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Abstract

We analyze the limit behavior of sequences of oligopolistic equilibria
in which firms follow objectives consistent with their shareholders’ inter-
ests. We show that convergence to a competitive outcome may fail for
some distributions of firms’ shares across consumers, and provide a char-
acterization of the class of ownership structures that lead to Walrasian
equilibrium allocations in the limit.
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1 Introduction

Perfectly competitive (or price taking) behavior is believed to arise – and is
generally justified in the literature – when the number of economic agents that
interact in the market is large, and each agent is small relative to the whole
economy. There are, however, examples that show how monopoly profits and
inefficient allocations can persist in equilibrium, even with an arbitrarily large
number of small, competing agents. In an environment without uncertainty
(or with uncertainty but a complete set of contingent securities) this happens
if, as the economy grows larger, the sequence of its (oligopolistic) equilibria
approaches a critical equilibrium point of the limit economy (?). The results of
this paper uncover yet another possible source of inefficiency in large economies:
the firms’ ownership structures. If firms pursue their shareholders’ interests, the
way shares are allocated across consumers plays an important role in achieving
competitive behavior in the limit.
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For a firm that has market power, the choice of a production plan affects
shareholders’ real wealth in two ways: through the profits it generates (we will
call this the income effect), and through the change in market prices it induces
(we call this the price effect). It is well-known that these can be opposite effects
(see, for example, ?, ?, ?) and thus the production plan that maximizes firm’s
profit, under some price normalization,1 may not maximize the welfare of firm’s
shareholders.

One would expect a firm’s production choice to be consistent with its share-
holders’ interests but, typically, no production plan will be unanimously sup-
ported by all shareholders. We say that a production plan chosen by a firm is
compatible with its shareholders’ interests (given the production plans chosen
by the other firms) if no other production plan makes all shareholders better off
(provided that the other firms do not change their plans). Such a production
plan is therefore efficient (or Pareto undominated) from the point of view of the
firm’s shareholders and will be called S-efficient (with S standing for “share-
holders”). We are interested in the strategic interaction of a large number of
firms whose objective is compatible with their shareholders’ interests, in the
sense of selecting S-efficient production plans. The Cournot-Nash equilibria of
such game played by the firms must then have the property that every firm’s
equilibrium production plan is S-efficient given the production plans of the oth-
ers. We call such equilibrium a Cournot S-equilibrium. Although we assume,
for simplicity, that the interests of all shareholders govern the decisions of a
firm, our results also hold under the weaker assumption that a firm’s objective
is shaped by the interests of a smaller “control group” such as the Board of
Directors.

We study the limit behavior of Cournot S-equilibrium production plans of
a sequence of private ownership economies and show that, depending on the
ownership structure, the equilibria may or may not approach a Walrasian equi-
librium of the limit economy. Convergence to a Walrasian equilibrium obtains
if the fraction of each firm owned by its (controlling) shareholders is bounded
away from zero. The result is fairly intuitive. In economies with many com-
peting firms, the price effect of each firm’s action on its shareholders’ welfare
becomes almost negligible. However, if the ownership of a given firm is dis-
persed among a large number of shareholders, so that each of them holds only a
tiny fraction of the firm, the income effect of that firm’s choices on their wealth
must be negligible as well. Thus the price effect, albeit becoming negligible
itself, may still dominate the income effect. As a result, shareholders may dis-
approve the maximization of profits in arbitrarily large economies. Our results
suggest that, while perfect portfolio diversification might be optimal from an
investor’s point of view (as suggested by CAPM-style models) it may not lead
to efficiency economy-wide when firms pursue their shareholders’ interests.

One of the major difficulties in studying the limit behavior of a sequence of
Cournot S-equilibria is defining a notion of “closeness” on the space of private

1Profit maximization is not well-defined in this context unless it is specifically linked to a
particular price normalization. For a discussion of this well-known issue the reader is referred
to ? or ?.
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ownership production economies. For the case of pure-exchange, representing
an economy as a distribution on the space of agents’ characteristics (?, ?) en-
ables the use of weak convergence of measures to define a topology on the space
of economies. For a production economy, the space of characteristics must be
enlarged to include firms’ production sets and ownership structure. However,
as opposed to preferences, endowments or production sets, an ownership struc-
ture is intrinsically related to a space of consumers and a space of firms, and
it is not obvious how such ownership structure can be included in a space of
characteristics that is agent-independent. Even when restricting attention to
economies with a finite number of types of consumers and firms, the separation
of ownership from the actual names of consumers and firms is difficult, unless
one is willing to make very restrictive symmetry assumptions on the ownership
structure. A familiar example of such symmetry requirement is that every con-
sumer of type i owns equal shares in all the firms of type j (?, ?). As some of
our results show, focusing on such specific ownership structure, one is bound to
miss important insights that are revealed only in economies with more general
ownership structures.

We construct here a general framework that embeds any private ownership
production economy and allows for a natural topological structure, which gen-
eralizes other topologies defined in the literature, over more restrictive spaces
of economies. We also show that a continuum production economy is a good
approximation for a large finite economy, since it can be written as the limit of
finite economies.

? proves, in related work, that if a firm maximizes profits (under a spe-
cific price normalization), then each shareholder’s gain from switching to his
most preferred production plan diminishes as the economy grows larger. Thus,
Hart’s result implies that profit maximization by oligopolistic firms is approx-
imately in the best interest of each firm’s shareholder if the economy is large
enough. His proof depends crucially on the “assumption that all consumers are
typical”, which is a condition imposed on the controlling agents’ (endogenous)
wealth. We show that this condition is extremely restrictive, holding only un-
der special circumstances, and proceed by giving a proof of the main result in
? which dispenses entirely with the assumption that consumers are typical,
without adding any other assumptions (Lemma 5.1). Then we use this fact to
show that Cournot S-efficient equilibria are approximately profit maximizing in
large economies (Theorem 5.6), and to give conditions under which the limit of
a sequence of converging Cournot S-efficient equilibria in converging economies
is a Walrasian equilibrium of the limit economy (Theorems 5.6, 5.7).

The paper is organized as follows. We start, in section 2, by giving an exam-
ple that illustrates the main points of the paper. In section 3 we set up a general
framework for describing private ownership production economies and show how
the standard Arrow-Debreu economies and their replicas can be embedded in
this framework. The Cournot S-equilibrium concept and some of its properties
in continuum economies are described in section 4. Section 5 defines a topology
on the space of private ownership economies and provides conditions on the
ownership structure such that approximate and exact convergence of Cournot
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S-efficient equilibria to a Walrasian equilibrium obtains. Section 6 concludes.

2 An illustrative example

Let ℰ1 be an Arrow-Debreu economy with two goods, two consumers and one
firm. Consumers have identical preferences over consumption of the two goods,
represented by the utility u : ℝ2

+ → ℝ, u(c1, c2) = ln c1 + ln c2. The endowment
of goods of consumer 1, respectively 2, are e1 = (4, 4), respectively e2 = (4, 2).
The first consumer is the sole owner of the firm, whose production set is Y :=
{(−�, �) ∣� ∈ [0, 1]}. We will refer to the economy ℰ1 as the prototype economy.

It is assumed throughout that consumers are price takers in all markets
while every firm behaves strategically, internalizing the effect of its choices of
production plans on the market prices. Unlike the standard Cournot-Walras
model (?), firms do not maximize profits, but rather choose production plans
that are non-dominated from the point of view of their shareholders, taking as
given the choices of other firms, but internalizing the effect of its own choice
on the equilibrium market prices. We call such equilibria Cournot S-efficient
equilibria (or simply Cournot S-equilibria). The term hints to the fact that
such a production plan is efficient from the point of view of the shareholders
who, while price takers as consumers, are aware of the market power of the
firms they own. Cournot S-efficient equilibria are typically different from the
standard Cournot-Walras equilibria due to price effects on shareholders’ wealth.

Without loss of generality, we normalize prices to lie in the unit simplex.2

Given a choice of a production plan (−�, �), in the resulting competitive ex-
change equilibrium, (normalized) prices are

(
6+�
14 , 8−�

14

)
, and first consumer’s

utility is v(�) = 2 ln(28 + �(1 − �)) − ln(6 + �) − ln(8 − �). As the sole
owner of the firm, consumer 1 would want the firm to choose a production plan
(−�∗, �∗) with �∗ ∈ [0, 1] that maximizes his utility (which is strictly concave
in �). The first order conditions show that �∗ is the unique solution of the
equation �3 − 3�2 − 67�+ 20 = 0 that belongs to [0, 1], that is �∗ ≈ 0.3.

Hence, the unique equilibrium of the prototype economy in which the firm
acts strategically in the market but follows an objective that is consistent with
its owner’s interests corresponds to a production vector (−�∗, �∗) ≈ (−0.3, 0.3)

and the equilibrium prices
(

6+�∗

14 , 8−�∗
14

)
≈ (0.45, 0.55).

To study the limit behavior of Cournot S-equilibria we construct sequences
of replica economies, in the spirit of ?. An n-fold replica of ℰ1, denoted ℰn, is
an economy with 2n consumers and n firms. All firms, indexed by j ∈ {1, ..., n},
have the same production set as the firm of the prototype economy. Consumers
are indexed by (i, k) with i ∈ {1, 2} and k ∈ {1, .., n}. We will refer to i as the
type and to k as the name of the consumer (i, k). Every consumer of type i has
the same preferences and endowment of goods as consumer i of the prototype

2Our results are independent of this normalization since the objective of each firm is for-
mulated in terms of shareholders’ indirect utilities, which only depend on relative equilibrium
prices and thus are immune to the normalization chosen.
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economy. Similarly, a continuum replica (also called the limit replica) ℰ∞, is an
economy with a continuum of identical firms and consumers of each type.

Due to log-utilities, the exchange equilibrium prices following a choice of
production plans by the firms in any of these replicas do not depend on the way
shares are distributed across consumers. For the n-fold replica economy, given
a production plan y = ((−�j , �j))nj=1, let

�(y) :=
1

n

n∑
j=1

�j . (2.1)

Simple computations reveal that the unique exchange equilibrium price vector
following the choice of production plan y depends only on the average production

and it is equal to
(

6+�(y)
14 , 8−�(y)

14

)
. The same formula is valid in the continuum

replica economy ℰ∞, with a proper reinterpretation of �, that is,

�(y) :=

∫
[0,1]

�(j)d�(j), (2.2)

where � is the Lebesgue measure on [0, 1]. For a continuum replica, a feasible
production plan is a Lebesque measurable function y : [0, 1]→ Y .

Cournot S-equilibrium production plans of the n-fold replica economy de-
pend on the ownership structure, which is the deciding factor in whether Cournot
S-equilibria of large economies become close to Walrasian equilibria of the limit
economy ℰ∞. There are various ways to replicate the ownership of firms’ shares.
We will outline here two different types of ownership structures, and show that
they bear very different implications on the issue whether Cournot S-equilibrium
allocations approach the competitive allocations of the limit economy.

1. Concentrated ownership replication. In this replication, every con-
sumer of type 1 is the sole owner of the firm with the same name (i.e.,
consumer (1, j) is the sole owner of firm j), and all consumers of type 2
have no firm ownership. We denote (finite and continuum) replicas bearing
this ownership structure by ℰcn and ℰc∞.

Following a choice y = ((−�j , �j))nj=1 ∈ ℝ2n of production plans by the
firms, the wealth and utility of consumer (1, j) in such replica are given
by:

w(�(y), �j) =
1

7
(28 + �j(1− �(y))) , (2.3)

V (�(y), �j) = 2 ln (28 + �j(1− �(y)))− ln[(6 + �(y))(8− �(y)]). (2.4)

Thus, in accordance with its owner’s preferences, each firm chooses � ∈
[0, 1] to maximize V (�, �). Since the problem has a unique solution,
Cournot S-equilibria of the economy ℰcn must be symmetric, i.e., �j = �
for j = 1, .., n. The first order condition implies that � satisfies

2�− 2

�2 − �− 28
=

1

n

(
1

�− 8
+

1

�+ 6
− 2�

�2 − �− 28

)
. (2.5)
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According to the implicit function theorem, the solution of (2.5), denoted
�(1/n), is a continuous function of 1/n, hence when n → ∞, �(1/n)
converges to the solution of (2�− 2)/(�2 − �− 28) = 0, which is �∗ = 1.
This corresponds to every firm choosing the competitive production plan.
Thus, the sequence of Cournot S-efficient equilibria of ℰcn converges to the
Walrasian equilibrium of ℰc∞.

2. Diffuse ownership replication. In this replication, every firm is equally
owned by all consumers of type 1, while consumers of type 2 still have no
ownership. The finite n-fold replica will be denoted by ℰdn, while the
continuum replica will be denoted by ℰd∞.

Since each firm in ℰdn is owned by n identical consumers, at a Cournot S-
equilibrium, firms maximize the utility of their representative owner. The
wealth and utility of consumer (1, j) in ℰdn depend only on the average
production, �(y), and have the same expressions as (2.3),(2.4) with �j
replaced by �(y). Thus owners of each firm are identical in terms of pref-
erences and wealth, and therefore finding S-efficient allocations amounts
to maximizing the utility of the representative consumer, which reduces to
the case analyzed for the prototype economy. Hence a production plan yn
is a Cournot S-equilibrium plan if and only if it satisfies �(yn) = �∗ ≈ 0.3.
In particular, the production plan y∗n in which all firms choose (−�∗, �∗)
is a Cournot S-equilibrium. Hence, the monopolistic choice persists in
arbitrarily large economies.

Note that every consumer of type 1 has the same total ownership of shares
in the two examples. In the concentrated ownership example, each consumer
remains the sole owner of a firm, irrespective of the size of the economy. Thus,
even as the economy grows larger, that firm’s production choice significantly
affects its owner’s budget constraint and thus the income effect of a firm’s pro-
duction choice remains significant in arbitrarily large economies. On the other
hand, the price effects vanish and are dominated by the income effect in suf-
ficiently large economies. Thus, every type 1 consumer would want his firm
to choose a production plan close to the profit maximizing plan at the limit
competitive price. By contrast, in the diffuse ownership example, a type 1 con-
sumer’s ownership in any firm diminishes as the economy grows larger. Thus,
the income effect of a firm’s choice vanishes as well and never dominates the
price effect. This is the mechanism through which a monopolistic equilibrium
can persist in arbitrarily large economies.

The two examples illustrate that what drives the competitive behavior is
not only a vanishing price effect, but also the relationship between the price
and the income effect. In large economies the price effect of a change in pro-
duction by a firm becomes negligible. If, at the same time, the income effect
becomes negligible (as it happens with the diffuse ownership), then the price
effect may still dominate the income effect and non-competitive outcomes can
persist in arbitrarily large (and even the atomless limit) economies . If both
the income and the price effects vanish, shareholders become indifferent among

6



their firm’s choices in the limit. However, as our example shows, shareholders
are not indifferent among firm’s choices along the sequence.

It should also be noted that the relevance of ownership structure in this
framework is driven solely by firms’ behavior, through their choice of produc-
tion plans in accordance with their shareholders’ interests. Whether a firm’s
shareholders’ interests are aligned (as in this example) or not (as in the main
results and the examples contained in section 5) is inconsequential.

3 Finite-type production economies

Let ℐ := {1, ..., I} be the set of consumers’ types and J := {1, ..., J} be the set
of firms’ types, where I, J are positive integers. For every j ∈ J let Yj ⊆ ℝL
be the production set of a type-j firm. Yj is assumed to satisfy the following
standard conditions: (a) Yj is closed, convex and contains the origin and (b)
Yj ∩ℝL+ = {0} (i.e., Yj excludes “free lunches”). For every i ∈ ℐ, let (ℝL+, ui, ei)
be the characteristics of a type i consumer, where ℝL+ is the consumption set,
ui : ℝL+ → ℝ a utility representation of his preferences, and ei ∈ ℝL++ the
endowment of goods. It is assumed that the utility functions ui are continuous,
monotonic and strictly quasi-concave.

The space of firms is (ΩF ,G), where ΩF := J × [0, 1] and G is a finite or
countably generated �-algebra on ΩF such that 2J × [0, 1] ⊂ G; thus the pro-
jection | of ΩF on J , defined as |((j, a)) = j, for all (j, a) ∈ ΩF , is measurable.
A firm is an atom of the �-algebra G.3 For every t ∈ ΩF , the unique atom that
contains t is denoted by G(t), and is called firm G(t), or simply firm t, when no
confusion can arise.4 Since 2J × [0, 1] ⊆ G, every atom’s projection on J must
be a singleton, and therefore any firm G(t) can be written as a pair (j, A) for
some j ∈ J and A ⊂ [0, 1]. We will refer to j = |(t) as the type of firm t.

The consumers’ side of the economy is represented by the probability space
(ΩC ,ℱ , �C), where ΩC := ℐ × [0, 1], ℱ is a �-algebra on ΩC such that (ΩC ,ℱ)
is a Polish space,5 and �C is a probability measure on ℱ . We assume that
2ℐ × [0, 1] ⊂ ℱ , hence the projection function { of ΩC on ℐ is measurable. A
consumer is an atom of the �-algebra ℱ . For every s ∈ ΩC , the unique atom
that contains s will be denoted by ℱ(s) and referred to as consumer ℱ(s), or
simply as consumer s.6 The type of consumer ℱ(s) is {(s) ∈ ℐ. The relative size
of type-i consumers to the size of the economy is �C({i} × [0, 1]).

The ownership structure of the economy is described by a measure kernel
� : ΩC × G → ℝ+. Thus, for all s ∈ ΩC , �(s, ⋅) is a finite measure on G
(interpreted as consumer s’s allocation of shares across firms) and, for every

3A non-empty set B is called an atom of the �-algebra G if and only if B ∈ G and for all
C ∈ G, either B ⊆ C or B ∩ C = ∅ (?, p.87).

4 Since G is countably generated, the atoms of G form a partition of ΩF , and the atom
G(t) equals the intersection of all sets in G containing t (see Appendix A for details).

5The space (ΩC ,ℱ) is Polish if ℱ is the Borel �-algebra generated by a topology on ΩC
induced by a complete and separable metric.

6The Polish space assumption imposed on (ΩC ,ℱ) implies that ℱ is countably generated,
and hence the results of Appendix A apply. See also footnote 4.
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B ∈ G, the map �(⋅, B) is ℱ-measurable. For every s ∈ ΩC , �(s,ΩF ) represents
the total “number” of shares (in various firms) owned by consumer s. We assume
that �(⋅,ΩF ) is bounded. Note that this definition allows consumers of the same
type to have different endowments of shares. Therefore, consumers of the same
type are identical only in terms of their preferences and endowments of goods.

Let �C ⊗ � be the measure on the product �-algebra ℱ ⊗ G defined by

(�C ⊗ �)(B) :=

∫
ΩC

∫
ΩF

1B(s, t)�(s, dt)�C(ds), B ∈ ℱ ⊗ G, (3.1)

where 1B denotes the indicator function7 of set B (?, p.20). Since �(⋅,ΩF ) is
bounded, �C ⊗ � is a finite measure.

The composition �C� of �C and the kernel � (?, p.21) defines a measure
�F := �C� on the the space of firms, given by

�F (T ) :=

∫
ΩC

�(s, T )�C(ds), T ∈ G. (3.2)

Notice that �F (⋅) = (�C ⊗ �)(ΩC × ⋅) and thus �F is also a finite measure. We
consider only economies with �F (ΩF ) > 0, otherwise only a �C-measure zero
of consumers own shares and firms’ choices become inconsequential and cannot
affect the economy. Hence, there exists a probability kernel8  : ΩF×ℱ → [0, 1],
such that: (i) for every t ∈ ΩF , (t, ⋅) is a probability measure on ℱ , (ii) for
every S ∈ ℱ , (⋅, S) is G-measurable, and (iii) for any g : ΩC × ΩF → ℝ which
is ℱ ⊗ G-measurable and (�C ⊗ �)-integrable,∫

ΩF

[∫
ΩC

g(s, t)(t, ds)

]
�F (dt) =

∫
ΩC×ΩF

g d(�C ⊗ �)

=

∫
ΩC

[∫
ΩF

g(s, t)�(s, dt)

]
�C(ds). (3.3)

Moreover,  is unique �F -a.s., in the sense that if ′ has the above properties,
then for �F -a.e. t ∈ ΩF , (t, ⋅) = ′(t, ⋅).9 For every t ∈ ΩF , the probability
(t, ⋅) represents firm t’s distribution of shares across consumers.

The probability space of consumers (ΩC ,ℱ , �C), together with the measur-
able space of firms (ΩF ,G) and an ownership structure described by the kernel
� from ΩC to ΩF defines a private ownership production economy ℰ ,

ℰ := ((ΩC ,ℱ , �C); (ΩF ,G); �) .

A finite economy is an economy for which the �-algebras ℱ and G are finite.
An atomless economy is an economy for which the measure �F is atomless.10

7Given B ⊂ ΩC × ΩF , 1B : ΩC × ΩF → ℝ is defined as 1B(x) =

{
1 if x ∈ B,
0 if x /∈ B .

8See the Appendix B for a proof.
9Throughout the paper, “a.e.” means “almost every(where)” and “a.s.” means “almost

surely”.
10The measure �F on (ΩF ,G) is atomless, or nonatomic, if G has no �F -nonnull atoms (?,

p.82).
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Equation (3.2) implies that �F is atomless if and only if for every t ∈ ΩF ,
�(s,G(t)) = 0 for �C-a.e. s ∈ ΩC . This definition focuses on the atomicity of
firms, rather than consumers. The economy ℰ can be atomless even if �C has
atoms. This happens if for any atom ℱ(s) of �C , �(s, ⋅) is an atomless measure.
Conversely, �C can be atomless without �F being so. Indeed, a firm t is an
atom if �(s,G(t)) > 0 for a positive �C-measure set of consumers s.

The prototypical Arrow-Debreu production economy with I consumers and
J firms, in which the i-th consumer owns s(i, j) shares of j-th firm can be
represented as an economy ℰ1 = ((ΩC ,ℱ1, �C), (ΩF ,G1), �1) with ℱ1 := 2ℐ ×
[0, 1], G1 := 2J × [0, 1], �((i, [0, 1]), (j, [0, 1])) = s(i, j) and �C is equal to �ℐ ⊗�,
the product measure between �ℐ , the uniform probability on ℐ (that is �ℐ(i) =
1/I, ∀i ∈ ℐ) and �, the Lebesque measure on [0, 1]. Thus we identify the i-th
consumer, respectively the j-th firm of the Arrow-Debreu economy with the
atom (i, [0, 1]) of ℱ1, respectively the atom (j, [0, 1]) of G1.

Using sequences of replica economies to draw inferences about (strategic)
equilibrium behavior in large economies is a technique introduced by ?, for
pure exchange economies, and also widely used in the literature for economies
with production. An n-fold replica consists of n “clones” of each firm and each
consumer of the prototype Arrow-Debreu economy. There are many ways to
assign ownership of firms across consumers in replica economies. For example, a
replica may be constructed such that each clone of a certain type holds the same
number of shares in firms of the same industry (type); in the example of Section
2 we referred to this ownership structure as a “diffuse ownership” replication.
This approach is advocated by ?, ?, ?, and ?, among others. However this
is not the only way one can construct replicas of a particular economy, even
when similarity of the clones is a concern. ?, ? and ? assume that each
clone of the prototype economy inherits the initial ownership structure. In this
“concentrated ownership” replication (see Section 2), a clone of a consumer of
type i owns s(i, j) shares of the corresponding clone of firm j. The name captures
the idea that ownership is segmented across the clones of the prototype economy,
rather than being spread across multiple clones. We illustrate here how the
concentrated and diffuse ownerships described above can be embedded in our
framework. Section 5 contains an example of a different ownership structure and
replication technique. However, our main results (of Sections 4 and 5) apply to
general ownership structures and do not rely on the idea of replication.

For every n ∈ ℕ, let H1
n := [0, 1/n] and for k ∈ {2, 3, . . . , n}, let Hk

n :=(
k−1
n , kn

]
. Denote by ℋn the algebra generated by {H1

n, . . . ,H
n
n}. For each

a ∈ [0, 1], let k(a) := {k : a ∈ Hk
n} and ℋn(a) := H

k(a)
n . Define ℱn := 2ℐ ⊗ℋn,

Gn := 2J ⊗ ℋn and �nC := �ℐ ⊗ �. Thus consumers and firms in the n-fold
replica are pairs of the form (i,Hk

n) and, respectively, (j,Hk
n), with k = 1, ..., n.

By an abuse of notation we will often identify a point a ∈ [0, 1] with the interval
ℋn(a) and thus represent consumers and firms as pairs (i, a) and respectively
(j, a). We will refer to the first component of such pair as the “type” and to the
second as the “name” of the consumer/firm.

9



The concentrated ownership n-fold replica can be modeled as an economy

ℰcn :=
(
(ΩC , 2

ℐ ⊗ℋn, �ℐ ⊗ �); (ΩF , 2
J ⊗ℋn); �cn

)
, (3.4)

where

�cn((i, a), (j, A)) = s(i, j) ⋅ �a(A),∀(i, a) ∈ ΩC ,∀(j, A) ∈ 2J ⊗ℋn, (3.5)

and �a is the Dirac measure on ([0, 1],ℬ[0, 1]) defined by �a(A) := 1A(a), with
ℬ[0, 1] being the Borel �-algebra on [0, 1]. The diffuse ownership n-fold replica
can be described as the economy

ℰdn :=
(
(ΩC , 2

ℐ ⊗ℋn, �ℐ ⊗ �); (ΩF , 2
J ⊗ℋn); �dn

)
, (3.6)

with
�dn((i, a), (j, A)) = s(i, j) ⋅ �(A),∀(i, a) ∈ ΩC ,∀(j, A) ∈ Gn. (3.7)

Note that for every consumer (i, a), the total number of shares owned by
(i, a) is the same in the concentrated ownership and diffuse replica economies
ℰcn, ℰdn. Thus, the total mass of the ownership distribution of a consumer stays
the same. However, under the diffuse ownership specification, the support of
the distribution becomes larger as the size of the economy increases.

Intuitively, the sequence of economies (ℰcn) “converges” to the atomless econ-
omy

ℰc :=
(
(ΩC , 2

ℐ ⊗ ℬ[0, 1], �ℐ ⊗ �); (ΩF , 2
J ⊗ ℬ[0, 1]); �c

)
, (3.8)

where �c((i, a), (j, A)) = s(i, j) ⋅ �a(A), for any A ∈ ℬ[0, 1]. Similarly, the
sequence of economies (ℰdn) “converges” to the atomless economy

ℰd :=
(
(ΩC , 2

ℐ ⊗ ℬ[0, 1], �ℐ ⊗ �); (ΩF , 2
J ⊗ ℬ[0, 1]); �d

)
, (3.9)

where �d((i, a), (j, A)) = s(i, j) ⋅ �(A), for any A ∈ ℬ[0, 1]. We formalize the
notion of convergence for arbitrary (i.e., not necessarily replica-type) sequences
of finite economies in Section 5.

4 Cournot S-equilibrium

This section defines our notion of equilibrium for production economies in which
consumers are price takers when making their consumption decisions, and firms
interact strategically via a Cournot-type quantity competition but, rather than
maximizing profits, they follow an objective that is consistent with their share-
holders’ interests. We call this new concept a Cournot S-equilibrium.

To simplify exposition, we make no distinction here between the consumers
who own the firm and those who control it. However all our results remain true
if we assume that a firm’s decisions are controlled by a (predetermined) group
of consumers (e.g., the Board of Directors).

Consider a production economy ℰ = ((ΩC ,ℱ , �C); (ΩF ,G); �). An allocation
for the economy ℰ is a pair (c, y), such that c : ΩC → ℝL+ is ℱ-measurable,

10



y : ΩF → ℝL is G-measurable and �(s, ⋅)-integrable for �C-almost all s ∈ ΩC ,
and y(j, a) ∈ Yj for all (j, a) ∈ ΩF . Hence for any s ∈ ΩC and t ∈ ΩF ,
c(s) represents the consumption bundle of agent s, and y(t) is the production
per outstanding share of firm t. We call c a consumption allocation and y a
production plan for the economy ℰ . The allocation (c, y) is called feasible if∫

ΩC

c d�C =

∫
ΩC

e d�C +

∫
ΩF

y d�F ,

where e(s) := e{(s), s ∈ ΩC and �F = �C�. A given production plan y generates
the intermediate endowment mapping wy : ΩC → ℝL defined by

wy(s) := e(s) +

∫
ΩF

y(t)�(s, dt), s ∈ ΩC . (4.1)

Note that (3.3) implies that wy is �C-integrable and∫
ΩC

wy d�C =

∫
ΩC

e d�C +

∫
ΩF

y d�F .

When the market price vector is p ∈ ΔL−1 (with ΔL−1 denoting the unit simplex
in ℝL+), the budget constraint of a consumer s ∈ ΩC is {x ∈ ℝL+ ∣p ⋅x ≤ p ⋅wy(s)}
and his consumption choice is D{(s)(p, wy(s)), where

Di(p, z) := arg max{ui(x) ∣ x ∈ ℝL+, px ≤ pz}, ∀i ∈ ℐ, p ∈ ΔL−1, z ∈ ℝL+.

The utility of consumer s at his optimal consumption choice, when faced with
prices p and a production plan y, is V {(s)(p, wy(s)), where V i(p, z) := ui

(
Di(p, z)

)
,

for every i ∈ ℐ, p ∈ ΔL−1, z ∈ ℝL+.
For any production plan y, denote by ℰ(y) the associated pure-exchange

economy in which consumers’ endowments are given by wy. The set of Walrasian
equilibrium prices of the economy ℰ(y) depends only on the distribution of
intermediate endowments across types defined as �C∘w̃−1

y , where w̃y : ΩC → ℐ×
ℝL+, w̃y(s) := ({(s), wy(s)), (?). Let P (�C∘w̃−1

y ) ⊆ΔL−1 be the set of Walrasian
equilibrium price vectors of ℰ(y). For brevity, we set P (y) := P (�C ∘ w̃−1

y ).
For some production sets, in particular for those that exhibit free disposal,

the economy ℰy may have no Walrasian equilibrium. Certain lower bounds, or
capacity constraints, need to be imposed on the firms’ strategy sets to avoid
this occurrence and make the problem meaningful. It is sufficient, for example
to restrict firms’ choices to production plans that generate positive intermediate
endowments.11 For such production plans, the main theorem in ? implies that
P (⋅) is not empty-valued. However, positivity of intermediate endowments is
not necessary for the existence of a Walrasian equilibrium in the associated pure-
exchange economy and therefore a much larger set than the one described above

11This happens, for example, if each production set is contained in the set {y ∈ ℝL∣yl ≥
−mini∈ℐ e

i
l

M
,∀l = 1, . . . , L}, where M is the upper bound on the kernels �.

11



may still generate non-empty values for P . For the remaining of the paper we are
going to abstract from the difficulties posed by the possible empty-values of P
by assuming that the production sets (Yj)j∈J contain some capacity constraints
that are tight enough to guarantee the existence of a competitive equilibrium
for every production plan y.12 Thus, the production sets (Yj)j∈J are assumed
to be compact.13

Since the correspondence P is closed, has compact values,14 and it is de-
fined on a compact space,15 P is weakly measurable and thus, according to
Kuratowski-Ryll-Nardzewski theorem (?, Theorem 18.13), it has a measurable
selection p (i.e., p is measurable and p(y) ∈ P (y)).

A pair (p̄, ȳ) of prices p̄ ∈ ΔL−1 and production plan ȳ is a Walrasian
equilibrium for the economy ℰ if and only if p̄ ∈ P (ȳ) and, for �F -almost every
t ∈ ΩF ,

p̄ ⋅ ȳ(t) = max
z∈Y|(t)

p̄ ⋅ z.

We introduce next the concept of a Cournot S-equilibrium, which captures the
idea that, although an individual consumer cannot affect market prices through
his consumption decisions, he is aware of the effect that a firm that he owns has
on market prices.

Definition 4.1. A production plan y∗ is called S-efficient for firm t = (j, a),
given the measurable price selection p from P if and only if there does not exist
z ∈ Yj such that:


(
t,
{
s ∣ V {(s)(p(ỹ), wỹ) ≥ V {(s)(p(y∗), wy∗)

})
= 1, (4.2)


(
t,
{
s ∣ V {(s)(p(ỹ), wỹ) > V {(s)(p(y∗), wy∗)

})
> 0,

where ỹ : ΩF → ℝL is defined as ỹ := y∗+(z−y∗)1G(t) and 1G(t) is the indicator
function of the set G(t). A pair (p, y∗) consisting of a measurable selection p
from P and a production plan y∗ is called a Cournot S-equilibrium if, given the
selection p, y∗ is S-efficient for �F -almost every t ∈ ΩF .

We will simply refer to a production plan y∗ as being a Cournot S-equilibrium
whenever there exists a measurable price selection p such that (p, y∗) is a

12One can dispense of this assumption by restricting the firms’ strategy sets to a subset
on which existence of a competitive equilibrium is guaranteed. With due care, all the results
of this paper can be derived under such restriction, but the details of the construction are
beyond the scope of this paper.

13It is well-known that boundedness of the production sets is a necessary condition for
obtaining competitive behavior in large economies. Otherwise a firm could increase its scale
as the economy grows larger and still be a dominant part of the aggregate production (see the
discussion and additional references in ?). Nevertheless, as we show in this paper, boundedness
of the production plans is not sufficient to achieve competitive behavior in large economies:
the ownership structure plays a crucial role towards that end.

14The standard reference is ?. However, in our case an extension of the classical result is
needed since the intermediate endowments may generate zero wealth (see, for example, ?).

15Note that intermediate endowments must lie in a compact subset of ℝL, since the set
of feasible production plans is bounded. The space of laws on ℝL with support in a given
compact is compact, when endowed with the weak convergence topology (?, Theorem 9.3.3).
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Cournot S-equilibrium. Thus for a fixed price selection, a production plan
is S-efficient for a firm if, given the choices of the other firms, there does not
exist another production plan such that every shareholder of the firm is better
off in the new market equilibrium. S-efficiency requires thus the firm to obey a
unanimous vote of its shareholders and therefore it represents a minimal condi-
tion on preference aggregation. This makes S-efficiency a very weak condition,
since different production choices made by a firm may generate equilibrium al-
locations for that firm’s shareholders which are not Pareto comparable. It is
therefore likely that the set of Cournot S-equilibria is large. Our example 5.2
in Section 5 supports this hypothesis. Note however that having such a per-
missive equilibrium concept only strengthens our main results. Convergence to
Walrasian equilibria, as stated in Theorem 5.6 for example, still holds when
firms follow a different objective that selects a strict subset of the S-efficient
outcomes. Moreover, failure to converge to a Walrasian equilibrium outcome is
not driven by the existence of a large set of S-efficient outcomes either. This is
illustrated by the diffuse ownership example of Section 2, in which the Cournot
S-efficient equilibrium is unique.

We examine first the relationship between Walrasian equilibria and Cournot
S-equilibria in atomless economies. We start by showing that a measure zero
of firms cannot affect the equilibrium price. Since every single firm (atom) is of
measure zero in an atomless economy, an individual firm’s change in production
has a negligible price effect.

Lemma 4.2. If the production plans y and y′ associated to the economy ℰ =
((ΩC ,ℱ , �C); (ΩF ,G); �) are equal �F -a.e (�F = �C�), then P (y) = P (y′).

Proof. Since �F ({y ∕= y′}) = 0, for any set S ∈ ℱ of consumers, (3.3) implies∫
S

[∫
ΩF

y(t)�(s, dt)

]
�C(ds) =

∫
ΩF

y(t)(t, S)�F (dt) =

=

∫
ΩF

y′(t)(t, S)�F (dt) =

∫
S

[∫
ΩF

y′(t)�(s, dt)

]
�C(ds).

Thus the intermediate endowments associated to the two production plans co-
incide �C-a.e., and therefore P (y) = P (y′).

In atomless economies, a Walrasian equilibrium is also a Cournot S-equilibrium,
but the choice of an S-efficient production plan may not necessarily lead to profit
maximization (at the Walrasian prices) for some ownership structures.

Proposition 4.3. Let ℰ = ((ΩC ,ℱ , �C); (ΩF ,G); �) be an atomless economy.

1. If (p̄, ȳ) is a Walrasian equilibrium for ℰ, then (p̄, ȳ) is a Cournot S-
equilibrium for ℰ, where p̄ is any price selection such that p̄(ȳ) = p̄.

2. If (p̄, ȳ) is a Cournot S-equilibrium for ℰ, then ȳ is profit maximizing at
prices p̄(ȳ) on the set of firms ΩmaxF defined by

ΩmaxF (ℰ) := {t ∣  (t, {s ∣ �(s,G(t)) > 0}) > 0} . (4.3)
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Moreover,
(
p̄, ȳ ⋅ 1Ωmax

F (ℰ) + y ⋅ 1ΩF ∖Ωmax
F (ℰ)

)
is a Cournot S-equilibrium,

for any production plan y.

Proof. 1. By Lemma 4.2, any deviation from ȳ by a single firm will leave the
price p̄ unchanged. Hence, given the absence of price effects, the best choice of
a production plan for each firm, from the perspective of its shareholders, is a
profit maximizing plan.

2. Let p̄ := p̄(ȳ). Using Lemma 4.2 and Definition 4.1, it follows that (p̄, ȳ) is
a Cournot S-equilibrium if and only if for every firm t, the set of its shareholders
whose wealth can be increased by a deviation to a profit maximization choice
is negligible. Formally, for any ŷ which is a profit maximizing at prices p̄,

 (t, {s ∣ (p̄ ⋅ ŷ(t)− p̄ ⋅ ȳ(t))�(s,G(t)) > 0}) = 0, for �F -a.e. t ∈ ΩF . (4.4)

Condition (4.4) requires that for �F -a.e. t ∈ ΩF , either p̄ ⋅ ŷ(t) = p̄ ⋅ ȳ(t) or
 (t, {s ∣ �(s,G(t)) > 0}) = 0 (or both), and the conclusion follows.

The last part of the proposition points out that, in an atomless economy, any
production plan is S-efficient for firms in ΩF ∖ΩmaxF (ℰ). Note that a firm belongs
to the set ΩmaxF (ℰ) if it satisfies two conditions. One is to have some sharehold-
ers whose portfolios are not fully diversified (in the sense of having a positive
mass of their total share holdings invested in the firm and thus being affected
significantly by that firm’s profits). The second requirement is that the set of
those non fully-diversified shareholders own (jointly) a positive fraction of the
firm. These two conditions insure that the firm’s choices have a non-negligible
effect on the wealth of a group of its shareholders owning a positive fraction
of the firm. Because the price effect is absent in an atomless economy, those
shareholders unanimously approve profit maximization and thus any Cournot
S-efficient production plan for a given firm has to be profit maximizing.

Note that ΩmaxF (ℰ) = ∅ if the measures �(s, ⋅) are atomless for every s ∈ ΩC .
This happens, for instance, in the diffuse ownership economy ℰd introduced in
(3.9). At the other extreme lies the concentrated ownership economy ℰc defined
in (3.8), where ΩmaxF (ℰc) = ΩF and thus every Cournot S-equilibrium is profit
maximizing.

5 Limit behavior of Cournot S-equilibrium

We investigate the behavior of Cournot S-equilibrium in large economies and
establish under what conditions Cournot-S equilibrium production plans in a
sequence of convergent economies approach profit maximizing production plans
of the limit economy. To avoid repetition, throughout this section we will refer to
a sequence of economies (ℰn = ((ΩC ,ℱn, �nC); (ΩF ,Gn); �n))n∈ℕ simply as (ℰn),
and to a limit economy ℰ = ((ΩC ,ℱ , �C); (ΩF ,G); �) as ℰ . We use the notation
�nF := �nC�n, �F := �C� (see (3.2)). For any sequence of economies (ℰn), we
assume that there exists L̄ > 0 such that �n(s,ΩF ) ≤ L̄, for all s ∈ ΩC and
n ∈ ℕ.
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We prove first that a firm’s choice of production plans bounded away from
profit maximization in increasingly large economies is detrimental to a share-
holder owning a fraction of a firm bounded away from zero.

Lemma 5.1. Consider a sequence of economies (ℰn) and for each n ∈ ℕ, let
yn be a production plan in ℰn and pn ∈ P (yn) be a pure exchange equilibrium of
ℰn(yn). Assume that P (⋅) is a singleton at any adherent point of the sequence of
intermediate endowment distributions induced by (yn).16 Let t̄ ∈ ΩF be a firm
such that �nF (Gn(t̄))→ 0. For each n, let ŷn be another production plan differing
from yn only in the choice of firm t̄, and let p̂n ∈ P (ŷn) be an equilibrium of
ℰn(ŷn). Assume that there exists � > 0 such that p̂nŷn(t̄) > pnyn(t̄)+� for all n.
Then for each " > 0 there exists �′ > 0 and N ∈ ℕ such that for all consumers
s̄ ∈ ΩC whose holdings in firm t̄ are bounded below by " in all economies (ℰn),

V {(s̄)(p̂n, wŷn(s̄)) > V {(s̄)(pn, wyn(s̄)) + �′,∀n ≥ N. (5.1)

Proof. Suppose the conclusion is not true. Then there exists " > 0 and i ∈ ℐ,
such that for every k ∈ ℕ there exists sk ∈ ΩC and nk ∈ ℕ such that {(sk) = i,
�nk

(s̄k,Gnk
(t̄)) ≥ " and

V i(p̂nk
, wŷnk

(s̄k)) < V i(pnk
, wynk

(s̄k)) +
1

k
. (5.2)

Since production plans take value in a compact and the kernels (�n) are uni-
formly bounded from above, intermediate endowments also lie in a compact.
Therefore, on a subsequence, wynk

(s̄) → w ∈ ℝ, wŷnk
(s̄) → ŵ ∈ ℝ, and

�nk

C ∘ w̃−1
ynk

converges weakly to some distribution W , since the sequence of

distributions of intermediate endowments (�nC ∘ w̃−1
ynk

) is tight, and hence is

relatively weakly compact, by Prohorov’s theorem (?, Theorem 16.3).
We prove that �nk

C ∘ w̃
−1
ŷnk

converges also to W . Let f : ℐ ×ℝL → ℝ be Lip-

schitz (with Lipschitz constant K) and bounded (by M). By the Portmanteau
theorem, it is enough to prove that

∫
ℐ×ℝL f d�

nk

C ∘ w̃
−1
ŷnk
→
∫
ℐ×ℝL f dW . Notice

that∣∣∣∣∫
ℐ×ℝL

f d�nk

C ∘ w̃
−1
ŷnk
−
∫
ℐ×ℝL

f dW

∣∣∣∣ ≤ ∫
ΩC

∣∣∣f(w̃ŷnk
)− f(w̃ynk

)
∣∣∣ d�nk

C +

+

∣∣∣∣∫
ℐ×ℝL

f d�nk

C ∘ w̃
−1
ynk
−
∫
ℐ×ℝL

f dW

∣∣∣∣ .
Fix a � > 0. Since �nk

C ∘ w̃−1
ynk

converges weakly to W , there exists K1 ∈ ℕ such

that
∣∣∣∫ℐ×ℝL f d�

nk

C ∘ w̃−1
ynk
−
∫
ℐ×ℝL f dW

∣∣∣ ≤ � for all k ≥ K1. Denoting by ∥ ⋅ ∥

16An adherent point is the limit of a weakly converging subsequence of the sequence of
intermediate endowment distributions.
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the Euclidean norm in ℝL, we have∫
ΩC

∣∣∣f(w̃ŷnk
)− f(w̃ynk

)
∣∣∣ d�nk

C ≤
∫

ΩC

∣∣∣f(w̃ŷnk
)− f(w̃ynk

)
∣∣∣1∥∥∥w̃ŷnk

−w̃ynk

∥∥∥≤� d�nk

C +

+

∫
ΩC

∣∣∣f(w̃ŷnk
)− f(w̃ynk

)
∣∣∣1∥∥∥w̃ŷnk

−w̃ynk

∥∥∥>� d�nk

C

≤ K� + 2M ⋅ �nk

C

(∥∥∥w̃ŷnk
− w̃ynk

∥∥∥ > �
)
.

Let �k := �/∥ŷnk
(t̄) − ynk

(t̄)∥. By the definition of intermediate endowments
(4.1) and by (3.3),

�nk

C

(∥∥∥w̃ŷnk
− w̃ynk

∥∥∥ > �
)

= �nk

C (�nk
(⋅,Gnk

(t̄)) ⋅ ∥ŷnk
(t̄)− ynk

(t̄)∥ > �)

=

∫
ΩC

1�nk
(⋅,Gn(t̄))>�kd�

nk

C ≤
1

�k

∫
ΩC

�nk
(⋅,Gnk

(t̄))d�nk

C

=
∥ŷnk

(t̄)− ynk
(t̄)∥

�
�nk

F (Gnk
(t̄)).

As �nk

F (Gnk
(t̄)) → 0 and production plans belong to a compact, there exists

K2 ∈ ℕ such that �nk

C

(∥∥∥w̃ŷnk
− w̃ynk

∥∥∥ > �
)
≤ � for all k ≥ K2. Therefore for

any k ≥ max{K1,K2},∣∣∣∣∫
ℐ×ℝL

f d�nk

C ∘ w̃
−1
ŷnk
−
∫
ℐ×ℝL

f dW

∣∣∣∣ ≤ K� + 2M� + �,

and given that � was arbitrary, we obtained the desired convergence of �nk

C ∘w̃
−1
ŷnk

to W .
Since P (⋅) has closed graph and is a singleton at W , then (along a subse-

quence) pnk
, p̂nk

→ p, with {p} = P (W ). Taking limits as k →∞ in (5.2) and
using the continuity of the indirect utility V i, it follows that V i(p, ŵ) ≤ V i(p, w)
and thus p ⋅ ŵ ≤ p ⋅ w. However, (4.1) gives

p
(
wŷnk

(sk)− wynk
(sk)

)
= p(ŷnk

(t̄)− ynk
(t̄))�nk

(sk,Gnk
(t̄)) ≥ � ⋅ ", (5.3)

and taking the limit with k →∞, we get p⋅ŵ ≥ p⋅w+� ⋅". Hence a contradiction
is obtained and the conclusion follows.

Lemma 5.1 establishes the main result of ? in our complete markets environ-
ment using an alternative, simpler proof, which does not require the “assumption
that all consumers are typical” (his Assumption 8).17 We illustrate below the
restrictiveness of this condition imposed on the endogenous wealth distributions
of the agents induced by a sequence of production plans.

17For a detailed discussion of ? proof and its problems, and how we overcame them in our
proof of Lemma 5.1, see ?.
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Example 5.1
We modify slightly the example of section 2, by removing the consumer that
does not own shares in the prototype economy, and letting the endowments
of the unique agent of the prototype economy be (2, 2). Assume that in the
finite n-fold replica ℰn, first firm is entirely owned by the first consumer, while
the ownership of the other firms is distributed uniformly across the remaining
consumers. This is exactly the example used by ? to outline his results for the
case with no uncertainty (the number of states of nature equals one).

Given a production plan y = ((−�j , �j))nj=1 in the n-fold replica ℰn , the
resulting exchange equilibrium price vector, normalized to the unit simplex, is
unique and depends only on the average production,

(p1, p2) =

(
2 + �(y)

4
,

2− �(y)

4

)
, (5.4)

with �(y) defined as in (2.1).
Consider a sequence of production plans (yn) associated to the replicas (ℰn).

In the economy ℰn, the wealth Wyn(l) of all agents l > 1 coincide. Fix an l > 1.
Therefore the wealth distribution of agents in ℰn is given by

1

n
�Wyn (1) + (1− 1

n
)�Wyn (l),

which converges to �limWyn (l) whenever the average �(yn) of yn converges.18

The proof of ? Theorem 1 rests on the assumption that “all consumers
are typical” (Assumption 8), which in this context requires that if limWyn(l)
exists, then limWyn(1) exists and equals limWyn(l). Of course this is an ex-
tremely strong assumption which reduces the applicability of his theorem. In
this example, it applies only to a sequence of production plans (yn) with the
property that on each subsequence where �(yn) converges (that is, the average
production converges), the profit of the first firm p(yn)yn(1) converges to the
same limit as the average profit p(yn)

∑n
j=1 yn(j)/n. With the numerical values

here, this happens only if the production of the first firm converges to the limit
of the average production, or the average production converges to zero.19

We show next that Cournot S-efficient production plans become arbitrar-
ily close to profit maximization in large economies for firms having all their
shareholders owning a fraction of the firm bounded away from zero. For fi-
nite economies (ℰn)n∈ℕ, denote the set of firms that have only non-diversified

18�x is the Dirac measure at x ∈ ℝ.
19Notice that if yn = ((−�n(j), �n(j))nj=1, then Wyn (1) = 2 + p(yn)yn(1) = 2 −

1
2
�(yn)�n(1), and

Wyn (l) = 2 + p(yn)

∑n
j=2 yn(j)

n− 1
→ 2−

1

2
(lim�(yn))2.

By contrast, our version of ? result given in Lemma 5.1 holds without requiring that
the production plan of firm 1 converges to the limit of the average production plans on
subsequences where the latter exists.
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shareholders and positive size infinitely often as

ΩndF ((ℰn)) = {t ∈ ΩF ∣ ∃"(t) > 0 s.t. for infinitely many n ∈ ℕ,
�nF (Gn(t)) > 0 and �n(s,Gn(t)) ≥ "(t), for n(t, ⋅)-a.e. s}. (5.5)

Theorem 5.2. Consider a sequence of finite economies (ℰn), and for each
n ∈ ℕ, let (pn, yn) be a Cournot S-equilibrium of the economy ℰn. Assume
that P (⋅) is a singleton at any adherent point of the sequence of intermediate
endowment distributions induced by (yn). Fix an " > 0 and a firm t̄ ∈ ΩndF ((ℰn)).
For every n ∈ ℕ consider a production plan ŷn in ℰn that differs from yn only
in the choice of firm t̄. Then for every � > 0 there exists N(�) ∈ ℕ such that
pn(yn) ⋅ yn(t̄) ≥ pn(ŷn) ⋅ ŷn(t̄)− �, for all n > N(�).

Proof. Suppose, by contradiction, that the conclusion is false. Then there exists
� > 0 such that (along a subsequence) pnyn(t̄)+� < p̂nŷn(t̄), where pn := pn(yn)
and p̂n := pn(ŷn). Lemma 5.1 contradicts the Cournot S-efficiency of the plans
(yn) for all large n.

Next we define a convergence notion on the space of private ownership
economies, not restricted to replica economies (introduced at the end of sec-
tion 3), and characterize the production plans of a limit economy that are the
limit of a sequence of Cournot S-efficient equilibria of converging economies.

Definition 5.3. A sequence (ℰn) of finite economies converges to the economy
ℰ if the following hold:

(i) Gn ⊂ G for all n and for �F -a.e. t ∈ ΩF , �F (Gn(t))→ �F (G(t)),

(ii) The ownership kernels �n converge to �, in the sense that for each uni-
formly bounded sequence20 (Xn) of random variables on ΩF such that Xn

is Gn-measurable for all n and, for �C-a.e. s ∈ ΩC , Xn → X �(s, ⋅)-a.s.,
the following holds∫

ΩF

Xn(t)�n(⋅, dt)→
∫

ΩF

X(t)�(⋅, dt), �C-a.s.

(iii) �nC has an extension to ℱ that converges setwise to �C .21

Condition (i) requires the “size” of each firm along the sequence to approach
the size of the firm in the limit. It is always satisfied if (Gn) is increasing
(Gn ⊂ Gn+1 for all n ∈ ℕ) and asymptotically generates G (G = �(∪n∈ℕGn)),
requirements expressed by the notation Gn ↗ G. Condition (ii) indicates that
the ownership kernels �n in the finite economies “approach” the limit ownership

20The sequence (Xn), with Xn : ΩF → ℝ, is uniformly bounded if supn ∣Xn∣ < M for some
M ∈ ℝ.

21This means that there exist measures �̃nC(⋅) on ℱ which coincide with �nC when restricted
to ℱn (i.e., �̃nC(⋅)∣ℱn = �nC(⋅)), and �̃nC(S)→ �C(S) for all S ∈ ℱ . Lemma C.1 gives sufficient
conditions for the existence of such extensions.
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structure described by the kernel �. It is satisfied if, for example, Gn ↗ G and
for �C-almost all s ∈ ΩC , the kernel �n(s, ⋅) has an extension to G that converges
setwise to �(s, ⋅) (Lemma C.2). Sufficient conditions for the existence of such
an extension are given in Lemma C.1. In this case, for almost all consumers,
the number of shares they own in a group of firms in each finite economy con-
verges to the number of shares held in the respective set of firms in the limit
economy, which makes the “closeness” notion between �n and � embedded in
condition (ii) intuitive. In particular, for the concentrated and diffuse ownership
replica economies discussed in Section 3, the kernels �cn, �

d
n defined in (3.5),(3.7)

have extensions to G, equal to �c, �d, and hence they trivially converge setwise.
Finally, condition (iii) in conjunction with condition (ii) guarantees that the
distribution of intermediate endowments of the finite economies converges to
the distribution of intermediate endowments in the limit economy (Proposition
5.5). It simply means that the relative size of a set of consumers in each finite
economy approaches its size in the limit economy.

The convergence notion for finite economies introduced in Definition 5.3 is
flexible enough to allow any economy to be approximated by finite economies.
The idea is to construct the ownership kernel of a finite economy as a “con-
ditional expectation” of the ownership kernel in the limit economy, by averag-
ing out the ownership structures of consumers belonging to the same atom of
the finite economy. In particular the kernels �cn, �

d
n (see (3.5),(3.7)) have this

property. Indeed, for any T ∈ 2J ⊗ ℋn, s ∈ ΩC and l ∈ {c, d}, �ln(s, T ) =
E�C [�l(⋅, T )∣2J ⊗ℋn](s).

Proposition 5.4. Consider an economy ℰ = ((ΩC ,ℱ , �C); (ΩF ,G); �) with
(ΩF ,G) Polish space, and let (ℱn)n∈ℕ, respectively (Gn)n∈ℕ, be finite �-algebras
on ΩC , respectively ΩF , such that ℱn ↗ ℱ and Gn ↗ G. There exists a sequence
of finite economies (ℰn)n∈ℕ with ℰn = ((ΩC ,ℱn, �C); (ΩF ,Gn); �n)), converging
to ℰ and satisfying

�n(s, T ) = E�C [�(⋅, T )∣ℱn](s), �C-a.e. s ∈ ΩC ,∀T ∈ G. (5.6)

Proof. Consider the probability space (ΩC × ΩF ,ℱn ⊗ G,Θ), with Θ := �C ⊗
�/�), where �C ⊗ � is defined in (2.1) and � := (�C ⊗ �)(ΩF ⊗ ΩC). Let �F ,
respectively �C be the projections of (ΩC×ΩF ,ℱn⊗G) on (ΩF ,G), respectively
on (ΩC ,ℱn). ? guarantees the existence of a regular conditional distribution
of �F given �C , denoted by �.22 Thus � is a probability kernel from (ΩC ,ℱn)
to (ΩF ,G), such that for all T ∈ G, �(�C , T ) = E (1�F∈T ∣�C) = E (1ΩC×T ∣�C).
For all s ∈ ΩC and T ∈ G, let

�n(s, T ) := �(s, T ) ⋅ E�C [�(⋅,ΩF )∣ℱn](s).

By construction �n is a kernel from (ΩC ,ℱn) to (ΩF ,G). Notice that for any

22In Appendix B, we constructed in an identical fashion the kernel  as a regular conditional
distribution of �C given �F .
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S ∈ ℱn and T ∈ G,

E�C1S ⋅ �n(⋅, T ) = E�C1S ⋅ �(⋅, T )�(⋅,ΩF ) =

∫
S

∫
ΩF

�(s, T )�(s, dt)d�C(s)

=

∫
S×ΩF

�(�C , T )dΘ =

∫
S×ΩF

1ΩC×T dΘ =

∫
S

1ΩC

∫
ΩF

1T �(s, dt)d�C(s)

= E�C1S ⋅ �(⋅, T ).

The first equality uses the ℱn measurability of � in the first argument, and the
law of standard expectations. The rest use equation (3.3) and the properties of
the conditional distribution �.

Therefore �n satisfies (5.6). Consider a sequence of random variables (Xn)n
with Xn : ΩF → ℝ being Gn-measurable, and let X,Y : ΩF → ℝ, G-measurable,
such that ∣Xn∣ ≤ Y ,

∫
ΩF

Y d�F <∞ and Xn → X, �C-a.s. Starting with simple

functions and then extending the argument using a monotone class theorem (?,
Theorem 1.1), it follows that

Wn(s) :=

∫
ΩF

Xnd�n(s, ⋅) = E�C

[∫
ΩF

Xnd�(s
′, ⋅)∣ℱn

]
(s). (5.7)

By Lebesgue’s dominated convergence theorem, the sequence of functions fn(s′) :=∫
ΩF

Xnd�(s
′, ⋅) converges pointwise to W (s′) :=

∫
ΩF

Xd�(s′, ⋅). Using an exten-

sion of the martingale convergence theorem due to Hunt (?, Theorem 2.8.5), it
follows that Wn → W , �C-a.s. Thus we proved that indeed �n converges to �
in the sense of Definition 5.3.

By the martingale convergence theorem, (5.6) implies that for each T ∈
G, �n(⋅, T ) → �(⋅, T ), �C-a.e. However the set of �C-measure zero where the
convergence might fail depends on T , hence the set of s where �n(s, T ) does
not converge to �(s, T ) for some T ∈ G might be large. Thus it might not be
true that, for �C-a.e. s ∈ ΩC , �n(s, ⋅) converges setwise to �(s, ⋅). All that is
guaranteed is that for �C-a.e. s ∈ ΩC , �n(s, T ) → �(s, T ), for all T ∈ ∪nGn,
since ∪nGn is countable. Therefore Proposition 5.4 shows that condition (ii)
in the Definition 5.3 is satisfied by a large class of sequences of economies and
corresponding limit economies, which might not be the case if we were to replace
it with the stronger requirement of �n having extensions to G converging setwise
to �.

For a general sequence of convergent economies as in Definition 5.3 and
a sequence of convergent production plans, we show that agents’ intermediate
endowments converge almost surely (with respect to the measure of agents in the
limit economy) and the distribution of intermediate endowments across types
converges weakly.

Proposition 5.5. Let (ℰn) be a sequence of finite economies converging to an
economy ℰ. Let y be a production plan in ℰ and, for every n ∈ ℕ, let yn be a
production plan in ℰn. If yn → y, �F -a.s., where �F = �C�, then wyn converges
to wy �C-a.s. and �nC ∘ w̃−1

yn converges weakly to �C ∘ w̃−1
y .
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Proof. Using equation (3.3), for any T ∈ ℬ(ΩF ), with �F (T ) = 0 it follows
that �(s, T ) = 0 for �C-a.e. s ∈ ΩC . Thus the fact that yn → y �F -a.s.
implies that, for �C-a.e. s ∈ ΩC , yn → y, �(s, ⋅)-a.s. Since �n converges to �, it
follows that wyn → wy, �C-a.s. (see Definition 5.3,(ii)). For any g : ℐ × ℝL →
ℝ continuous and bounded, Lemma C.2 applied to the sequence �nC having
extensions converging setwise to �C gives∫
ℐ×ℝL

g d�nC ∘ w̃−1
yn =

∫
ΩC

g ∘ w̃yn d�nC →
∫

ΩC

g ∘ w̃y d�C =

∫
ℐ×ℝL

g d�C ∘ w̃−1
y .

(5.8)
Thus the convergence of the distribution of intermediate endowments across
types is established.

The following theorem shows that converging Cournot S-equilibrium pro-
duction plans become profit maximizing in the limit for all the firms having
only non-diversified shareholders.

Theorem 5.6. Let (ℰn) be a sequence of finite economies converging to ℰ,
assumed atomless, and for each n ∈ ℕ, let yn be a Cournot S-equilibrium of
the economy ℰn, such that yn → y in �F -measure. Assume that there exists
a unique equilibrium price p associated with the production plan y in the limit
economy ℰ (that is P (y) is a singleton). Then y is profit maximizing at prices
p for �F -almost all firms belonging to ΩndF ((ℰn)).

Proof. Assume, by contradiction, that y is not profit maximizing for a �F -
positive measure of firms belonging to ΩndF ((ℰn)). Let ȳ be a profit maximizing
production plan at price p, such that firms of the same type have identical
production plans, that is, ȳ is selected to be 2J × [0, 1]-measurable and satisfies:

p ⋅ ȳ(t) = max
z∈Y|(t)

p ⋅ z.

Notice that ȳ is also Gn-measurable, for any n ∈ ℕ. The boundedness of the
production sets implies that ȳ is bounded as well. Construct the G-measurable
function d : ΩF → ℝ defined as d(⋅) := p ⋅ ȳ(⋅) − p ⋅ y(⋅) ≥ 0 and, for all n, let
dn : ΩF → ℝ, dn(⋅) := p ⋅ ȳ(⋅)− p ⋅ yn(⋅) ≥ 0, which is Gn-measurable.

Along a subsequence, yn → y �F -a.s., since any sequence convergent in
measure has a subsequence converging almost surely (?, Theorem 9.2.1). Thus
there exists a set T ∈ G with �F (T ) > 0 such that

T ⊂ {d > 0} ∩ ΩndF ((ℰn)) ∩ {yn → y} ∩ {�F (Gn(⋅)→ �F (G(⋅))}.

Let t̄ ∈ T . As dn → d on the set of full �F -measure where yn → y, there exists
� > 0 and N ∈ ℕ such that

dn(t̄) ≥ �, ∀n ≥ N. (5.9)

As t̄ ∈ ΩndF ((ℰn)), along a subsequence, �nF (Gn(t̄)) > 0 for all n and there exists
" > 0 such that

�n(s,Gn(t̄)) ≥ ", for n(t̄, ⋅)-a.e. s and for all n. (5.10)
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Define the alternative production plans

ŷn = yn + (ȳ − yn)1Gn(t̄).

Since the limit economy is atomless, �F (Gn(t̄)) → �F (G(t̄)) = 0. This implies
that ŷn converges in measure to y, and hence it converges almost surely to y
along a subsequence. Consider a price selection pn associated to yn such that
(pn, yn) is Cournot S-equilibrium for ℰn. Let pn = pn(yn) and p̂n = pn(ŷn).
By Proposition 5.5, �nC ∘ w̃

−1
ŷn
→ �C ∘ w̃−1

y . Since the price correspondence P (⋅)
has closed graph and p̂n ∈ P

(
�nC ∘ w̃

−1
ŷn

)
, it follows that, for any convergent

subsequence (p̂nr ) of (p̂n),

lim
r→∞

p̂nr
∈ P

(
lim
r→∞

�nr

C ∘ w̃
−1
ŷnr

)
= P (�C ∘ w̃−1

y ) = {p}.

By repeating the reasoning for (pn)n, it follows that on a subsequence, pn, p̂n →
p.

Equation (5.9) implies that for each n ∈ ℕ,

pn ⋅ yn(t̄) ≤ p ⋅ yn(t̄) + ∥pn − p∥ ⋅ ∥yn(t̄)∥ ≤ p ⋅ ŷn(t̄)− � + ∥pn − p∥ ⋅ ∥yn(t̄)∥
≤ p̂n ⋅ ŷn(t̄) + ∥p̂n − p∥ ⋅ ∥ŷn(t̄)∥ − � + ∥pn − p∥ ⋅ ∥yn(t̄)∥.

Since all production plans belong to a compact, it follows that there exists � > 0
and N(�) ≥ N , such that for all n ≥ N(�),

p̂n ⋅ ŷn(t̄) ≥ pn ⋅ yn(t̄) + �,

which, by Lemma 5.1 and equation (5.10), contradicts the Cournot S-efficiency
of the production plans yn, for all large n.

The theorem relies heavily on the assumption that there is a unique equilib-
rium price corresponding to the limit production plan y in the atomless econ-
omy. This condition is needed to insure continuity of the price selection at the
limit point. While we cannot dispense with it completely, the requirement can
be considerably relaxed, with a construction as in ?. That approach allows
for multiplicity of equilibria at the limit point, but requires regularity of the
limit equilibrium and thus its local uniqueness. Even so, it remains a strong
condition since, as shown by Roberts himself, existence of critical equilibria is
non-pathological.

? pointed out that this negative result is alleviated if, instead of simple
price selections, one uses randomized price selections (i.e., selections from the
correspondence coP instead of P ; this amounts to saying that firms hold non-
trivial beliefs over the possible market clearing prices). As opposed to the case of
simple price selections, the existence of continuous randomized price selections
is a generic result (?). Allen proves therefore that, if firms maximize their
expected profits with respect to some non-trivial beliefs over prices, convergence
of Cournot equilibria (in which firms maximize profits) to competitive equilibria
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does obtain generically. However, the problem is more complex here and Allen’s
approach cannot be directly applied. The reason is that, as opposed to the
standard Cournot model in which the firms maximize profits, in our model S-
efficiency requires firms to make pairwise comparisons between a status quo
and an alternative. For that, a firm has to use its beliefs over two different
equilibrium sets. To make this comparison meaningful, some global beliefs need
to be defined. This was done in ?. Whether allowing for firms’ non-trivial global
beliefs over prices does indeed improve the convergence result is an interesting
question which remains open for now and will be subject of future research.

For the diffuse ownership economies (ℰdn) defined in (3.6),(3.7), ΩndF ((ℰdn)) =
∅, and Theorem 5.6 is devoid of implications. For the concentrated ownership
case described in (3.4),(3.5), ΩndF ((ℰcn)) = ΩF and thus the limit of Cournot
S-efficient equilibria is always a Walrasian equilibrium. Moreover, for this par-
ticular case, Theorem 5.6 holds even under the weaker assumption that produc-
tion plans converge weakly (i.e., in distribution). This was shown by ?, using
the fact that in this symmetric environment, the distribution of intermediate
endowments associated to a production plan depends solely on the distribu-
tion of the production plan (both in the finite and continuum economies), and
retracing the steps in the proof of Theorem 5.6. For completeness, we give
an alternative proof of this result here, by showing that it follows from The-
orem 5.6, through a Skorohod embedding argument. For a production plan
y : (J × [0, 1], 2J ⊗ ℬ[0, 1], �J ⊗ �) → ℝL, we let ℒ(y) be the distribution
of (y(1, ⋅), . . . , y(J, ⋅)) : [0, 1] → (ℝL)J and refer to it as the law of y. Thus
ℒ(y) := � ∘ (y(1, ⋅), . . . , y(J, ⋅))−1.

Theorem 5.7. Let y be a production plan in ℰc and for each n ∈ ℕ, let yn be a
Cournot S-equilibrium of the concentrated ownership economy ℰcn, such that the
laws of (yn) converge weakly to the law of y. Assume that there exists a unique
equilibrium price p associated with the production plan y in the limit economy
ℰc (i.e. P (y) is a singleton). Then y is profit maximizing at prices p.

Proof. By Skorohod’s embedding theorem (?, Theorem 4.30), there are alter-
native production plans ŷ and (ŷn), defined on (J × [0, 1], 2J ⊗ℬ[0, 1], �J ⊗�),
such that ℒ(ŷ) = ℒ(y), ℒ(yn) = ℒ(ŷn) for all n ∈ ℕ, and ŷn → ŷ �F -a.s., where
�F := �J ⊗ �.

Fix a j ∈ J . Let z ∈ yn(j × [0, 1]) ⊂ ℝL, and A := (ŷn(j, ⋅))−1(z). Since
�(A) = �((yn(j, ⋅))−1(z)), there exists k ∈ {1, . . . , n} such that �(A) = k/n
and there exist {l1, . . . , lk} ⊂ {1, . . . , n} such that (yn(j, ⋅))−1(z) = ∪kr=1H

lr
n .23

Since � is atomless, by Lyapunov’s convexity theorem (?, Theorem 13.33) we can
construct disjoint sets Al1 , . . . , Alk ⊂ [0, 1] such that A = ∪kr=1Alr and �(Alr ) =
1/n for all r ∈ {1, . . . , k}. Repeating this process for each z ∈ yn(j × [0, 1]), we
construct for each j ∈ J the partition Aj1, . . . , A

j
n of [0, 1] with �(Ajl ) = 1/n and

ŷn(j×Ajl ) = yn(j×H l
n) for all l ∈ {1, . . . , n}, j ∈ J . Thus ŷn is measurable with

respect to the algebra Ĝn := �
({
j ×Ajl ∣ j ∈ J , l ∈ {1, . . . , n}

})
of J × [0, 1].

23As defined in section 3, Hk
n =

(
k−1
n
, k
n

]
for k ∈ {2, . . . , n} and H1

n = [0, 1
n

].
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Construct the economy ℰ̂n := ((ΩC ,ℱcn, �ℐ⊗�), (ΩF , Ĝn), �̂n), in which each
consumer (i,H l

n) owns a share sij of the firm j ×Ajl . Thus

�̂n((i,Hk
n), (j, Ajl )) := sij ⋅ �kl, ∀(i, a) ∈ ΩC , j ∈ J , 1 ≤ l, k ≤ n,

and �kl = 1 if k = l, while �kl = 0 if k ∕= l. Notice that ŷn is a Cournot
S-efficient production plan for ℰ̂n. Otherwise, a welfare improving deviation
for the shareholders of firm j × Ajl in economy ℰ̂n would be welfare improving
for the shareholders of firm j ×H l

n in economy ℰn, contradicting the Cournot
S-efficiency of the plan yn.

The intermediate endowment of an agent (i, ⋅) given a production plan y′ in
either of the economies ℰcn, ℰ̂n or ℰc is wy′(i, ⋅) = ei+

∑
j∈J s(i, j)y

′(j, ⋅). If (y′n)

in (ℰ̂n) converge in law to ŷ, by the continuous mapping theorem (?, Theorem
9.3.7), it follows that the distribution �C ∘ w̃−1

y′n
(of intermediate endowments

across types induced by y′) converges to �C ∘w̃−1
ŷ . We can apply Theorem 5.6 to

(ℰ̂n), ℰc and (ŷn) converging to ŷ �F -a.s to conclude that ŷ is profit maximizing
on ΩndF ((ℰ̂n)) = ΩF .

Theorem 5.6 holds despite the sequence (ℰ̂n) not converging to ℰc. Indeed,
condition (ii) in definition 5.3 might fail. However its only use in the proof
of Theorem 5.6 is to ensure the convergence of the distribution of intermediate
endowments associated to convergent production plans which, in this symmetric
environment, holds as shown above. Condition (iii) in definition 5.3 is trivially
satisfied; condition (i) also holds, since for all t ∈ ΩF , �F (Ĝn)(t) = 1

nJ → 0.

Convergence in distribution of production plans is too weak for Theorem 5.6,
in which we allow for heterogeneity in the ownership of firms and consumers
of identical type. Given an arbitrary production plan, one can permute the
choices of identical type firms, resulting in two production plans with identical
distributions; however, in the presence of asymmetric ownership the two plans
induce different distributions over the space of intermediate endowments.

Given a sequence of economies (ℰn) converging to an economy ℰ , as in The-
orem 5.6, it is natural to ask what is the relationship between the set ΩmaxF (ℰ)
(see (4.3)) of firms that are profit maximizing in any Cournot S-efficient equi-
librium of the atomless limit economy, and the set ΩndF ((ℰn)) of firms that
are profit maximizing in the limit of a convergent sequence of Cournot S-
efficient equilibria. We already remarked that for the diffuse ownership case
(see (3.6),(3.7)), ΩmaxF (ℰd) = ΩndF ((ℰdn)) = ∅, while for the concentrated own-
ership case (see (3.4),(3.5)), ΩmaxF (ℰc) = ΩndF ((ℰcn)) = ΩF . Example 5.2 below
constructs economies ℰn → ℰ where ΩndF ((ℰn)) = ∅, while ΩmaxF (ℰ) = ΩF . In
fact, in all the examples included in the paper, ΩndF ((ℰn)n∈ℕ) ⊂ ΩmaxF (ℰ), since
the kernels (n) denoting the distribution of firms’ shares across consumers in
(ℰn) have (for all t ∈ ΩF ) extensions to ℱ converging setwise to the kernel 
associated to ℰ .24

24Indeed, let t̄ ∈ ΩndF ((ℰn)). Thus there exists " > 0 such that (along a subse-
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The examples may also lead us to conjecture that a sequence of Cournot
S-equilibria of a converging sequence of finite economies approaches a Cournot
S-efficient equilibrium of the limit economy. If true, this property would imply,
according to Proposition 4.3, that convergent sequences of Cournot S-equilibria
of converging finite economies approach a profit maximizing plan of the limit
economy for firms in ΩmaxF (ℰ). The following example shows that the conjec-
ture is not true and thus sequences of Cournot S-equilibria do not necessarily
converge to a Cournot S-equilibrium of the limit economy.

Example 5.2
We modify the ownership structures in the Example 5.1. In the finite n-fold
replica ℰn and in the continuum replica ℰ∞, half of each firm is owned exclusively
by the agent with the same name and the rest is uniformly distributed across
all agents (including the agent with the same name). We will refer to this
way of assigning ownership of the firms in the replicas as the hybrid ownership
structure.

Given a production plan y = ((−�j , �j))nj=1 in the n-fold replica ℰn , the
unique exchange equilibrium price vector, normalized to the unit simplex, is
given by (5.4), with �(y) defined as in (2.1). For the continuum replica, prices
have the same expression, with �(y) defined in (2.2). The Walrasian equilibrium
in the finite and continuum replica economies are associated with prices ( 1

2 ,
1
2 )

and �(y) = 0, hence all firms choose the production plan (0, 0) in a Walrasian
equilibrium.

We start by determining the Cournot S-efficient production plans in the n-
fold replica economy. The wealth of a consumer that is a majority shareholder
in a firm choosing (−�, �) is

w(�(y), �) = 2 +
1

2
(p2 − p1)(�+ �(y)) = 2− 1

4
�2(y)− 1

4
�(y)�,

and its utility is u(�(y), �) = 2 lnw(�(y), �)−ln (2p1)−ln (2p2). We let � := �(y)
for brevity. Notice that

∂u (�, �)

∂�
=

2

n

(
�3 − 4�

)
(��+ �2 − 8) (�+ 2) (�− 2)

, (5.11)

and it follows that the derivative of u with respect to � is negative:

du(�, �)

d�
=

1

n

∂u (�, �)

∂�
+
∂u (�, �)

∂�
=

2

n

(
�3 − 8n�− 4�+ 2n�3

)
(��+ �2 − 8) (�+ 2) (�− 2)

< 0.

Thus a firm that chooses (−�, �) hurts its majority shareholder by switching
to a production plan (�′, �′) with �′ > �. Moreover, (5.11) shows that by
switching to a production plan (�′, �′) with �′ < �, the firm hurts a minority

quence), 1 = n(t̄, {�n(⋅,Gn(t̄)) ≥ "}). Since 1Gn(t̄) → 1G(t̄) �F -a.s. (along a subse-
quence), by Definition 5.3, (ii), it follows that �n(⋅,Gn(t̄)) → �(⋅,G(t̄)), �C -a.s., and hence
1�n(⋅,Gn(t̄))≥" → 1�(⋅,G(t̄))≥" (�C -a.s.). By Lemma C.2, we conclude that n(t̄, {�n(⋅,Gn(t̄)) ≥
"})→ (t̄, {�(⋅,G(t̄)) ≥ "}), hence t̄ ∈ ΩmaxF (ℰ).
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shareholder that owns half of a firm that chose a production plan (−�, �) sat-

isfying
(
�− �

n

)3 ≥ 4�. This discussion enables us to construct a multitude of
Cournot S-equilibria. In particular, for any k ∈ {1, 2, . . . , n− 1}, a production
plan with k firms choosing (0, 0) and n − k firms choosing (−1, 1) is always a
Cournot S-equilibrium.

The economies (ℰn) and ℰ∞ can be embedded in the general framework of
section 3 as discussed there, by letting �n = �cn/2 + �dn/2 and � = �c/2 + �d/2
(see (3.4)-(3.9)). Notice that for the limit economy, ΩmaxF (ℰ∞) = ΩF = [0, 1]
(since ℐ = J = {1}, we identify {1}× [0, 1] with [0, 1]) and thus by Proposition
4.3, the only Cournot S-equilibrium allocation of the continuum economy ℰ∞
coincides with the Walrasian equilibrium and corresponds to all firms choosing
(0, 0). This can be seen directly, also, since in the absence of price effects, any
firm that chose (−�, �) with � > 0 will increase the wealth and hence the utility
of its majority shareholder by switching to (0, 0), while its minority shareholders
are unaffected.

Notice that for any " > 0 and k ∈ ℕ, ΩndF ((ℰn)) = ∅, hence Theorem 5.6 has
no bite in this example, suggesting that a sequence of Cournot S-equilibrium
plans does not converge necessarily to a profit maximization plan. Indeed, for
an arbitrary � ∈ [0, 1], consider the production plan y� in the limit economy
in which firms in [0, �] choose the production plan (−1, 1) and the firms in
(�, 1] choose (0, 0). Let the production plan y�n in the economy ℰn be such
that the first [n ⋅ �]∗ firms (i.e., firms in [0, [n ⋅ �]∗/n]) choose (−1, 1) and the
the rest choose (0, 0) ([n ⋅ �]∗ denotes the largest integer smaller than n ⋅ �).
Clearly y�n → y� almost surely and (y�n) is a sequence of Cournot S-equilibrium
production plans, but y� is not a profit maximizing plan unless � = 0. This
shows that a convergent sequence of Cournot S-equilibrium production plans
in converging economies does not have to approach a Cournot S-equilibrium in
the limit.

6 Conclusions

This paper contributes to the literature on non-cooperative foundations of Wal-
rasian equilibrium, by pointing out to the firms’ ownership structure as a poten-
tial source of inefficiency in arbitrarily large economies. If (some) shareholders
control a firm’s production decisions, its objective is shaped by the interaction
between the price and the income effects on those shareholders’ welfare. Each
of these effects, and therefore the dominance of one over the other, depends on
the ownership structure.

The Cournotian foundations of Walrasian equilibrium require the introduc-
tion of a notion of finite economies being close (converging) to a continuum
economy. As explained in the introduction, this is difficult to achieve when one
needs to allow for arbitrary ownership structures (whose role needs to be ex-
plored). The paper contributes to the literature by defining a suitable topology
on the space of production economies, which generalizes previous results and
allows for full generality on the ownership structure. We give conditions on the
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ownership structures of a sequence of economies, and of a limit economy, such
that agents’ intermediate endowments generated by a converging sequence of
production plans approach the intermediate endowments of the limit economy.
We focus on the large economies behavior of Cournot S-efficient equilibria, in
which firms choose production plans that are not Pareto dominated from the
point of view of their shareholders. The classical result of ? indicates that profit
maximization (under a specific price normalization) is a justified objective for
an oligopolistic firm in a large economy, since gains obtained by deviating to
shareholders’ welfare improving plans are modest. We derive this result in our
framework removing the very restrictive assumption “that agents are typical”
used by ? and imposed on the agents’ wealth (which is an endogenous variable).
We then use this result to show that if each of the (controlling) shareholders of a
firm owns a significant (i.e., bounded away from zero) fraction of the firm, then
Cournot S-efficient equilibria of large economies consists of production plans
that are approximatively profit maximizing. Moreover, Cournot S-equilibria of
a converging sequence of finite economies approaches a Walrasian equilibrium of
the limit economy. For arbitrary ownership structures, sequences of Cournot S-
efficient equilibria may not converge to a Walrasian equilibrium or to a Cournot
S-equilibrium of the limit economy.

Although we do not model trade in shares, we do allow for arbitrary (fixed)
distributions of shares in each finite economy along the converging sequence
and identify the class of those ownership structures that are conducive to com-
petitive behavior. Our results bear implications even for richer environments
in which share trading is allowed. It shows, for example, that perfectly com-
petitive behavior will prevail in any large economy model of security trade in
which the (post-trade) equilibrium distribution of shares is concentrated. On
the other hand, perfect diversification of individual portfolios across firms (as
predicted, for example, by mean-variance portfolio selection models) might lead
to inefficiencies.

Appendix

A Atoms of a countably generated �-algebra

Let A be a �-algebra on Ω. Define a binary relation on Ω as: x ∼ y if and only
if x ∈ A,A ∈ A ⇒ y ∈ A. Equivalently, if for x ∈ Ω, we define A(x) := ∩{A ∈
A : x ∈ A}, then x ∼ y if and only if y ∈ A(x). It is easy to see that “∼” is an
equivalence relation, and hence A(x) is the equivalence class containing x. One
is tempted to call A(x) an atom of A, in the sense of the definition in footnote
3. However, in general A(x) /∈ A.

We show in what follows that ifA is a countably generated �-algebra, i.e., ifA
is generated by a countable subset of itself, then A(x) ∈ A,∀x ∈ Ω. This means
that A(x) is an atom of A, i.e., for all B ∈ A, either A(x) ⊂ B or A(x)∩B = ∅.
Let C be a countable subset generating A, i.e. A = �(C), and let C̄ be the
algebra generated by C, which consists exactly of all elements of C together with
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all sets obtainable from finite sequences of set theoretic operations on C. Thus
C̄ is also countable. Fix a point x ∈ A, and let C̄(x) := ∩{C ∈ C̄∣x ∈ C}. Define

Dx := {A ∈ A ∣ x /∈ A} ∪ {A ∈ A ∣ x ∈ A, C̄(x) ⊂ A}.

It is easy to check that Dx is a �-system, which means that it contains Ω and
is closed under proper differences and increasing limits. Moreover C̄ ⊂ Dx, and
C̄ is a �−system (i.e. is closed under finite intersections). The monotone class
theorem (?, Th. 1.1) implies that

A = �(C̄) ⊂ Dx ⊂ A,

and thus Dx = A. It follows that C̄(x) = A(x), but C̄(x) ∈ A since C̄ is
countable.

B Construction of the -kernel

Let � := (�C ⊗ �)(ΩC × ΩF ). The assumptions made guarantee that 0 < � <
∞ and thus we can write �C ⊗ � = � ⋅ Θ, with Θ a probability on ℱ ⊗ G.
Define �C , �F to be the projection functions of (ΩC × ΩF ,ℱ ⊗ G) on (ΩC ,ℱ),
respectively on (ΩF ,G). Since (ΩC ,ℱ) is a Polish space, there exists a regular
conditional distribution of �C given �F , which is probability kernel  from
(ΩF ,G) to (ΩC ,ℱ) (?, ?). The kernel  is  is unique �F -a.s., in the sense that
if ′ has the above properties, then for �F -a.e. t ∈ ΩF , (t, ⋅) = ′(t, ⋅).

Let ΘF be the marginal of Θ on ΩF . By construction, and using the fact
that �C ⊗ � = � ⋅Θ, it follows that for any g : ΩC × ΩF → ℝ, which is ℱ ⊗ G-
measurable and �C ⊗ �-integrable,∫

ΩC

[∫
ΩF

g(s, t)�(s, dt)

]
�C(ds) =

∫
ΩC×ΩF

g(s, t)(�C ⊗ �)(ds, dt) (B.1)

=

∫
ΩF

[∫
ΩC

g(s, t)(t, ds)

]
(� ⋅ΘF )(dt)

=

∫
ΩF

[∫
ΩC

g(s, t)(t, ds)

]
�F (dt),

and hence we obtained equation (3.3).

C Setwise convergence of measures on a filtra-
tion

For all n ∈ ℕ, let �n be a measure on (Ω,An) where An is finite and An ↗ A
(i.e. An ⊂ An+1 and A = �(∪nAn)), and let � be a finite measure on (Ω,A).
The next result provides sufficient conditions for the existence of extensions (�̃n)
of the measures (�n) to A that converge setwise to �. This means that, for all
n ∈ ℕ, the restriction of �̃n to An coincides with �n (i.e. �̃n∣An = �n) and
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�̃n(A) → �(A) for all A ∈ A. Notice that if such extensions (�̃n) are to exist,
then for any m and Am ∈ Am, limn→∞ �n(Am) = �(Am). It turns out that this
condition is also sufficient, in the presence of a uniform boundedness condition
imposed on (�n).

Lemma C.1. Assume that

(i) For any m ∈ ℕ and Am ∈ Am, limn→∞ �n(Am) = �(Am),

(ii) There exists L > 0 such that �n ≤ L ⋅ � for all n ∈ ℕ, that is,

�n(A) ≤ L ⋅ �(A), ∀n ∈ ℕ,∀A ∈ An.

Then (�n) have extensions to A that converge setwise to �.

Proof. For all n, label the atoms of An as An1 , A
n
2 , . . . , A

n
k(n). Define

�̃n(A) :=

k(n)∑
i=1

�n(Ani ) ⋅ �(A ∩Ani )

�(Ani )
, ∀A ∈ A.

Thus �̃n is constructed by summing the measures obtained as the conditionals
of � with respect to each atom of An, scaled so that the measure of each atom
of An coincides under �̃n and �n. Clearly �̃n is a measure on A which is equal
to �n when restricted to An. Define

D := {A ∈ A ∣ �̃n(A)→ �(A)}.

Condition (i) implies that ∪nAn ⊂ D. In particular, Ω ∈ D. Moreover, D is
closed under proper differences, since if A,B ∈ D with A ⊂ B, then

�̃n(B ∖A) = �̃n(B)− �̃n(A)→ �(B)− �(A) = �(B ∖A).

We will show thatD is closed under increasing limits. Let A1, A2, . . . disjoint sets
inD. Notice that �̃n (∪mAm) =

∑
m �̃n(Am), since �̃n is a sum of a finite number

of measures, and �̃n(Am) ≤ L ⋅ �(Am), while
∑
m �(Am) = �(∪mAm) < ∞.

Lebesgue’s dominated convergence theorem implies

lim
n→∞

�̃n (∪mAm) =
∑
m

lim
n→∞

�̃n(Am) =
∑
m

�(Am) = �(∪mAm).

It follows that ∪mAm ∈ D. We proved that D is a �-system containing the
algebra ∪nAn which is a �-system, being closed under finite intersections. The
�−� theorem (?, Theorem 1.1) implies that D = A, and hence we proved that,
indeed, �̃n → � setwise on A.

If a sequence of measures (�̃n) on A converges setwise to �, then E�̃n(f)→
E�(f) for any bounded function f : Ω → ℝ which is A-measurable (?, p.335).
This result is strengthened in the next Lemma.
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Lemma C.2. Assume that for all n, �n has an extension to A that converges
setwise to �. For all n ∈ ℕ, let Xn : Ω → ℝ such that Xn is An-measurable,
∣Xn∣ < M , and Xn → X, �-almost surely, where X : Ω → ℝ is A-measurable.
Then limn→∞

∫
Ω
Xnd�n =

∫
Ω
Xd�.

Proof. Let �̃n be an extension of �n to A that converges setwise to �. Xn is
An-measurable, therefore

∫
Ω
Xnd�n =

∫
Ω
Xnd�̃n. By the triangle inequality,∣∣∣∣∫

Ω

Xnd�̃n −
∫

Ω

Xd�

∣∣∣∣ ≤ ∫
Ω

∣Xn −X∣d�̃n +

∣∣∣∣∫
Ω

Xd�̃n −
∫

Ω

Xd�

∣∣∣∣ . (C.1)

Pick " > 0 arbitrary. Notice that∫
Ω

∣Xn −X∣d�̃n ≤ " ⋅ �̃n(Ω) + 2M ⋅ �̃n({∣Xn −X∣ ≥ "}). (C.2)

Define Am := ∪n≥m{∣Xn − X∣ ≥ "}. Since Xn → X, �-a.s., it follows that
Am ↘ A with �(A) = 0. The triangle inequality implies

∣�̃n(An)− �(A)∣ ≤ �̃n(An ∖A) + ∣�̃n(A)− �(A)∣.

Since (An∖A)↘ ∅, by the Vitali-Hahn-Saks theorem (?, p.34), limm→∞ supn �̃n(Am∖
A) → 0. As �̃n(A) → �(A) and

∫
Ω
Xd�̃n →

∫
Ω
Xd�, we can choose N1(") ∈ ℕ

such that for all n ≥ N1("), �̃n({∣Xn−X∣ ≥ "}) ≤ " and
∣∣∫

Ω
Xd�̃n −

∫
Ω
Xd�

∣∣ ≤
". By the setwise convergence of �̃n to �, we can choose N2(") ∈ ℕ such that
�̃n(Ω) ≤ �(Ω) + ", for all n ≥ N2("). Equations (C.1) and (C.2) imply that for
all n ≥ max{N1("), N2(")},∣∣∣∣∫

Ω

Xnd�̃n −
∫

Ω

Xd�

∣∣∣∣ ≤ " ⋅ (�(Ω) + ") + 2M"+ ".

Since " can be chosen arbitrarily small, the conclusion follows.
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