Modern corporations are generally organized

as legal systems in which the ultimate authority belongs to their shareholders. It is to be

expected then that a firm’s production decisions reflect its shareholders’ interests.

The general equilibrium literature abstracts from the internal organization of firms and

models them as production entities whose decisions are driven by the profit maximization

motive. While the necessity of simplification is perfectly understood in those models, it is
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still a legitimate question to ask whether profit maximization is indeed compatible with

shareholders’ interests.

The answer can be “yes” or “no”, depending essentially on the economic environment

in which that firm acts. Under complete markets and perfect competition, a privately

owned firm that maximizes its profits taking the market prices as given does act in the

best interest of its shareholders. In this case, the only effect that firm’s choice has on

shareholders’ wealth is through the profits that they receive. Since higher profit relaxes

every shareholder’s budget constraint, the production plan that maximizes profits at given

prices is ranked the best by all shareholders. Hence, if they are the ones that control the

firm, profit maximization does represent their preferences.

However, if the firm has some market power, the above reasoning no longer applies,

because a change in production plans now has two effects on shareholders’ wealth: one

is, as before, through the profits that they receive and the other is through the change

in relative prices that the choice of different production plans generates. Since these two

effects may work in opposite directions, profit maximization may no longer be unanimously

supported by the firm’s shareholders. In fact, if they are heterogeneous, shareholders may

not have a common objective at all.

Another problem associated with profit maximization by an imperfectly competitive

firm in a general equilibrium framework is its dependence on the price normalization cho-

sen. The aggregate (residual) demand that each firm faces depends only on relative prices,

while profit is evaluated at nominal prices. Since profit functions obtained under different

normalization rules are not, in general, monotonic transformations of each other, different

choices of the numeraire good lead to different solutions. Hence, profit maximization is

an ill-defined mathematical problem to start with.

The existing literature on imperfect competition acknowledges these problems and

then overcomes them at the expense of making strong assumptions about the market

structure and/or the characteristics of market participants (see [2] for a survey).

Gabszewicz and Vial [8], were the first ones to propose a general equilibrium framework

for the analysis of Cournot competition among firms. Their model, the Cournot-Walras

model, designs an economy populated by a “small” number of firms and a “large” set

of consumers. Firms are assumed to act strategically in the market via a quantity com-

petition in the spirit of Cournot; their profits are distributed to consumers according to

some preassigned shares. Consumers are then allowed to trade, as price takers, in a per-

fectly competitive market; Walrasian equilibrium prices resulting in this pure-exchange

economy are used by firms to evaluate their profits. Whenever prices are not unique, a cer-

tain selection from the exchange equilibrium price correspondence is made. The authors

themselves pointed out the above mentioned problems associated with their formulation

2



of firm’s objective.

Mas-Colell [9] and later on Dierker and Grodal [4] and Dierker et al. [5] refined Gab-

szewicz and Vial’s model. Mas-Colell proposed a scenario in which profit maximization

became a justified objective. He assumed the existence of a class of “capitalists” who own

the firms and only care about some non-produced good, which is chosen as numeraire

and its price is set to 1. In this situation, a change in firm’s production plan influences

its shareholder’s wealth only through the profits received. Hence, under the imposed as-

sumption, utility maximization by the owner results indeed in profit maximization by the

firm, but the condition is too restrictive for most of the real life examples. Dierker and

Grodal [4] argued that the normalization rule used to compute nominal prices should be

intrinsic to the model and thus arise endogenously, rather than being chosen arbitrarily,

a priori. They suggested that shareholders’ demand should be taken into account when

choosing the units to evaluate profits. According to their definition, a monopolistic firm’s

objective is that of choosing an input-output vector y∗ such that profits, expressed in units

of the shareholders’ aggregate demand at y∗ (i.e., the aggregate demand at the exchange

equilibrium price, p (y∗) , that prevails in the market after the choice of y∗), are maxi-

mized at y∗. The authors called this objective real wealth maximization. In a subsequent

paper, Dierker et al. [5] investigated to what extent real wealth maximization respects the

interest of shareholders. They defined a production plan to be S-efficient (S stands for

“shareholders”) if no other plan existed such that shareholders’ new aggregate demand

could be redistributed in a way that all shareholders would be better off. Any firm that

acts in the best interest of its shareholders should select S−efficient production plans.

The authors showed that if shareholders have convex and smooth preferences and their

aggregate compensated surplus function was concave, real wealth maximization selected

S-efficient plans. The conclusion is no longer true once the assumption of concavity of

the surplus function is dropped, but the authors argued that S-efficiency would then be

too strong of a requirement, since S-efficient production plans may not exist.

This paper proposes an alternate objective for a privately owned monopolistic firm,

called shareholders’ wealth maximization (S-wealth maximization). S-wealth maximizing

production plans maximize shareholders’ wealth in the following sense: a plan y∗ is S-

wealth maximizing if shareholders’ wealth at y∗ is enough to buy, at prices prevailing in

the market at y∗, any of the aggregate consumption bundles that they would have chosen

if the firm had made a different choice y. S-wealth maximizing plans are shown to be

S-efficient for all continuous, convex and locally non-satiated preferences. If profits, as

a function of production plans, are differentiable and concave, S-wealth maximization is

a stronger requirement than real wealth maximization, in the sense that every S-wealth

maximizing production plan is real wealth maximizing, too. Under perfect competition,
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the two notions coincide with the familiar profit maximization. However, in general none

of them implies the other.

To deal with the issue of existence of multiple exchange equilibrium prices, we do not

use an exogenously given price selection. Instead, it is assumed that the firm holds some

beliefs over the set of possible equilibrium prices (or inverse demands in the market).

Each such belief generates a (possibly) different set of S-wealth maximizing production

plans. An equilibrium for the oligopoly model consists of a system of beliefs together

with a corresponding vector of S-wealth maximizing production plans for the firms. It is

proved that such an equilibrium exists (possibly in mixed strategies).

The paper is organized as follows. Section 2 shows, by means of an example, that

profit maximization does not respect shareholders’ interests even when they have the

same preferences and one can choose a normalization rule. Section 3 analyzes the case of

a firm with a heterogeneous set of shareholders, defines the concept of S-efficiency and

proposes an objective that selects only S-efficient production plans. Section 4 gives a

characterization of S-wealth maximizing plans, section 5 proves existence of a solution

for firm’s problem and finally section 6 establishes the existence of an equilibrium in

the oligopolistic game, in which firms choose S-wealth maximizing strategies. Section 7

concludes.

2 Profit Maximization under Imperfect Competition

Consider an L−good economy populated by a large number, I, of consumers and one firm.

Let (RL
+, ui, ωi, θi) be the vector of characteristics of consumer i ∈ I, where ui : R

L
+ → R

is the utility function, ωi ∈ R
L
+ is the endowment of goods and θi ∈ [0, 1] represents shares

in firm’s profits.1 Utility function ui represents locally non-satiated preferences and it is

continuous and strictly quasi-concave. The aggregate endowment
∑I

i=1 ωi := ω ∈ R
L
++

is strictly positive in every component and the total number of outstanding shares is

normalized to 1:
∑

i∈I θi = 1.

Let Y ⊆ R
L be firm’s production set and S =

{
i|θi > 0

}
⊆ I the set of firm’s

shareholders. Y is assumed to satisfy the standard conditions: (a) it is closed, convex

and contains the origin, and (b) Y ∩ R
L
+ = {0}.

If both the firm and the consumers are price takers, profit maximization is unanimously

supported by all shareholders. This ceases to be the case if firm is not a price taker. To see

why, suppose that the firm is a (quantity setting) monopolist, while consumers continue

to be price takers.

1We are making the usual abuse of notation by letting I = {1, 2, ..., I}.
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For every y ∈ Y and i ∈ I let ω̃i := ωi + θiy. Note that for i /∈ S, ω̃i = ωi. Define Ey,

as being the pure-exchange economy populated by I consumers with the same preferences

as the original ones, but with endowments ω̃i: Ey =
{
(RL

+, ui, ω̃i)i∈I

}
. For every consumer

i of the economy Ey, let xi(p, y) denote his/her demand at prices p and let P (y) ⊂ ∆L−1

be the set of Walrasian exchange equilibrium price vectors of Ey, normalized to lie in the

(L − 1)-dimensional unit simplex.

For some production sets Y (in particular for those that exhibit free disposal) the

economy Ey may have no Walras equilibrium. Certain lower bounds (or capacity con-

straints) need to be imposed on the firm’s strategy set to avoid this occurrence and make

the problem meaningful. It is sufficient, for example to restrict firm’s choices to produc-

tion plans y that satisfy: y > −mini∈S
ωi

θi and y ≫ −
∑I

i=1 ωi.2 For such y, the main

theorem in [10] implies that P (y) 6= ∅. However, these conditions are not necessary for

the non-emptiness of P (y) and therefore a strictly larger set than the one described above

may still generate non-empty values for P . For the sake of generality, we define the firm’s

strategy set to be some subset Ŷ of Y such that Ŷ ⊆ {y ∈ Y | P (y) 6= ∅} and 0 ∈ Ŷ . As

pointed out above, such subset always exists.

The non-empty valued correspondence P : Ŷ ⇉ ∆L−1 is called the exchange equilib-

rium price correspondence. Let p : Ŷ → ∆L−1 be an arbitrary selection from P .3

Shareholders preferences over production plans are represented by the indirect utility

functions V i(y) := ui (xi(p(y), y)). In general, for heterogeneous economies, these utilities

have no common maximizer on Ŷ which means that there is no unanimously supported

production plan. Clearly, a common maximizer does exist if shareholders are identical.

Still, as shown in the sequel, even in this case the unanimously supported production plan

may not coincide with the profit maximizing plan.

Note that, when formulated in the context of a monopolistic economy, the profit

maximization problem depends on the rule chosen to convert relative into nominal prices.

For a given y, two vectors of absolute (or nominal) prices correspond to (or represent

different normalizations of) the same vector of relative prices if and only if they are

proportional, with the proportionality factor being a positive real number. Thus any

vector of nominal prices that generates the same relative prices as p(y) ∈ ∆L−1 must

be of the form: γ(y)p(y), with γ(y) ∈ R++. A function γ : Ŷ → R++, is called a

price normalization rule. The profit function computed using the normalization rule γ is:

Πγ(y) = γ(y)p(y)y.

2We are using the usual notation for vector inequalities. If a, b ∈ R
L, then: a ≥ b if and only if al ≥ bl

for all l = 1, .., L; a > b if and only if a ≥ b and a 6= b; a ≫ b if and only if al > bl for all l = 1, .., L.
3One could think of p as representing shareholders’ belief about the realization of the equilibrium

price. Section 5 elaborates on that.
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Different price normalization rules generate different profit functions and different

profit maximizers. Therefore, a certain normalization rule must be specified from the

beginning to make the problem meaningful. The following example shows, however, that

no matter what normalization rule is chosen, profit maximizing production plan may not

coincide with shareholders’ most preferred plan even when such plan exists.

Example 1 Consider an economy with 2 goods and 1 consumer. Let u(x1, x2) = x1x2,

ω = (2, 1) and θ = 1 be the characteristics of the consumer and

Y = {(y1, y2) ∈ R− × R+ |y1 + y2 ≤ 0}

firm’s production set.

The strategy space of the firm is Ŷ = {(y1, y2) ∈ (−2, 0] × [0, 2) | y1 + y2 ≤ 0} and the

exchange equilibrium price correspondence is given by:

P (y) =

(
1 + y2

3 + y1 + y2

,
2 + y1

3 + y1 + y2

)
∈ ∆ ⊆ R

2
+.

The unique most preferred production plan4 from the firm owner’s point of view is

(−1
2
, 1

2
) = arg max

{
(2 + y1) (1 + y2) | (y1, y2) ∈ Ŷ

}
.

We show now that there is no price normalization rule under which (−1
2
, 1

2
) maximizes

profits.

Let γ : Ŷ → R++ be a normalization rule5 and suppose that (−1
2
, 1

2
) is profit maximizer

under γ. Then

γ(y)
y1 + 2y2 + 2y1y2

3 + y1 + y2

≤ 0. (1)

for every y ∈ Ŷ . Since by definition γ(y) > 0, and 3 + y1 + y2 > 0, inequality (1) implies

y1 + 2y2 + 2y1y2 ≤ 0, ∀y ∈ Ŷ . However, this inequality fails at (y1, y2) =
(
−1

3
, 1

3

)
∈ Ŷ .

Thus the unique production plan that is unanimously ranked the best by all shareholders

cannot arise as a solution of profit maximization under any normalization rule.

The example shows that the problem is not that of choosing the “right” price normal-

ization, but rather revising the profit maximization objective itself.

4Note that this is independent of the choice of the numeraire.
5For example, the normalization rule corresponding to using the bundle (α, β) ∈ R

2
+, α2 + β2 6= 0 as

the numeraire is: γ(y) = β(1+y1)+αy2

1+y1+y2

.
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3 S-Wealth Maximization and S-Efficiency

As pointed out in the previous section, if shareholders are heterogeneous, they may not

agree on a common most preferred production plan. Requiring that the firm’s choice

meet shareholders’ unanimous approval would thus lead to an empty solution. A weaker

and very natural requirement is that production plans chosen by the firm be Pareto un-

dominated from the shareholders’ point of view. However, this requirement alone is too

weak because equilibrium allocations generated by different production plans may not be

Pareto comparable and thus the class of solutions satisfying it may be very large. We

therefore use a stronger criterion based on Pareto comparisons accompanied by redistri-

bution, as in [4]: the firm should not select a production plan y if another one, say y, is

in firm’s strategy set and is preferred by all shareholders after a potential redistribution

of their consumption bundles. A firm’s objective that fulfills this requirement is proposed

here.

Consider the economy described in the previous section, with a single monopolistic firm

and a large set of consumers. The set of firm’s shareholders6 is S. Ŷ denotes, as before,

the firm’s strategy set , P : Ŷ ⇉ ∆ is the exchange equilibrium price correspondence and

p is an arbitrary measurable selection7 from P .

Given the price selection p (·) let DS
p (y) :=

∑
i∈S xi(p(y), y) be shareholders’ aggregate

demand when the firm chooses y ∈ Ŷ and let W S
p (q, y) := qDS

p (p(y), y) be their aggregate

wealth evaluated at some price vector q.

Definition 2 Given the price selection p, a vector y∗ ∈ Ŷ is called S-wealth maximizing

if and only if W S
p (p(y∗), y∗) ≥ W S

p (p(y∗), y) for all y ∈ Ŷ .

The objective of a privately owned monopolistic firm is to choose an S-wealth max-

imizing production vector, y∗. If the firm chooses an S-wealth maximizing production

plan, its shareholders’ aggregate wealth suffices to buy, at the prices prevailing in the

market, any of the other aggregate consumption bundles the group of shareholders would

have had if the firm had made a different choice.

Note that S-wealth maximization is indeed independent of the price normalization

chosen and it reduces to profit maximization if the firm is perfectly competitive (i.e., its

6Throughout the paper it is assumed that firm’s decisions are governed by the interests of all sharehold-
ers and only theirs. However, this is not essential; all the results hold under the alternative assumption
that there is a certain subset of consumers, called the control group, whose interests are reflected in the
firm’s decisions. Members of the control group could be shareholders as well as non-shareholders (for
example, a non-shareholder representative of the firm’s employees may be in the control group).

7Such selection exists (at least as long as Ŷ is compact), because P is upper hemicontinuous with com-
pact values (see appendix) and thus weakly measurable. Kuratowski-Ryll-Nardzewski selection theorem
implies then the existence of a measurable selection from P (see [1])
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actions do not affect equilibrium prices). For the case of a monopolist, selecting S-wealth

maximizing production plans respects the interests of the shareholders, in a sense that is

made precise below.

Definition 3 Let y, y′ ∈ Ŷ . We say that y is weakly S-dominated by y′ (given the price

selection p) if and only if ∃(xi)i∈S ∈ R
LS
+ such that

1.
∑

i∈S xi = DS
p (y′)

2. ui(xi) ≥ ui(xi(p(y), y)),∀i ∈ S, with at least one strict inequality for some

j ∈ S.

An element y ∈ Ŷ is called S-efficient if there is no y′ ∈ Ŷ that weakly dominates it.

We say that a firm’s objective respects its shareholders interests if it selects (a subset

of the) S-efficient8 production plans. The next proposition shows that S-wealth maxi-

mization satisfies this requirement.

Proposition 4 Any S-wealth maximizing production plan is S-efficient. The converse is

also true if
{

DS
p (y) − ωS | y ∈ Ŷ

}
is a convex set. If S = I and Ŷ is convex, both S-wealth

maximizing and S-efficient production plans coincide with the set of Walras equilibrium

production vectors.

Proof. The idea of the proof is the following: we construct an artificial production

economy whose Pareto optimal and Walrasian equilibrium allocations are mapped to

S-efficient and S-wealth maximizing production plans, respectively. We use then the

standard welfare theorems to get the results.9

Let Zp be the set of shareholders’ net aggregate demands, i.e., Zp
def
=

{
DS

p (y) − ωS | y ∈ Ŷ
}

,

where ωS =
∑

i∈S ωi is shareholders’ aggregate endowment.

Consider the production economy ES
p =

{(
R

L
+, ui, ωi, θi

)
i∈S

, Zp

}
in which the set of

consumers is S and the production set is Zp.
10.

Lemma 5 1. If y∗ ∈ Ŷ is S-wealth maximizing for the original economy then

((
xi(p(y∗), y∗)

)
i∈S

, DS
p (y∗) − ωS, p(y∗)

)

8In case S is the set of all shareholders, this requirement could seem too strong, because the side
payments involved in the definition are unlikely to be possible within a large group of shareholders.
However, if S represents a (small) control group, it is to be expected that its members will bargain with
each other over different proposals and agree on making certain transfers to achieve unanimity. On the
other hand, it is important to understand that, in any case, the firm (or the group of its shareholders)
is not required to be able to compute and/or make those transfers. If the firm follows the S-wealth
maximization objective, its shareholders would not be able to improve upon the production plan chosen
even if they had the ability to make side payments.

9A direct proof also works here; however, this construction will be useful later on.
10If S is not the set of all shareholders, consumers’ shares in the artificial economy ES

p have to be

adjusted to θi

θ
, where θ =

∑
i∈S θi.

8



is a Walrasian equilibrium in ES
p .

2. If y∗ ∈ Ŷ is S-efficient for the original economy then
(
(xi(p(y∗), y∗))i∈S , DS(y∗) − ωS

)

is Pareto optimal in ES
p . Conversely, if the allocation

((
xi

)
i∈S

, z
)

is Pareto effi-

cient in ES
p and there exists y ∈ Ŷ such that z = DS

p (y) − ωS and xi = xi(p(y), y).

then y is S-efficient in the original economy.

Proof of the lemma.

1. Assume y∗ ∈ Ŷ is S-wealth maximizing.

Then
(
(xi(p(y∗), y∗))i∈S , DS

p (y∗) − ωS
)

is a feasible allocation for the economy ES
p and

DS
p (y∗) − ωS maximizes profits in Zp given the prices p(y∗). Moreover, aggregation of

budget constraints in the original economy gives: p(y∗)
(
DS

p (y∗) − ωS
)

= p(y∗)y∗ i.e.,

shareholders’ budget constraints are the same in the two economies. This proves that(
(xi(p(y∗), y∗))i∈S , DS

p (y∗) − ωS, p(y∗)
)

is a Walrasian equilibrium in ES
p .

2. Assume y∗ ∈ Ŷ is S-efficient, but
(
(xi(p(y∗), y∗))i∈S , DS

p (y∗) − ωS
)

is not Pareto

optimal in ES
p . Then there exists a feasible allocation ((xi)i∈S, z) that Pareto domi-

nates it. Hence, ∃y ∈ Ŷ such that z = DS
p (y) − ωS,

∑
i∈S xi = DS

p (y) and ui(xi) ≥

ui(xi(p(y∗), y∗))∀i ∈ S , with at least one strict inequality. This contradicts S-efficiency

and thus
(
(xi(p(y∗), y∗))i∈S , DS

p (y∗) − ωS
)

is Pareto optimal in ES
p . The converse impli-

cation is also transparent from the above reasoning.

Since ES
p is an economy without externalities, in which consumers have locally non-

satiated preferences, the first welfare theorem holds and thus any Walrasian equilibrium

allocation is Pareto optimal. Using then lemma 5 we can conclude that every S-wealth

maximizing production plan is S-efficient. If, moreover, Zp is a convex set, the second

welfare theorem also holds for ES
p and thus S-wealth maximizing and S-efficient production

plans coincide.

If S = I then Zp = Ŷ and the conclusion is immediate.

4 Properties of S-Wealth Maximizing Production Plans

This section gives a characterization of the S-wealth maximizing production plans for

smooth economies. For this class of economies, and the particular price selection, one can

give a system of first order conditions that S-wealth maximizing production plans must

satisfy.

For every y ∈ Ŷ let W S(y) := W S
p (p(y), y). Assume that the economy is smooth and

thus p is of class C1.
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Proposition 6 Assume that y∗ is an S-wealth maximizing production plan. Then

∇W S(y∗) = Jp (y∗) DS(y∗), (2)

where ∇W S(y∗) is the gradient of W S evaluated at y∗ and Jp (y∗) ∈ ML×L (R) is the

Jacobian matrix of p at y∗.

Proof. The equality can be obtained as follows:

∂W S

∂yl

(y∗) = lim
h→0
h>0

p(y∗ + hel)D
S(y∗ + hel) − p(y∗)DS(y∗)

h
≤ (3)

≤ lim
h→0
h>0

[p(y∗ + hel) − p(y∗)] DS(y∗ + hel)

h
=

∂p

∂yl

(y∗)DS(y∗). (4)

Similarly,

∂W S

∂yl

(y∗) = lim
h→0
h<0

p(y∗ + hel)D
S(y∗ + hel) − p(y∗)DS(y∗)

h
≥ (5)

≥ lim
h→0
h>0

[p(y∗ + hel) − p(y∗)] DS(y∗ + hel)

h
=

∂p

∂yl

(y∗)DS(y∗). (6)

Formula (6) is exactly the first order condition that real wealth maximizing production

plans, proposed by Dierker and Grodal in [4] have to satisfy11. According to Dierker and

Grodal [4], y∗ ∈ Ŷ is a real wealth maximizer if and only if W S
p (p(y), y∗) ≥ W S

p (p(y), y),

∀y ∈ Ŷ . Although S-wealth maximization has the same real wealth maximization “fla-

vor”, the two concepts are, in general, different. According to proposition 4, S-wealth

maximizing production plans are S-efficient for all continuous, convex and locally non-

satiated preferences. Real wealth maximizing production plans fail to be S-efficient if

shareholders’ compensated surplus function is not concave12 (see [5]). Hence, in general,

the two objectives select different production plans.

The previous proposition shows that, for the case of a smooth economy, S-wealth

maximizing and real wealth maximizing production plans satisfy the same system of first

order conditions. One may wonder under which conditions the two concepts coincide.

11Dierker and Grodal work with a two-good economy, in which firm chooses a price. However, their
analysis can be extended to multiple-good economies and firms that select production plans.

12General conditions (on the primitives of the model) that insure concavity of shareholders’ social
surplus function are, to the best of my knowledge, unknown.
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Clearly, this happens under perfect competition, since in that case they both deliver the

profit maximizing production plans. Other instances in which the two concepts coincide

are described below.

For every y ∈ Ŷ , define shareholders’ aggregate budget set at y as

BS (y) =
{
x ∈ R

L
+ | p(y)x ≤ p(y)ωS + p(y)y

}
.

The budget line at y, BLS(y), is
{
x ∈ R

L
+ | p(y)x = p(y)ωS + p(y)y

}
and the aggregate

budget set is

BS =
⋃

y∈bY

BS (y) .

Note that the complement of BS is a convex set, being an intersection of convex sets

(the complements of budget sets at y, for different y-s).

The North-East part of the frontier of BS is called the aggregate budget curve, and is

denoted by F . Since this is not, in general, a hyperplane, the budget set is a non-convex

set, in general.

Proposition 7 If F is smooth and both S-wealth maximizing and real wealth maximizing

production plans exist, then they must be unique and coincide.

Proof. Let yS be an S-wealth maximizing production plan and yR a real wealth

maximizing production plan. Then p(yS)DS(yS) ≥ p(yS)DS(yR) ≥ p(yS)DS(yS) and

thus yS, yR ∈ BLS(yS). On the other hand, by definition, DS(yR) ∈ F . Since F is

smooth, BLS(yR) is the unique hyperplane supporting
(
BS

)C
at DS(yR). Therefore,

BLS(yS) = BLS(yR) and thus p(yS) = p(yR). Since W S(yS) = W S(yR) this implies

p(yS)yS = p(yR)yR, which, together with the market clearing conditions in the corre-

sponding exchange economies gives yS = yR.

The next proposition makes a first step towards analyzing the existence problem of

S-wealth maximizing strategies.

Proposition 8 If F is smooth, real wealth maximizing production plans exist and the set{
DS(y) | y ∈ Ŷ

}
is convex13, then an S-wealth maximizing plan exists, it is unique and

coincides with the unique real wealth maximizing plan.

Proof. Let yR be a real wealth maximizing plan. Then DS(yR) ∈ F and BLS(yR) is

the unique hyperplane supporting
(
BS

)C
at DS(yR). Moreover,

{
DS(y) | y ∈ Ŷ

}
⊆ BS,

13This condition is met, for example, in linear economies (see [7]).

11



it is convex and contains DS(yR). The separating hyperplane theorem implies then that

BLS(yR) must separate
{

DS(y) | y ∈ Ŷ
}

and
(
BS

)C
. This means that yR is also S-wealth

maximizing, which proves existence. Uniqueness is implied by the previous proposition.

Note that if S = I (i.e., every consumer is a shareholder),
{

DS(y) | y ∈ Ŷ
}

= Ŷ .

Hence, as long as Ŷ is convex, real wealth maximization and S-wealth maximization

coincide and they both deliver the Walrasian production plans.

Example 9 Consider a two-good economy with two consumers and one monopolistic firm.

Consumers preferences are represented by the utility functions u1 (c1, c2) = log c1 + log c2,

u2 (c1, c2) = log c1 + 2 log c2. Their endowments are ω1 = ω2 = (3, 1) , θ1 = θ2 = 1
2
.

Firm’s production set is Y =
{
(y1, y2) ∈ R− × R+

2 |y1 + y2 ≤ 0
}

.

Simple computations show that Ŷ = Y ∩((−6, 0] × [0, 6)) and P (y) = 10+5y2

52+7y1+5y2

, for all

(y1, y2) ∈ Ŷ . Consumers’ demands are D1(y) =
(

6
5

(
3 + 1

2
y1

)
, 6

7

(
1 + 1

2
y2

))
and D2(y) =(

4
5

(
3 + 1

2
y1

)
, 8

7

(
1 + 1

2
y2

))
. Their utilities are: ũ1(y) = ln 6

5

(
3 + 1

2
y1

)
+ln 6

7

(
1 + 1

2
y2

)
and

ũ2(y) = ln 4
5

(
3 + 1

2
y1

)
+ 2 ln 8

7

(
1 + 1

2
y2

)
.

The utility possibility set is {(ũ1(y), ũ2(y))|y ∈ Ŷ }. Its frontier is depicted below:

Figure 1: Utility Possibility Frontier

It is clear from the picture that the two shareholders do not agree on their most pre-

ferred production plan. Consumer 1’s most preferred plan is (−2, 2), which gives him an

utility of 1.41; consumer 2’s most preferred plan is
(
−10

3
, 10

3

)
which gives her an utility

of 2.3. If both shareholders are in the control group then the unique S-wealth maximizing

production plan is
(
−8

3
, 8

3

)
, which is exactly the Walras equilibrium production plan.

12



The thin line on the graph represents the Pareto frontier in the artificial pure-exchange

economy. Its intersection with the utility frontier is the S-efficient set. In this case it

consists of only one point: the Walras equilibrium. Hence SE =
{(

−8
3
, 8

3

)}
.

The real wealth maximizing plan is
(
−8

3
, 8

3

)
, too and thus all three concepts (real wealth

maximization, S-wealth maximization and S-efficiency) deliver the same solution in this

example.

Note also that
{

DS(y) − ωS | y ∈ Ŷ
}

is a convex set for every possible structure of

the control group (i.e., for S = {1} , S = {2} , or S = {1, 2}). Hence, in particular,

if only one of the consumers is in the firm’s control group, the corresponding S-wealth

maximizing production plan coincides with his/her most preferred plan.

If prices are normalized to lie in the unit simplex, the profit maximizing plan is

(−1.3694, 1.3694) , which gives consumers strictly lower utilities than than at the S-wealth

maximizing plan: 1.3893 and respectively 1.9266 .

5 Existence of S-Wealth Maximizing Production Plans

In section 3 it was proved that S-wealth maximizing plans are related to Walrasian equi-

librium allocations of the economy ES
p . Note that, even if Ŷ is compact and convex and the

price selection is a smooth function, Zp may not be a convex set (although it is compact

and connected). Hence ES
p is in general a non-convex production economy and a Wal-

rasian equilibrium allocation may not exist for this economy. Consequently, an S-wealth

maximizing production plan may not exist either.14 15

In the sequel we show that, if instead of choosing only deterministic production plans

the firm can also randomize over the input-output vectors in its strategy set (i.e., the firm

can use mixed strategies), then the set of shareholders’ net demands is convexified and

an equilibrium does exist.

Note that the S-wealth maximizing production plans are in a bijective correspondence

with the pure strategy Nash equilibria of the two-player simultaneous move game Γp =(
Ŷ , Ŷ , Φ1

p, Φ
2
p

)
, where Φ1

p, Φ
2
p : Ŷ × Ŷ → R,

Φ1
p(y1, y2) = p(y2)D

S
p (y1), Φ

2
p(y1, y2) = −‖y1 − y2‖

2 ,

and ‖y1 − y2‖ is the Euclidian norm of (y1 − y2).

Without claiming that the game is a mechanism that implements the solution of the

model, but rather for the sake of exposition, we call the two players “the assembly of

14If ZS
p is a convex set, pure strategy S-wealth maximizing production plans do exist and they coincide

with the set of S-efficient production plans.
15Note also that firm’s preferences over production plans need not be acyclic or convex.
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shareholders” and “the manager”. The assembly of shareholders and the manager simul-

taneously choose a production plan. The assembly of shareholders chooses the production

plan that maximizes their aggregate wealth, while the manager’s objective is to match

shareholders’ choice.

A pure-strategy Nash equilibrium of Γp is (y∗, y∗), such that y∗ is an S-wealth maxi-

mizing plan. Reciprocally, if y∗ is an S-wealth maximizing plan given the price selection

p, then (y∗, y∗) is a pure-strategy Nash equilibrium of the game Γp.

If p were a continuous price selection, both payoff functions would be continuous.

However, the payoff of the shareholders’ assembly may not be quasi-concave and thus

existence of a pure strategy Nash equilibrium of Γp is not guaranteed. Conditions (on the

primitives of the model) that would insure quasi-concavity of Φ1
p are not known. However,

as long as p is continuous, the game Γp has a Nash equilibrium in mixed strategies.

Nevertheless, it is well known that P may not admit any continuous price selection.

Thus Φ1
p may be discontinuous and, in this case, even the existence of mixed-strategy

equilibria becomes non-trivial.

Since, in general, P is not single valued, a selection has to be made. Any such selection

can be interpreted as representing the firm’s belief about the prevailing market prices.

We see no compelling reason to restrict the firm’s (or shareholders’) beliefs to those that

put the entire mass on a single point (i.e., to Dirac measures). Instead, the firm can

have any belief over the possible market prices, i.e., any probability measure over the set

of measurable selections from P . Given such belief, the shareholders’ objective is that

of maximizing their expected aggregate wealth. As with single price selections, different

beliefs generate different S-wealth maximizing plans, but rather than being chosen arbi-

trarily, the firm’s beliefs will be part of the solution of the model. The details of these

refinements of the model are presented in the sequel.

Let M be the space of all bounded and measurable functions from Ŷ to R
L
+ endowed

with the pointwise convergence topology (or product topology). Let B (M) denote the

Borel sigma-algebra of M.

Define P to be the set of all measurable selections from P. If Ŷ is compact, P has

compact values and thus P ⊆ M (see the appendix for a proof). On P consider the

σ-algebra induced by B (M) .

Definition 10 A belief is any probability measure µ over P.

A mixed strategy for the firm is any probability measure σ over Ŷ .

If σ is a mixed strategy for the firm and µ a belief, let p(σ) := p(
∫

bY
ydσ(y)) and Eµ

be the expectation operator with respect to the probability µ.
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Definition 11 An equilibrium for the monopolistic economy E consists of a system of

beliefs µ∗, together with a (mixed) strategy σ∗ for the firm such that, for every y∗ ∈

supp(σ∗),

Eµ(W S
p (p(σ∗), y∗)) ≥ Eµ(Wp(p(σ∗), y), (7)

for all y ∈ Ŷ .

Note that the two values of the expectation operator in (7) are well defined, because,

given the pointwise convergence topology on P , the mapping P ∋ p (·) 7−→ p (y) ∈ R
L is

continuous, and thus integrable, for every y.

Theorem 12 If Ŷ is closed and convex, and consumers’ utilities are strictly increasing

in every component, then a monopolistic equilibrium exists.

Proof. S-wealth maximizing production plans corresponding to a certain belief µ

are Nash equilibrium strategies of the game Γµ =
(
Ŷ , Ŷ , ϕ1

µ, ϕ
2
)
, where ϕ1

µ (y1, y2) =
∫
P

p(y2)D
S(p(y1), y1)dµ (p) and ϕ2 (y1, y2) = −‖y1 − y2‖

2. An equilibrium of the monop-

olistic economy E exists if and only if there exists a probability µ such that the game Γµ

has a Nash equilibrium.

Define the discontinuous game with endogenous sharing rule (see [11] for a definition),

Γ :=
(
Ŷ , Ŷ , Φ1, ϕ2

)
where Φ1 : Ŷ × Ŷ ⇉ R, is defined by

Φ1 (y1, y2) =
{
ϕ1

µ (y1, y2) | µ = probability measure over P
}

. (8)

Note that every belief µ generates the measurable selection ϕ1
µ from Φ1 and, recipro-

cally, for every measurable selection ϕ1 from Φ1 there exists a probability measure µ on

P such that ϕ1 = ϕ1
µ. Thus the monopolistic economy E has an equilibrium if and only

if the game Γ has a solution.16 We show that all hypotheses of the main theorem in [11]

are satisfied.

1. Ŷ is compact:

Since the set is closed we only need to prove that it is bounded. Suppose it is not.

Then there exists a sequence (yn)n ⊆ Ŷ such that ‖yn‖ > n, ∀n ≥ 1. Convexity of Ŷ

together with 0 ∈ Ŷ implies 17 1
‖yn‖

yn +
(
1 − 1

‖yn‖

)
0 ∈ Ŷ , for all n ≥ 2.

16According to Simon and Zame [11] the game Γ is said to have a solution if and only if there exists a

measurable selection ϕ1 from Φ1 such that the normal-form game
(
Ŷ , Ŷ , ϕ1, ϕ2

)
has a Nash equilibrium.

170 ∈ Ŷ holds because ωi ∈ R
L
+ for every i, and

∑
i∈I ωi ≫ 0 (see, for example [10] ).
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Since
∥∥∥ 1
‖yn‖

yn

∥∥∥ = 1, we can assume, without loss of generality, that 1
‖yn‖

yn → y0 ∈ R
L,

with ‖y0‖ = 1. Ŷ closed implies then that y0 ∈ Ŷ . On the other hand, since P (y) 6= ∅

∀y ∈ Ŷ , Ŷ ⊆ {y ≥ −ω} . Thus limn→∞
1

‖yn‖
yn ≥ −limn→∞

ω
‖yn‖

= 0 and y0 = 0, which

contradicts ‖y0‖ = 1.

2. Φ1 is upper hemicontinuous with compact and convex values.

To show this we prove that

Φ1 (y1, y2) = co
{
qDS(r, y1) | q ∈ P (y2) , r ∈ P (y1)

}
, (9)

and the correspondence Q : Ŷ × Ŷ ⇉ R,

Q (y1, y2) :=
{
qDS(r, y1) | q ∈ P (y2) , r ∈ P (y1)

}

is upper hemicontinuous with compact values. We denote by coX the convex hull of the

set X (i.e., the smallest convex set that contains X).

2a. Φ1 (y1, y2) = co
{
qDS(r, y1) | q ∈ P (y2) , r ∈ P (y1)

}

We prove that the double inclusion holds.

Take ϕ1
µ (y1, y2) ∈ Φ1 (y1, y2) arbitrary. On P (y1)×P (y2) with the product σ-algebra

define the measure µ(y1,y2) such that

µ(y1,y2) (A × B) := µ {p (·) ∈ P | (p (y1) , p (y2)) ∈ A × B}

for every A,B measurable sets in the σ-algebra of P (y1) , respectively P (y2) . Then

ϕ1
µ (y1, y2) =

∫

P (y1)×P (y2)

qDS(r, y1)dµ(y1,y2) (r, q)

and clearly ϕ1
µ (y1, y2) ∈ co Q (y1, y2) .

To prove the opposite inclusion is enough to show that Q (y1, y2) ⊆ Φ1 (y1, y2) , because

Φ1 is convex-valued. Let then qDS(r, y1) ∈ Q (y1, y2) , with q ∈ P (y2) , r ∈ P (y1) . Notice

that there exists a measurable selection p from P such that p (y1) = r and p (y2) = q.18

Define µ = δp to be the Dirac measure that puts its entire mass on p. Then qDS(r, y1) =

ϕ1
µ (y1, y2) ∈ Φ1 (y1, y2) .

2b. Q is upper hemicontinuous with compact values.

To show this we use the following lemma whose proof is given in the appendix:

18Indeed, to construct such a selection is enough to start with an arbitrary one and modify its values
in y1 and y2 to become r and respectively q. The transformed function will still be measurable, because
its inverse images differ from the inverse images of the original measurable selection only by a subset
(possibly ∅) of {y1, y2} .
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Lemma 13 Under the assumptions of the theorem, P is upper hemicontinuous and has

compact values.

Since P is upper hemicontinuous and compact valued and the mapping (q, r, y1) 7−→

qDS(r, y1) is continuous, Q is upper hemicontinuous too. Since Q is upper hemicontinuous

and compact valued, so is coQ and thus Φ1.

On the other hand, ϕ2(y1, y2) = −‖y1 − y2)‖
2 is continuous and single-valued (and

thus convex and compact valued). Hence all the hypotheses of the main theorem in [11]

are satisfied, and thus there exists a belief µ such that the game Γµ has a (mixed strategy)

Nash equilibrium. In consequence, an equilibrium for the monopolistic economy exists.

6 The Oligopoly Game with S-wealth Maximizing

Firms: Existence of Equilibria

Consider now an economy with J monopolistic firms and I consumers. Let Yj be firm j′s

production set (j ∈ {1, .., J}) , and (RL
+, ui, ωi,

(
θi

j

)
j=1..J

) be consumers i′s characteristics

(i ∈ {1, .., I}). ui and ωi are defined as before and θi
j ∈ [0, 1] denotes consumer i′s share

in firm j′s profits, where
∑

i∈I θi
j = 1, ∀j ∈ {1, .., J}. For every j ∈ {1, .., J} production

set Yj is assumed to satisfy conditions (a) and (b) of section 2. Define Sj to be the set of

firm j′s shareholders, i.e., Sj =
{
i|θi

j > 0
}

, and let Y =
∏

j∈J Yj.

Let Ŷ be the set of those production plans y = (y1, y2, ...yJ) ∈ Y for which a compet-

itive equilibrium of the pure exchange economy Ey =
{
(RL

+, ui, ω̃i)i∈I

}
with endowments

ω̃i := ωi +
∑

j θi
jyj exists. Let also P (·) be the equilibrium price correspondence; P is

defined on Y but it is non-empty valued only on Ŷ ⊆ Y .

Let P be the set of all measurable selections from P endowed, as before, with Borel

sigma-algebra generated by the topology of pointwise convergence. Firms’ (common19)

beliefs over equilibrium prices are described by a probability measure µ on P .

Denote by Ŷj the projection of Ŷ on the j′s component. Depending on the production

sets, it may be that Ŷ 6=
∏

j∈J Ŷj and thus the strategy space of each player may depend

on the actions chosen by the others. For example, given y−j (i.e. actions chosen by all

firms except j), the strategy space of firm j is Ŷj(y−j) =
{

yj ∈ Ŷj | (yj, y−j) ∈ Ŷ
}

.

For different vectors y−j these sets are in general different, and they can even be

empty. Defining a pure-strategy Nash equilibrium for such a generalized game poses no

problems. However, as seen before, even a single player’s problem may not have a solution

19The assumption of identical beliefs is imposed only because it seems natural. However, the analysis
of this section carries through even if firms hold different beliefs.
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in pure strategies. Since players’ strategy sets are not independent, it is not clear what

a mixed strategy would mean for such a game. Hence, the standard Nash equilibrium

concept is not appropriate in this situation; one has to allow for some coordination among

firms’ actions and maybe to design a dynamic game in order to accommodate for firms’

dependent strategy spaces. We will comment more on this in the conclusions. For now,

we are going to adopt the (implicit) assumption used in the rest of the literature on

oligopolistic competition and avoid this difficulty by requiring that Ŷ =
∏

j∈J Ŷj. This

could happen if, for example, firms have bounded below production sets, with bounds

tight enough to ensure ωi +
∑

j θi
jyj > 0 for all i and j.

Definition 14 Given the belief µ and choices y∗
−j of all the firms except j, an S−wealth

maximizing production plan for firm j is y∗
j ∈ Ŷj that satisfies

∫

P

p(y∗)DSj(p (y∗) , y∗)dµ (p)≥

∫

P

p(y∗)DSj(p
(
yj, y

∗
−j

)
yj, y

∗
−j)dµ (p) , ∀yj∈Ŷj,

where y∗ =
(
y∗

j , y
∗
−j

)
.

Hence firms compete in a Cournot fashion, each of them taking the actions of the

others as given when making their own production decisions.

Following the same reasoning as in the previous section, the equilibria of the Cournot

game among the J S-wealth maximizing firms are in a bijective correspondence with the

Nash equilibria of the (2J)-player normal form game, Γµ in which:

1. all players have the same action set, Ŷj,

2. the players’ payoff functions are:

ϕ2j
µ (y, z) =

∫
p (zj, y−j) DS(p (yj, y−j) , yj, y−j)dµ (p)

ϕ2j+1(y, z) = −‖zj − yj‖
2 .

Theorem 15 If Ŷ is closed and convex and consumers’ utilities are strictly increasing in

every component, then there exists a system of beliefs µ and an associated Nash equilibrium

for the Cournot game among firms.

The proof of this theorem is very similar with that of theorem (12) and will be omitted.
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7 Conclusions

This paper has proposed a model of imperfect competition among privately owned firms

that act in the best interest of their shareholders. The existence of a solution for the

model was proved under weaker conditions than the ones generally used in the literature.

In particular, the results did not require the existence of a continuous equilibrium price

perception or concavity assumptions on the profit function. However, the solution may

exist only in mixed strategies.

The model also pointed out an interesting relation between the equilibria of these

oligopolistic markets and Walrasian equilibria of some non-convex production economies.

It can be shown (following a construction procedure similar to the one developed in Sec-

tion 3) that oligopolistic markets in which firms choose S−wealth maximizing strategies

are in fact “equivalent” to competitive economies that exhibit some sort of production

externalities (and thus non-convexities).

A difficulty that was assumed away here, as well as in the rest of the literature,

is the non-Cartesian structure of the aggregate strategy space, or, in other words, the

dependence of one firm’s strategy space on the actions taken by the other firms. We think

this calls for a more sophisticated structure of the model, and maybe a dynamic one. To

keep the static framework, one may get some help from the mechanism design literature.

One way out seems to be to “design” a different market mechanism that firms follow. Say

that each firm j has an “abstract” strategy space Sj and there is an outcome function

τ :
∏

Sj → Ŷ

that associates to each J−tuple of strategies an equilibrium compatible production plan.

Then, as long as the strategy spaces Sj are compact metric spaces and τ is continuous,

the existence of an equilibrium in mixed strategies can be proved as above.
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A Appendix

Proof of lemma 13. The idea of the proof is to use upper hemicontinuity of the

demand correspondence. It is known, however, that this correspondence may fail to be

upper hemicontinuous at pairs (y, p) that generate zero wealth. To overcome this difficulty,

we define for each consumer a smoothed demand correspondence (as in Debreu [3]) that

coincides with his/her demand correspondence whenever the zero wealth situation does

not arise, and is everywhere upper hemicontinuous. A notion of equilibrium consistent

with the smoothed demand correspondence is that of a quasi-equilibrium. It is shown

that under the hypotheses of the theorem, for each economy Ey the set of quasi-equilibria

coincides with the set of Walras equilibria.

Let y ∈ Y and Py :=
{
p ∈ ∆L−1 | pωi + θipy ≥ 0 ∀i = 1..I

}
be the set of price sys-

tems that generate non-negative wealth for all consumers. Clearly P (y) ⊆ Py, ∀y ∈ Ŷ .

Denote by R the correspondence R : Ŷ ⇉ ∆L−1, R (y) = Py and note that R is closed,

and non-empty, compact and convex valued.

The proof will be done in 4 steps.

Step 1: The set of Walras equilibria coincides with the set of quasi-equilibria for Ey.

Following [3] we say that:

Definition 16
(
p,

(
xi

)I

i=1

)
∈ Py × R

LI
+ is a quasi-equilibrium for Ey if and only if:

1. ∀i = 1..I, xi ∈ arg max
{
ui(x) | x ∈ R

L
+, px ≤ pωi + θipy

}
or pxi = pωi + θipy = 0,

2.
∑I

i=1 xi = y +
∑I

i=1 ωi.

It is clear that every Walras equilibrium is a quasi-equilibrium. Let now
(
p,

(
xi

)I

i=1

)

be a quasi-equilibrium for Ey. Clearly, if pωi + θipy > 0 for every i ∈ I,
(
p,

(
xi

)I

i=1

)
is

also a Walras equilibrium. If, pωi + θipy = 0 for some i, we distinguish two cases.

Case 1: p ∈ Int
(
∆L−1

)

In this case,
{
x ∈ R

L
+ | px = 0

}
= {0} and thus

xi = 0 = arg max
{
ui(x) | x ∈ R

L
+, px ≤ pωi + θipy

}
.

Case 2: p ∈ ∂
(
∆L−1

)
.

In this case, pωj + θjpy = 0 ∀j ∈ I, for otherwise any consumer j with pωj + θjpy > 0

would demand infinite amounts of the goods whose prices are zero, and thus no quasi-

equilibrium could exist. But then, p
(∑I

j=1 ωj + y
)

= 0 and since
∑I

j=1 ωj + y ≫ 0, we

get p = 0 which contradicts p ∈ ∆L−1.

Next, we introduce a family of truncated economies whose quasi-equilibria coincide

with the quasi-equilibria of (Ey)y∈Y
and whose aggregate smoothed demand correspon-
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dences are upper hemicontinuous everywhere with non-empty, convex and compact values.

Definition 17 For every y ∈ Y define the truncated economy Êy =

((
X̂, ui, ωi + θiy

)I

i=1

)
,

where X̂ =
{
x ∈ RL | 0 ≤ x ≪ ω + y + 1

}
. For every (y, p) ∈ Graph (R) let B̂i

y and x̂i
y

be the budget constraint and , respectively, the smoothed demand correspondence of the ith

consumer in Êy:

B̂i
y(p) =

{
x ∈ X̂ | px ≤ pωi + θipy

}

x̂i
y(p) =





arg max
{

ui(x) | x ∈ B̂i
y(p)

}
if pωi + θipy > 0{

x ∈ X̂ | px = 0
}

if pωi + θipy = 0
.

Step 2: Every quasi-equilibrium of Êy is a quasi-equilibrium of Ey. Suppose the state-

ment is not true. Let then
(
p,

(
xi

)I

i=1

)
be a quasi-equilibrium of Êy that is not quasi-

equilibrium of Ey. Then ∃i and ∃x
i
∈ R

L
+ such that px

i
≤ pωi + θipy and ui(x

i
) > ui(xi).

Strict quasi-concavity of ui implies then that ui(αx
i
+ (1 − α) xi) > ui(xi), ∀α ∈ (0, 1) .

But p
(
αx

i
+ (1 − α) xi

)
≤ pωi +θipy and, for α sufficiently close to 0, αx

i
+(1 − α) xi ≪

ω + y + 1. These inequalities contradict the maximality of xi in B̂i
y(p).

Step 3: x̂i : Graph (R) ⇉ X̂, x̂i (y, p)
def
= x̂i

y(p) is upper hemicontinuous with non-

empty, compact and convex values.

If (y, p) ∈ Graph (R) are such that pωi + θipy = 0, x̂i
y(p) is obviously non-empty,

convex and compact. If (y, p) ∈ Graph (R) are such that pωi + θipy > 0, B̂i
y(p) is a non-

empty, convex and compact set and, since ui is continuous and strictly quasi-concave,

x̂i
y(p) will be a singleton (thus convex and compact).

Since
{
x ∈ RL | 0 ≤ x ≤ ω + 1

}
is a compact set, to prove upper hemicontinuity it is

enough to show that x̂i has closed graph.

Let then (yn, pn, xn) → (y0, p0, x0) in Graph (R) ×
{
x ∈ RL | 0 ≤ x ≤ ω + 1

}
, such

that xn ∈ x̂i (yn, pn) . We need to prove that x0 ∈ x̂i (y0, p0) . If (y0, p0) ∈ Graph (R) is

such that p0ωi + θip0y0 = 0, the conclusion is trivial. If p0ωi + θip0y0 > 0 the conclusion

follows from upper hemicontinuity of x̂i at (y0, p0) (see, for example [3]).

Step 4: P is upper hemicontinuous with compact values

It is enough to show that P has closed graph. Let then (yn, pn) → (y0, p0) in Y ×∆L−1

with pn ∈ P (yn) and xn = (xn
1 , x

n
2 , ..., x

n
I ) be the equilibrium allocation corresponding to

(yn, pn). Then (pn, xn) is a quasi-equilibrium for the truncated economy Êyn and thus

xn
i ∈ x̂i(yn, pn).

Upper hemicontinuity of x̂i implies that there exists a convergent subsequence of xn
i ,

say xnk

i →xi ∈ x̂i(y0, p0).
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Since
∑I

i=1 xnk

i = ynk +
∑I

i=1 ωi, limk→∞

∑I

i=1 xnk

i = limk→∞ ynk +
∑I

i=1 ωi and thus
∑I

i=1 xi = y0 +
∑I

i=1 ωi, which proves that (xi)
I

i=1is a quasi-equilibrium for Êy0 and thus a

Walras equilibrium allocation for Ey0 , corresponding to the prices p0. Therefore p0 ∈ P (y0)

and P has closed graph. Since ∆L−1 is compact, P is also upper hemicontinuous. On the

other hand, P closed implies that P has closed values and thus compact (since they are

subsets of ∆L−1).
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