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Abstract

Not-too-tight (NTT) debt limits are endogenous restrictions on debt that

prevent agents from defaulting and opting for a specified continuation utility,

while allowing for maximal credit expansion. For an agent facing some fixed

prices for the Arrow securities, we prove that discounted NTT debt limits

must differ by a martingale. Discounted debt limits are submartingales (mar-

tingales) under an interdiction to trade (borrow). The martingale components

in debt limits can be converted into asset price bubbles.

Keywords: endogenous debt limits, not-too-tight constraints, rational bubbles,

limited enforcement

JEL classification: G11, G12, D53, E44

1 Introduction

Alvarez and Jermann (2000) construct a theory of endogenous debt constraints in

complete markets economies with limited enforcement of financial contracts. Follow-

ing Kehoe and Levine (1993), they assume that agents can default on debt at the
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cost of being excluded permanently from financial markets. At each date and state,

an agent is allowed to borrow the maximum amount which is self-enforcing (making

repayment individually rational). These endogenous bounds on debt are referred to

as debt limits that are not-too-tight (NTT) for the respective agent.

One can envision the NTT debt limits as being set by competitive financial inter-

mediaries, with agents unable to trade directly with each other. The intermediaries

set debt limits such that default is prevented, but credit is not restricted unnecessar-

ily, since competing intermediaries could relax them and increase their profits (see

Ábrahám and Cárceles-Poveda (2010) for such a formalization).

Kocherlakota (2008) uncovered a defining characteristic of the set of NTT debt

limits for an agent facing a fixed pricing kernel (or, equivalently, fixed prices of the

one-period Arrow securities at each date and state) and penalty for default: adding

a martingale to some discounted NTT debt limits results in bounds that are also

NTT. The proof is immediate, and it is a consequence of agent’s budget constraint

being unchanged under the martingale-inflated bounds, if the initial value of the

martingale is added to his initial wealth.

We prove the converse, which is considerably more involved. A pair of discounted

debt limits that are NTT (for a given agent, pricing kernel and penalties for default)

must differ by a martingale.1 This theorem does not depend on equilibrium con-

siderations and stems only from the optimizing behavior of the agent. We allow

for general penalties for default specified by a continuation utility that can be date

and state contingent, and can depend on endogenous variables such as asset prices.

When the punishment for default is the interdiction to borrow, Hellwig and Lorenzoni

(2009) proved that discounted NTT debt limits are martingales. With this outside

option, zero bounds on debt are NTT. Thus their result is a particular case of our

theorem.2 Our proof is also simpler, due to the use of martingale techniques (Snell

envelopes). The use of Snell envelopes, while familiar in the theory of pricing Amer-

ican options, is novel to macroeconomics applications. The theorem does not imply

1Let p and φ̄, φ be stochastic processes representing the pricing kernel and two (sequences of)
NTT debt limits. Then p · (φ− φ̄) is a martingale.

2Set φ̄ identically equal to zero at all dates and states. Hence φ̄ is NTT, and the debt limits φ
are NTT if and only if p · φ (= p(φ − φ̄)) is a martingale. In Appendix B, we also show that the
result in Hellwig and Lorenzoni (2009) can be leveraged (with the benefit of hindsight), via simple
arguments, to apply to general penalties for default. One can prove that p(φ− φ̄) is a martingale,
for NTT debt limits satisfying the additional assumption φ ≤ φ̄. This extension is of limited use as
it applies only to situations where one of the debt bounds is uniformly tighter than other.
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however that NTT debt limits themselves are martingales (except for an interdiction

to borrow as penalty for default). In fact, when the punishment for default is the

interdiction to trade, we prove that the discounted NTT debt limits of each agent

are only submartingales.

As known from Bloise, Reichlin, and Tirelli (2013) and the examples in Hellwig

and Lorenzoni (2009) and Bidian and Bejan (2012), there is typically a multiplicity of

equilibria (in terms of real allocations and pricing kernels) in economies with enforce-

ment limitations. Our theorem does not compare NTT debt limits across equilibria

with different pricing kernels, but rather focuses on a given equilibrium and it charac-

terizes completely the set of debt limits offered to an agent by a competitive financial

intermediary that takes as given the market rates and the contractual (enforcement)

limitations. It establishes that such an intermediary can only alter the debt limits of

the agent by a discounted martingale. The theorem does not depend on equilibrium

considerations (that is, market clearing conditions).

The property of NTT debt limits uncovered by Kocherlakota (2008) seems to sug-

gest that associated to any equilibrium, there is a continuum of possible NTT debt

limits for the agents, differing from each other by (arbitrary) discounted martingales

with zero expected value. Our full characterization of the NTT debt limits (for an

agent facing a given pricing kernel and penalties for default) can be used to establish

their uniqueness, when the present value of agent’s endowments is finite, that is with

high interest rates. In this case, borrowing should be limited by the agent’s ability

to repay his debt out of his future endowments (Santos and Woodford 1997), or

equivalently, by the present value of future endowments. The difference of two such

nonpositive discounted NTT debt limits is therefore a uniformly integrable martin-

gale converging to zero, and hence identically equal to zero. When the punishment

for default is the interdiction to trade, Alvarez and Jermann (2000, Proposition 4.11)

prove that nonpositive NTT debt limits bounded by the present value of debt must

exist. Our result establishes that such debt limits are in fact unique. With an inter-

diction to borrow as punishment for default, debt limits identically equal to zero are

NTT, hence uniqueness implies that debt is unsustainable in the presence of high

interest rates. This confirms the conclusion reached earlier by Bulow and Rogoff

(1989) and Hellwig and Lorenzoni (2009).

The assumption of high interest rates, however, is extremely restrictive in models

with limited enforcement. In these environments, low interest rates (making the
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present value of aggregate endowment infinite) arise in equilibrium as a way to induce

agents not to renege on their debt (Hellwig and Lorenzoni 2009). As shown by Santos

and Woodford (1997), low interest rates are necessary for the existence of asset price

bubbles. The martingale property of NTT debt limits suggests a strong connection

to bubbles. Bubbles grow on average at the same rate as the interest rates and

therefore they are positive martingales when discounted by the pricing kernel. By

not discarding low interest rates equilibria for ad hoc reasons, we are able to pursue

this connection.

Kocherlakota (2008) shows that an arbitrary bubble can be injected in the price

of an infinitely-lived asset, without altering agents’ consumption. This can be ac-

complished by an upward adjustment of agents’ debt limits proportional to the size

of the bubble and their initial endowment of the asset, which leaves them NTT.

The introduction of a bubble gives consumers a windfall proportional to their initial

holding of the asset, which can be sterilized, leaving their budgets unaffected, by

an appropriate tightening of the debt limits. He refers to this result as the “bubble

equivalence theorem”.

While an intriguing way to generate bubbles, it raises the question whether the

tighter debt bounds needed to sustain the bubble can remain nonpositive, due to the

bubble component they now contain. Positive debt limits force agents to save and

it implies that financial intermediaries have access to coercive tools that seems un-

reasonable with enforcement limitations. Clearly arbitrarily large bubble injections

can only be sustained by forcing agents to save arbitrarily large amounts. Moreover,

with high interest rates, even initially infinitesimal bubbles explode quickly and make

agents’s debt limits positive and large.

It is therefore unclear whether bubble injections can occur at all with nonpositive

debt limits. As an immediate consequence of our characterization of NTT debt limits,

we show that bubble injections leading to nonpositive debt limits are possible when

agents are still allowed to borrow some predetermined (possibly zero or arbitrarily

small) amounts after default. Therefore our theorem, which as explained above is

a converse to Kocherlakota’s (2008) characterization of NTT debt limits, it also

provides the missing link needed to show the existence of bubble injections with

nonpositive debt limits. Bubbles enable agents to circumvent a reduction in the

availability of credit, and to achieve identical allocations to those possible under

more relaxed, but still self-enforcing debt limits. A tightening of the debt limits
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would result in a drop in interest rates due to precautionary saving and a reduction

in output (Guerrieri and Lorenzoni 2011). A bubble satisfies the need for additional

liquidity, preventing the drop in interest rates and output. In this sense, bubble

injections are expansionary.

The paper is organized as follows. Section 2 introduces the model, and defines the

notion of an Alvarez-Jermann equilibrium, which is a sequential equilibrium where

agents are subject to NTT debt limits. In Section 3 we prove that discounted NTT

bounds (for a given agent, pricing kernel and penalties for default) are determined

only up to a martingale and show that an interdiction to trade/borrow results in

discounted NTT debt limits that are submartingales/martingales. Section 4 contains

applications, and shows that the characterization result of Section 3 can be used

to establish the uniqueness of NTT bounds under additional assumption, and the

existence of rational bubbles. Appendix A contains proofs to some ancillary results

used in Section 3. Appendix B compares in detail the proof of Theorem 3.3 with

the proof of the particular instance of this theorem in Hellwig and Lorenzoni (2009)

(for an interdiction to borrow). Appendix C establishes the necessary and sufficient

transversality conditions for an agent’s optimization problem.

2 The model

We consider a stochastic, discrete-time, infinite horizon economy. The time periods

are indexed by the set of natural numbers N := {0, 1, . . .}. The uncertainty is

described by a probability space (Ω,F , P ) and by the filtration (Ft)t∈N, which is an

increasing sequence of σ-algebras on the set of states of the world Ω generating F ,

that is such that F = σ(∪tFt). Each σ-algebra Ft is interpreted as the information

available at period t and it is finite. There is no initial information, therefore F0 =

{∅,Ω}. For any t ∈ N and A ∈ Ft with A 6= ∅, we assume that P (A) 6= 0.

A sequence x = (xt)t∈N of random variables (F -measurable real-valued functions)

is an adapted stochastic process (“process” henceforth) if for each t ∈ N, xt is Ft-

measurable.3 We letX be the set of all stochastic processes, and denote byX+ (X++)

the set of nonnegative (strictly positive) processes in X. Thus x ∈ X+ (x ∈ X++)

if xt ≥ 0 (xt > 0) P -almost surely (“a.s.” henceforth) for all t ∈ N. We write

3Notice that the process x is integrable, since for any t ∈ N, xt belongs to the space of integrable
random variables L1 := L1(Ω,F , P ), as Ft is finite.
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x ≥ 0 if x is a nonnegative process, and x = 0 if xt = 0 P -a.s. for all t ∈ N. All

statements, equalities, and inequalities involving random variables are assumed to

hold only P -a.s., and we omit this qualifier in what follows.

There is a single consumption good and a finite number, I, of consumers. An

agent i ∈ {1, 2, . . . , I} has endowments ei ∈ X+, and his preferences are represented

by a utility U i : X+ → R given by U i(c) = E
∑∞

t=0 u
i
t(ct), where ui

t(·) = βi
tu

i(·)

and E(·) is the expectation operator with respect to the probability P . We assume

that βi ∈ X+ and satisfies E
∑

t≥0 β
i
t < ∞, and that ui : R+ → R is strictly

increasing, strictly concave, differentiable, satisfies standard Inada conditions and

is bounded from above by ūi ∈ R and from below by ui ∈ R. The conditional

expectation given the information available at t, Ft, is denoted by Et(·). Given the

absence of information at period 0, E0(·) = E(·). Let U i
t (c) := Et

∑

s≥t u
i
s(cs) be the

continuation utility of agent i after t provided by a consumption stream c ∈ X+.

Each consumer can trade at each date and state a complete set of one-period

Arrow securities. Their prices determine uniquely the pricing kernel p ∈ X++, and

conversely, the pricing kernel p determines unambiguously the prices of the Arrow se-

curities. Additionally, there is a finite number J of infinitely-lived, disposable securi-

ties. Asset j ∈ {1, 2, . . . , J} pays dividends dj ∈ X+, and has an ex-dividend price per

share qj ∈ X+. The dividend and price vector processes are d := (d1, . . . , dJ) ∈ XJ
+

and q := (q1, . . . , qJ) ∈ XJ
+. Consumer i has an initial endowment θi−1 ∈ R

J
+ of the

infinitely-lived securities, and ai0 ∈ R additional wealth, and his trading strategy in

the J securities is represented by a vector process θi = (θi,1, . . . , θi,J)′ ∈ XJ , while

his trading strategy in the Arrow securities is given by a ∈ X.

Consumer i faces debt constraints requiring his beginning of period financial

wealth to exceed some bounds φi ∈ X, meant to prevent Ponzi schemes. Thus if con-

sumer i starts period T with wealth νT (FT -measurable) and faces constraints φi and

prices p, q, he solves the problem max(c,a,θ)∈Bi

T
(νT ,φi,p,q) U

i
T (c), denoted P i

T (νT , φ
i, p, q),

where Bi
T (νT , φ, p, q) is his budget constraint following T , defined as

Bi
T (νT ,φ

i, p, q) := {(c, a, θ) ∈ ΘTX+ ×ΘT+1X ×ΘTXJ |

cT + ET

pT+1

pT
aT+1 + qT θT ≤ eiT + νT , as + (qs + ds)θs−1 ≥ φi

s,

cs + Es

ps+1

ps
as+1 + qsθs ≤ eis + as + (qs + ds)θs−1, ∀s > T}. (2.1)
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In the above notation, Θ represents the shift operator, that is, given a process x =

(xn)
∞
n=0 ∈ X, ΘTx := (xT+n)

∞
n=0. Similarly, if A ⊂ X, then ΘTA := {ΘTx | x ∈ A}.

The indirect utility of the agent is given by

V i
T (νT , φ

i, p, q) := max
(c,a,θ)∈Bi

T
(νT ,φi,p,q)

U i
T (c). (2.2)

Consumer i can elect to default on his debt and receive a continuation utility

described by a process V i,d. Thus by defaulting at period t, agent i can guarantee

for himself a continuation utility V i,d
t (which is Ft-measurable) and can depend on

exogenous variables such as agents’ endowments, but also on prices p, q, and even

future debt limits φi
t+1, φ

i
t+2, . . .. When we need to emphasize the functional depen-

dence of penalties on prices and debt limits we use the full notation V i,d(p, q, φi),

but in most instances we drop the arguments and do not make the dependence ex-

plicit. The debt constraints φi are determined endogenously to reflect the maximal

amount of debt agents can hold without defaulting. We say that the debt limits φi

are self-enforcing for agent i at prices p, q given penalties V i,d if Bt(φt, φ, p, q) 6= ∅

for all t ∈ N and the agent prefers not to default, V i
t (φt, φ, p, q) ≥ V i,d

t , ∀t ∈ N. The

debt limits φi are not-too-tight (NTT) for agent i (at prices p, q) given penalties V i,d

if and only if

V i
t (φt, φ, p, q) = V i,d

t , ∀t ∈ N. (2.3)

Thus NTT debt limits are self-enforcing bounds that do not restrict credit unnec-

essarily. Alvarez and Jermann (2000), building on the work of Kehoe and Levine

(1993), assume that the agents are banned from trading following default, that is

V i,d
t := U i

t (e
i), ∀t ∈ N. (2.4)

Hellwig and Lorenzoni (2009), following Bulow and Rogoff (1989), allow agents to

continue to lend, but not to borrow, upon default. Hence agents can renege on

their debt and be required to hold nonnegative wealth thereafter, resulting in a

continuation utility that depends on prices,

V i,d
t := V i

t (0, 0, p, q), ∀t ∈ N, (2.5)

where the second argument in Vt(0, 0, p, q) denotes the process equal to zero at any
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date and state.

A vector
(

p, q, (ci)Ii=1, (a
i)Ii=1, (θ

i)Ii=1, (φ
i)Ii=1, (V

i,d)Ii=1

)

consisting of a pricing ker-

nel p, prices q for the infinitely-lived securities, consumption (ci), trading strategies

(ai) (in Arrow securities) and (θi) (in the infinitely-lived securities), debt constraints

(φi) and penalties for default (V i,d) is an AJ-equilibrium with initial securities hold-

ings (θi−1)
I
i=1 and initial additional wealth (ai0)

I
i=1 if

i. Consumption and portfolios of each agent i are feasible and optimal: (ci, ai, θi) ∈

Bi
0(a

i
0 + (q0 + d0)θ

i
−1, φ

i, p, q) and U(ci) = V i
0 (a

i
0 + (q0 + d0)θ

i
−1, φ

i, p, q).

ii. Markets clear:
∑I

i=1 c
i
t =

∑I

i=1 e
i
t,
∑I

i=1 θ
i
t =

∑I

i=1 θ
i
−1,
∑I

i=1 a
i
t = 0, ∀t ≥ 0.

iii. For each i, φi is NTT given V i,d: V i
t (φ

i
t, φ

i, p, q) = V i,d
t , for all t ≥ 0.

A pricing kernel p and security prices q under which the problem of an agent

admits a solution have to exclude arbitrage opportunities, which implies that (see

for example Bidian 2011, Chapter 2)

qt = Et

pt+1

pt
(qt+1 + dt+1), ∀t ≥ 0. (2.6)

3 Characterization of not-too-tight debt limits

There is an intimate connection between NTT debt limits and martingales,4 which

will be explored here. Throughout this section we fix an agent i facing a given

pricing kernel p, prices q for the infinitely-lived securities, and penalties for default

V i,d. We assume that prices p, q exclude arbitrage opportunities, that is they satisfy

(2.6). If (ci, ai, θi) ∈ Bi
T (νT , φ

i, p, q), then (ci, a′) ∈ Bi
T (νT , φ

i, p), where for all s > T ,

a′s := ais + (qs + ds)θ
i
s−1 (that is, a

′
s is the beginning of period s wealth of the agent),

and

Bi
T (νT , φ

i, p) :={(c, a) ∈ ΘTX+ ×ΘTX |aT = νT , (3.1)

cT+t + ET+t

pT+t+1

pT+t

aT+t+1 ≤ eiT+t + aT+t, aT+t+1 ≥ φi
T+t+1, ∀t ≥ 0}.

4A process m ∈ X is a martingale if mt = Etmt+1, for all t ≥ 0, while m is a submartingale

(respectively supermartingale) if mt ≤ Etmt+1 (respectively mt ≥ Etmt+1) for all t ≥ 0.
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Therefore we can focus on the simpler budgets of the form (3.1), in which we can

imagine that the agent is choosing directly the (beginning of period) wealth holdings.

We denote the problem max(c,a)∈Bi

T
(νT ,φi,p) U

i
T (c) by P i

T (νT , φ
i, p). Its optimal solution

is C i
T (νT , φ

i, p), and the maximum continuation utility attainable by the agent is

V i
T (νT , φ

i, p):

C i
T (νT , φ

i, p) := argmax(c,a)∈Bi

T
(νT ,φi,p)U

i
T (c), (3.2)

V i
T (νT , φ

i, p) := max
(c,a)∈Bi

T
(νT ,φi,p)

U i
T (c). (3.3)

As a consequence of the equivalence of the budgets Bi
T (νT , φ

i, p, q) and Bi
T (νT , φ

i, p)

(from the point of view of consumption), the consumption component in C i
T (νT , φ

i, p, q)

and C i
T (νT , φ

i, p) coincide, and

V i
T (νT , φ

i, p, q) = V i
T (νT , φ

i, p). (3.4)

We henceforth drop the last argument (q) in the indirect utility of the agent, as

arbitrage opportunities are absent in an equilibrium.

For the rest of the section we drop the agent-specific superscript i as we focus

on a single agent, and we fix a pair of debt limits φ̄, φ such that φ̄ is NTT (for the

chosen agent, at prices p and penalties V d). The characterization results of NTT

bounds that follow require:

Assumption 3.1. Debt limits φ̄, φ satisfy

V d(p, q, φ) = V d(p, q, φ̄).

Assumption (3.1) makes the continuation utilities after default under the two

debt limits φ̄, φ equal. It is clearly satisfied for penalties such as (2.4) and (2.5) since

continuation utilities do not depend on agent’s debt limits.5 Set

M := p(φ− φ̄). (3.5)

We show next that discounted NTT constraints satisfying Assumption 3.1 are de-

5Bidian and Bejan (2012) analyze an example where the agents are subject to a temporary inter-
diction to trade after default and the continuation utilities depend on debt limits, but Assumption
3.1 holds nevertheless.
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termined only up to a martingale, that is we prove that φ are NTT (for the given

agent at prices p and penalties V d) if and only if M is a martingale. The “if” part

(sufficiency) is immediate, and was shown by Kocherlakota (2008) (for less general

penalties for default).

Proposition 3.1. If φ̄ are NTT andM is a martingale, then Vt(φ̄t, φ̄, p) = Vt(φt, φ, p)

for all t ∈ N and therefore φ are NTT if Assumption 3.1 holds.

Proof. It is immediate to check that (c, a) ∈ Bt(φ̄t, φ̄, p) if and only if (c, a+φ− φ̄) ∈

Bt(φt, φ, p). Thus for all t ∈ N, Vt(φ̄t, φ̄, p) = Vt(φt, φ, p) = V d
t (p, q, φ), and equal also

to V d
t (p, q, φ̄) under Assumption 3.1, thus φ are NTT.

The next result is related.

Proposition 3.2. If M is a supermartingale, then for any t ≥ 0, Vt(φt, φ, p) ≥

Vt(φ̄t, φ̄, p) with strict inequality on the set {Mt > EtMt+1}.

Proof. It is immediate to check that if (c, a) ∈ Bt(φ̄t, φ̄, p), then (c̃, a + φ − φ̄) ∈

Bt(φt, φ, p), where c̃s := cs + Es (Ms −Ms+1) /ps ≥ cs, for all s ≥ t. Since c̃t > ct on

{Mt > EtMt+1}, the conclusion follows.

The rest of this section is dedicated to proving the converse to Proposition 3.1:

the difference of discounted NTT debt limits is a martingale. In the proof we will

use intensively truncations of an agent’s problem between “periods” where the debt

limits bind, and analyze and perturb the agent’s optimal asset and consumption

paths between two such “periods”. In stochastic economies, the first time when debt

limits bind represents a “cut” in the event tree, and therefore we need to introduce

the notion of a stopping time, which is a function T : Ω → N ∪ {∞} such that

{T = n} ∈ Fn, for all n ∈ N. A stopping time T is said to be finite if T < ∞, and

bounded if there exists n ∈ N such that T < n.

A stopping time T induces the σ-algebra FT of events known at T ,

FT := {A ∈ F | A ∩ {T = n} ∈ Fn for all n ∈ N} .

The operator ET (·) denotes the conditional expectation with respect to FT . Let

x = (xn) ∈ X and T be a finite stopping time. The random variable xT is defined

as xT (ω) := xT (ω)(ω), for all ω ∈ Ω. The process x starting at T is defined as
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the sequence of random variables (xT+n)
∞
n=0, which we denote also by ΘTx (where

Θ is the shift operator introduced before). By extension, if A ⊂ X, then ΘTA :=

{ΘTx | x ∈ A}. Let S be another stopping time, not necessarily finite, such that

T ≤ S. The process x stopped at S and starting at T is defined as the sequence

of random variables (x(T+n)∧S)
∞
n=0, where (T + n) ∧ S is an abbreviated notation

for min{T + n, S}. We use also the alternative notation (xn)
S
n=T for the process x

stopped at S and starting at T . The notations for an agent’s budget, indirect utility

and solution to his optimization problem introduced in (2.1) and (3.1)-(3.3) apply

also when T is a finite stopping time rather than a deterministic time (period). We

denote the indicator function of a set A ∈ F by 1A. Thus 1A : Ω → R, 1A(ω) = 1 if

ω ∈ A, while 1A(ω) = 0 if ω 6∈ A.

Let T be an arbitrary stopping time. Define α(T ) to be the first time the bounds

φ bind after T , when the agent starts with wealth φT at T and faces bounds φ.

Concretely, for each ω ∈ {T < ∞},

α(T )(ω) := inf {t | t ∈ N, t > T (ω), at(ω) = φt(ω), (c, a) ∈ CT (φT , φ, p)} , (3.6)

and for ω ∈ {T = ∞}, α(T )(ω) := ∞. Notice that α(T ) is well-defined, as the

set CT (φT , φ, p) contains a unique element. Indeed, strict concavity of the period

utilities (ut) imply that if if (c, a), (c′, a′) ∈ CT (φT , φ, p), then c = c′, otherwise ((c+

c′)/2, (a+a′)/2) ∈ BT (φT , φ, p) would be strictly preferred by the agent to both (c, a)

and (c′, a′). But then for any s ≥ T , Vs(as, φs, p) = Us(c) = Us(c
′) = Vs(a

′
s, φ, p),

hence as = a′s (Vs is strictly increasing in initial wealth), and therefore (c, a) = (c′, a′).

With multiple optimal paths (without strict concavity), our arguments would go

through, but we would have to be explicit about which optimal path is selected in

the definition of α(T ). We also set α0(T ) := T and for k ≥ 1, we define αk(T )

recursively as αk(T ) := α(αk−1(T )).

We impose the following consistency condition between φ̄ and φ:

Assumption 3.2. For each t ∈ N, the process
(

p · φ̄
)α(t)

s=t
is uniformly integrable.6

This assumption is used in Proposition A.2 to show that the process (Ms)
α(t)
s=t

converges a.s. and in L1. It is a consistency condition between φ̄ and φ, requiring

that φ̄ does not grow unboundedly large (in discounted terms) between two periods in

6A process x = (xn)n is uniformly integrable if and only if lima→∞ supn E(|xn| · 1|xn|>a) = 0.
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which the debt limits φ bind. It is an extremely mild assumption, since it is imposed

piecewise on time intervals [t, α(t)], rather than on the whole horizon. Therefore,

if debt limits φ bind in bounded time, Assumption 3.2 is automatically satisfied.

Moreover, Proposition A.2 shows that (p · φ)α(t)s=t is uniformly integrable, and therefore

Assumption 3.2 is satisfied if on each time interval [t, α(t)], φ̄ are bounded from

below by an arbitrarily large multiple of φ (that is, if there exists K(t) > 0 such

that φ̄s ≥ K(t)φs, for all s ∈ [t, α(t) + 1). Clearly Assumption 3.2 is also trivially

satisfied when the penalties are the interdiction to borrow (2.5) analyzed in Hellwig

and Lorenzoni (2009), since φ̄ = 0 are NTT in this case.

We can prove now the converse to Proposition 3.1, which completes the charac-

terization of NTT debt limits. The proof uses the property that the optimal asset

holdings of the agent are nondecreasing in initial wealth (see Lemma A.1):

(c, a) ∈ Ct(ν, φ, p), (c
′, a′) ∈ Ct(ν

′, φ, p) ⇒ a′s ≥ as, ∀s ≥ t. (3.7)

Theorem 3.3. If φ̄, φ ≤ 0 are NTT (given p, q, V d) and Assumptions 3.1 and 3.2

hold, then the process M := p(φ− φ̄) is a martingale.

Proof. Fix a natural number t.

STEP 1. We show that

Mt ≥ EtMα(t), (3.8)

where Mα(t) := limn→∞ Mα(t)∧n. By Proposition A.2, the limit is well-defined (a.s.

and in L1), and (Ms)
α(t)
s=t has a (lower) Snell envelope (M̂s)

α(t)
s=t , which is the largest

submartingale dominated from above by M (that is M̂ ≤ M), and it satisfies M̂s =

Ms ∧ EsM̂s+1 and

M̂α(t) = Mα(t). (3.9)

We prove that (M̂s)
α(t)
s=t is in fact a martingale, rather than just a submartingale.

Assume, by contradiction, that there exists n ∈ N such that {t ≤ n < α(t)}∩{M̂n <

EnM̂n+1} has positive probability. Until we reach a contradiction, all statements

below are restricted to the set {t ≤ n < α(t)} ∩ {M̂n < EnM̂n+1} (which is Fn-

measurable). Notice that M̂n = Mn, since M̂n = Mn ∧ EnM̂n+1 and M̂n < EnM̂n+1.

12



Let (c, a) ∈ Cn(φn, φ, p). Define (ãs)
α(t)
s=n+1 by

ãs := as −
M̂s

ps
≥ φs −

Ms

ps
= φs − (φs − φ̄s) = φ̄s,

and let ãn = φ̄n. Let (c̃s)
α(t)−1
s=n be the consumption supported by asset holdings ã,

thus ps(c̃s − cs) = ps(ãs − as)− Esps+1(ãs+1 − as+1). Hence

pn(c̃n − cn) = −Mn + EnM̂n+1 = −M̂n + EnM̂n+1 > 0,

ps(c̃s − cs) = −M̂s + EsM̂s+1 ≥ 0, n+ 1 ≤ s < α(t).

We reached a contradiction, since

V d
n = Vn(φ̄n, φ̄, p) ≥ En





α(t)−1
∑

s=n

us(c̃s) + V d
α(t)1α(t)<∞





> En





α(t)−1
∑

s=n

us(cs) + V d
α(t)1α(t)<∞



 = Vn(φn, φ, p) = V d
n .

Having established that M̂ is a martingale, (3.8) follows now from (3.9).

STEP 2. We show that

Mt = EtMα(t). (3.10)

For each k ∈ N, repeat the construction in STEP 1 for αk(t) instead of t, on the

set where {αk(t) < ∞}, and obtain the martingale (M̂s)
αk+1(t)

s=αk(t)+1
(the lower Snell

envelope of (Ms)
αk+1(t)

s=αk(t)+1
), dominated from above by M and such that M̂αk+1(t) =

Mαk+1(t).
7 We let also M̂t := EtM̂α(t). By (3.8), the resulting process (M̂s)

∞
s=t is a

supermartingale, M̂ ≤ M , and for all k ≥ 1, M̂αk(t) = Mαk(t).

Construct the process (φ̂)∞s=t defined by φ̂s := φ̄s+M̂s/ps. It follows that φs ≥ φ̂s

for all s ≥ t, and φ̂αk(t) = φαk(t) for all k ≥ 1. Let (c̄, ā) ∈ Ct(φt, φ, p). We claim that

(c̄, ā) is also an optimal solution for the problem Pt(φt, φ̂, p) with relaxed debt limits,

that is we show that (c̄, ā) ∈ Ct(φt, φ̂, p).
8 Let (c, a) ∈ Bt(φt, φ̂, p) and ηn := αk(t)∧n,

7Equivalently, for αk(t) + 1 ≤ s < αk+1(t) + 1 define M̂s := EsMαk+1(t) and use repeatedly the

property (3.7) and (3.8) to show that M̂ ≤ M .
8Since ā binds at the same dates and states under the φ and φ̂ bounds, (c̄, ā) satisfies the Kuhn-
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for k ≥ 1 and n ≥ t. By (C.1) and (C.6),

Et

ηn−1
∑

s=t

(us(cs)− us(c̄s)) ≤ Etu
′
ηn
(c̄ηn)(āηn − φ̂ηn) ≤

≤ Etu
′
ηn
(c̄ηn)(āηn − φηn) +

u′
t(c̄t)

pt
Etpηn(φηn − φ̂ηn) =

= Etu
′
n(c̄n)(ān − φn)1n≤αk(t) +

u′
t(c̄t)

pt
Et(Mηn − M̂ηn), (3.11)

as (āηn − φ̂ηn)1n>αk(t) = 0. Using the necessary transversality condition (C.3),

lim
n→∞

Etu
′
n(c̄n)(ān − φn)1n≤αk(t) ≤ lim

n→∞
Etu

′
n(c̄n)(ān − φn) = 0,

and limn→∞Et(Mηn − M̂ηn) = 0 since Mηn → Mαk(t), M̂ηn → M̂αk(t) (a.s. and in L1)

and M̂αk(t) = Mαk(t). Making n → ∞ in (3.11), Et

∑αk(t)−1
s=t (us(cs)− us(c̄s)) ≤ 0.

By letting k → ∞, it follows that that Ut(c̄) ≥ Ut(c). Since (c, a) was an arbitrary

feasible path in Bt(φt, φ̂, p), we conclude that (c̄, ā) ∈ Ct(φt, φ̂, p).

Therefore Vt(φt, φ̂, p) = Vt(φt, φ, p) = V d
t , and

V d
t = Vt(φt, φ̂, p) ≥ Vt(φ̂t, φ̂, p) ≥ V d

t .

The first inequality above is strict if φt > φ̂t and the second one is strict if M̂ is not

a martingale, but rather only a supermartingale, by Proposition 3.2. Thus M̂ is a

martingale and φt = φ̂t. Thus Mt = M̂t = EtMα(t), and (3.10) obtains.

STEP 3. We show that

Mt = EtMt+1. (3.12)

It is enough to prove that

Mt+1 = Et+1Mα(t), (3.13)

since then Mt = EtMα(t) = EtEt+1Mα(t) = EtMt+1, as desired. Let η0 := t + 1 and

for m ≥ 0, ηm+1 := α(ηm) ∧ α(t). Thus ηm ↗ α(t). Fix l ∈ N. We show first that

Mηl = EηlMηl+1 . On the set {ηl < α(t)}, the monotonicity property (3.7) implies

Tucker conditions for the problem Pt(φt, φ̂, p). However it is unclear whether it satisfies also the
sufficient transversality condition.
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that α(ηl) ≤ α(t), thus ηl+1 = α(ηl). By (3.10),

1ηl<α(t) · EηlMηl+1 = 1ηl<α(t) · EηlMα(ηl) = 1ηl<α(t) ·Mηl .

On the set {ηl = α(t)}, ηl+1 = ηl = α(t). Therefore

EηlMηl+1 = 1ηl<α(t) ·EηlMηl+1 +1ηl=α(t) ·EηlMηl = 1ηl<α(t) ·Mηl +1ηl=α(t) ·Mηl = Mηl .

Using the law of iterated expectations,

Mt+1 = Mη0 = Eη0Mη1 = . . . = Eη0Mηl = Et+1Mηl , ∀l ∈ N.

By the uniform integrability of (Mηl), which is a consequence of Proposition 3.1, part

2,

Mt+1 = lim
l→∞

Et+1Mηl = Et+1 lim
l→∞

Mηl = Et+1Mα(t).

Therefore (3.13) holds and hence (3.12) is true, thus M is a martingale.

The idea of the proof is depicted in Figure 1, for the deterministic case, which

is more transparent. Without uncertainty, submartingales, respectively martingales,

respectively supermartingales are increasing, respectively constant, respectively de-

creasing sequences. The solid line represents the process M := p(φ − φ̄), while the

dotted line represents M̂ , whose construction is explained below.

In Step 1 we fix an arbitrary period of time t, and denote by α(t) the first period

when agent’s debt limits bind after t, if he starts with wealth φt at t and faces

debt limits φ. We construct the Snell envelope M̂ of M on the interval [t, α(t)]

(the largest submartingale smaller than M , or in this context, the largest increasing

function lying below M on the respective interval), and show that it has to be in

fact a martingale (otherwise the agent will default when faced with debt limits φ).

It follows that the process M sampled at t and α(t) is a supermartingale.

In Step 2, we construct in a similar fashion the Snell Envelope M̂ for the process

M on the intervals [t, α(t)], (α(t), α2(t)], (α2(t), α3(t)], . . ., where αk(t) represents the

k-th time debt limits φ bind after t, in the problem Pt(φt, φ, p). By Step 1, M̂ is

a supermartingale. Using M̂ , we construct the relaxed bounds φ̂ := φ̄ + M̂/p ≤

φ, which coincide with φ at α(t), α2(t), . . ., that is whenever φ are binding in the

problem Pt(φt, φ, p). Therefore the optimal solution for Pt(φt, φ, p) is also a solution
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of the relaxed problem (with larger feasible set) Pt(φt, φ̂, p). By Proposition 3.2,

we conclude that φt = φ̂t, and therefore the process M sampled at t and α(t) is a

martingale (rather than just a supermartingale, as shown in Step 1).

Finally, in Step 3 we show that M must be a martingale. Fix an arbitrary period

t. It is enough to show thatMt = Mt+1 (we are in a deterministic world here). By the

previous two steps, we know thatMs = Mα(s), for all s. If α(t) = t+1, we are done. If

this is not the case, the monotonicity property (3.7) guarantees that α(t+1) ≤ α(t).

Indeed, the debt limits of the agent do not bind at t+ 1 in the problem Pt(φt, φ, p),

as they bind for the first time only at α(t) > t + 1. Therefore the wealth of the

agent at t+ 1, along the optimal path for problem Pt(φt, φ, p) strictly exceeds φt+1,

and therefore the debt limits in the problem Pt+1(φt+1, φ, p) must bind before or at

the latest at α(t), by (3.7). If α(t + 1) = α(t), then Mt = Mα(t) = Mα(t+1) = Mt+1,

as desired. Otherwise, by an identical reasoning we have α2(t + 1) ≤ α(t). We

can continue this iterative process, which stops as soon as αk(t + 1) = α(t), as

Mt = Mα(t) = Mαk(t+1) = Mt+1. A finite number of iterations is needed if α(t) is

finite, otherwise one takes the limit as k → ∞ to get limk→∞Mαk(t+1) = Mα(t) and

reach the conclusion.

t α(t) α2(t) α3(t)

M
M̂

Figure 1: Illustration of the proof of Theorem 3.3.
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When the penalty for default is the interdiction to borrow (2.5), Theorem 3.3

implies that any NTT debt limits φ are discounted martingales and therefore the

result of Hellwig and Lorenzoni (2009) obtains as a particular case of our theorem -

a detailed comparison is offered in Appendix B.

Theorem 3.3 allows for almost arbitrary debt limits (satisfying only the mild As-

sumption 3.2), in which one of them does not have to dominate the other. Therefore

Theorem 3.3 delivers a general characterization of NTT debt limits, with a simpler

proof. Appendix B contains a detailed comparison between the proof of Theorem

3.3 and the proof of Hellwig and Lorenzoni (2009).

The result in Theorem 3.3 should not be interpreted as saying that NTT debt

limits are discounted martingales. This is true when the penalty for default is the

interdiction to borrow (2.5) (as seen before), but not in general. For the other

canonical case when the penalty for default is the interdiction to trade (2.4), we can

in fact show that the NTT debt limits are discounted submartingales.

Proposition 3.4. Assume that φ are NTT debt limits when the agent faces penalties

(2.4) (no trading after default). Then p · φ is a submartingale converging a.s.

Proof. The agent will default at period t, when starting with wealth φt at period t,

on the set {ptφt > Etpt+1φt+1}. Indeed, let (c, a) ∈ Ct(φt, φ, p). Construct (c′, a′) ∈

Bt(φt, φ, p) (see (3.1)) given by c′t := et + (ptφt − Etpt+1φt+1) /pt, a′t := φt, and

(c′, a′) ∈ Ct+1(φt+1, φ, p) (hence a′t+1 := φt+1). On the set {ptφt > Etpt+1φt+1},

c′t > et, and

Ut(c
′) = ut(c

′
t) + EtV

d
t+1 > ut(et) + EtV

d
t+1 = ut(et) + EtUt+1(e) = V d

t .

It follows that Ut(c
′) > Ut(c) = V d

t on the set {ptφt > Etpt+1φt+1}, contradicting

the optimality of the path c. Hence ptφt ≤ Etpt+1φt+1 for all t and therefore p · φ

is a submartingale. Since φ ≤ 0, the martingale convergence theorem (Kopp 1984,

Theorem 2.6.1) applies, and (ptφt) converges a.s. to an integrable variable.

4 Applications

The property of NTT debt limits uncovered by Kocherlakota (2008) and stated in

Proposition 3.1 suggests that associated to any equilibrium allocations and prices,
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there is a continuum of possible NTT debt limits for the agents, differing from each

other by (arbitrary) discounted martingales with zero expected value, and preserv-

ing the total amount of credit in the economy. Indeed, consider an AJ-equilibrium
(

p, q, (ci)Ii=1, (ā
i)Ii=1, (θ

i)Ii=1, (φ̄
i)Ii=1, (V

i,d)Ii=1

)

. For each i ∈ {1, . . . , I − 1}, let εi ∈ X

such that p · ε is a martingale and such that εi0 = 0 (thus p · εi is a zero mean mar-

tingale). Set εI := −
∑I−1

i=1 ε
i. Then

(

p, q, (ci)Ii=1, (a
i)Ii=1, (θ

i)Ii=1, (φ
i)Ii=1, (V

i,d)Ii=1

)

is also an AJ-equilibrium, where ai := āi + εi and φi := φ̄i + εi. This is an im-

mediate consequence of the equivalence of agents’ budget constraints established in

Proposition 3.1.

We show that Theorem 3.3 can remove the multiplicity of NTT debt limits out-

lined above, under some additional assumptions on debt limits. In this sense, the

theorem can be viewed as a uniqueness result. Concretely, nonpositive NTT debt

limits that are bounded by the present value of agent’s future endowments (assumed

finite) are unique.

Proposition 4.1. For each t ∈ N, let Yt :=
1
pt
Et

∑

s≥t pses and assume Y0 < ∞. Let

φ, φ̄ be NTT given V d and satisfying Assumption 3.1. If 0 ≥ φ, φ̄ ≥ −Y , then φ = φ̄.

Proof. Notice that the process p·Y is a uniformly integrable positive supermartingale

converging to zero a.s. and in L1. Thus Assumption 3.2 is satisfied (with α(t)

replaced by ∞), and the conclusion follows by Theorem 3.3.

Therefore with high interest rates (that is, with a finite discounted present value

of endowment) and borrowing limited by the agent’s ability to repay his debt out of

his future endowments (Santos and Woodford 1997), nonpositive NTT debt limits

are unique (for a given agent, pricing kernel and penalties for default). Proposition

4.1 fills some gaps and gives a unified view of results obtained for various penalties for

default. When the punishment for default is the interdiction to trade, Alvarez and

Jermann (2000, Proposition 4.11) prove that given any sequential equilibrium with

NTT debt limits and high interest rates, one can construct an equivalent equilibrium

with identical pricing kernel and consumption, but with nonpositive NTT debt limits

bounded by the present value of aggregate endowment. Proposition 4.1 shows that

such debt limits are in fact unique. Moreover, when the punishment for default

is the loss of borrowing privileges, nonpositive NTT debt limits restricted by the

present value of future endowments must be identically equal to zero, and therefore
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no borrowing can be sustained in an equilibrium, as pointed out before by Bulow

and Rogoff (1989) and Hellwig and Lorenzoni (2009).

The assumption of high interest rates is ad-hoc and extremely restrictive in models

with limited enforcement. In these environments, low interest rates arise in equilib-

rium as a way to induce agents not to default. As shown in Santos and Woodford

(1997), rational bubbles are discounted martingales and they require low interest

rates. The martingale characterization of NTT debts in Proposition 3.1 and Theo-

rem 3.3 can be used to show that robust bubbles can arise in limited enforcement

economies. Such bubbles enable agents to circumvent credit crunches (tight debt

limits), and therefore are expansionary.

We introduce first the definition of a bubble and then pursue the connection

between bubbles and self-enforcing debt. By (2.6), asset prices satisfy

qt =
1

pt
Et

∑

s>t

psds + lim
n→∞

1

pt
Etpnqn.

Let ft(p, d) := 1
pt
Et

∑

s>t psds denote the discounted present value at t of future

dividends d, that is the fundamental value of d at period t. It follows that

bt(p, q) :=
1

pt
lim
n→∞

Etpnqn (4.1)

is well-defined and nonnegative, and qt = ft(p, d) + bt(p, q). The process b(p, q)

represents the part of asset prices in excess of fundamental values, and it is called

the bubble component in the asset prices q. Notice that for all t ∈ N, ptbt(p, q) =

Etpt+1bt+1(p, q). Hence p · b(p, q) is a nonnegative martingale and b(p, q) = 0 if and

only if 0 = b0(p, q) (=
1
p0
limt→∞Eptqt).

We compare pairs of AJ-equilibria, therefore to avoid lengthy notation, we set

E :=
(

p, q, (ci)Ii=1, (a
i)Ii=1, (θ

i)Ii=1, (φ
i)Ii=1, (V

i,d)Ii=1

)

, while Ē , Ẽ , Ê denote similar vec-

tors, with all variables barred, tilded, respectively hatted. We say that the AJ-

equilibria E , Ê are equivalent if pricing kernels, consumptions and penalties for de-

fault coincide: p̂ = p, ĉi = ci, V̂ i,d = V i,d, for all agents i. Notice that this equivalence

notion allows for a redistribution of initial asset holdings among agents.

We analyze in what follows a class of default penalties described by some exoge-

nous nonpositive “penalty” debt restrictions φ̄i ≤ 0 for each agent i. If an agent i
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subject to some debt limits φi less tight than φ̄i (φi ≤ φ̄i) defaults at t, the agent has

his debt discharged, in exchange for a “fee” |φ̄i
t| at t and tighter future debt limits

φ̄i (and repayment of debt is strictly enforced after a default). The debt limits after

default φ̄i ≤ 0 can be arbitrarily small in absolute value, or even zero, in which case

we have an interdiction to borrow upon default, (2.5). For example, we can take

φ̄i := −kiei, where ki ≥ 0 are some predetermined loan-to-income ratios. The set of

nonnegative discounted martingales associated to the pricing kernel p is denoted by

M(p) := {m ∈ X+ | p ·m is a martingale}.

Proposition 4.2. Let (φ̄1, . . . , φ̄I) ∈ −XI
+. Consider an AJ-equilibrium E with debt

limits φi with φi ≤ φ̄i, and penalties for default given by V i,d
t := V i

t (φ̄
i
t, φ̄

i, p, q), for

all i, t. Assume
∑

i φ
i
0 6=

∑

i φ̄
i
0. Fix an arbitrary asset j in unit supply (without loss

of generality). Then φ̄i − φi ∈ M(p) for all i and the following hold:

a. Let ε ∈ M(p) such that θi,j−1 ·ε ≤ φ̄i−φi, for all i. There exists an equivalent AJ-

equilibrium that has a bubble ε in asset j, identical initial endowments of the

assets for the agents, and tighter debt limit (φ̂i)Ii=1, with φ̂i := φi+θi,j−1·ε (≤ φ̄i).

b. Let ε :=
∑I

i=1(φ̄
i − φi). There exists an equivalent AJ-equilibrium that has a

bubble ε in asset j and tighter debt limits (φ̄i)Ii=1.

Proof. φi, φ̄i satisfy Assumption 3.1 by construction. They also satisfy Assumption

3.2, since φ̄i is bounded from below by φi. Indeed, Proposition A.2 shows that for

any t, (p · φ)α(t)s=t is uniformly integrable, which coupled with φ ≤ φ̄ ≤ 0 guaran-

tees that
(

p · φ̄
)α(t)

s=t
is uniformly integrable (see also the discussion after Assumption

3.2). Theorem 3.3 ensures that for each agent i, φ̄i − φi are nonnegative discounted

martingales.

For any ε ∈ M(p), the “bubble equivalence theorem” (Kocherlakota 2008, The-

orem 4) implies that E is equivalent to an equilibrium Ê having a bubble ε in asset

j, where for each period t ≥ 0, q̂j = qj + ε, q̂k = qk for k 6= j, θ̂it−1 = θit−1,

âit := at + εt(θ
i,j
−1 − θi,jt−1) and φ̂i

t := φi
t + εt · θ

i,j
−1. The proof is immediate and relies on

the equality of agents’ budgets constraints in E and Ê . Market clearing conditions

are clearly satisfied. Bounds φ̂i remain NTT by Proposition 3.1, as

V i
t (φ̂

i
t, φ̂

i, p, q̂) = V i
t (φ̂

i
t, φ̂

i, p) = V i
t (φ

i
t, φ

i, p) = V i
t (φ

i
t, φ

i, p, q) = V i
t (φ̄

i
t, φ̄

i, p, q).
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The first part of the Proposition now follows, as the perturbed debt limits φ̂i are less

than φ̄i whenever θi,j−1 · ε ≤ φ̄i − φi, for all i.

For the second part, we construct first an equilibrium Ē equivalent to E , which

differs only in terms of the debt limits and Arrow security holdings. Every agent i

except the first has φ̄i debt limits, agent 1 has debt limits φ̄1 − ε, and the Arrow

securities holdings are ā1 := a1 − ε and āi := ai + φ̄i − φi for i 6= 1. Market clearing

conditions hold, debt constraints are satisfied, while agents’ budgets coincide, as

shown in (the proof of) Proposition 3.1.

In turn, Ē is equivalent to an equilibrium Ẽ with identical debt limits for the

agents, in which agent 1 is the sole owner of asset j: θ̃1,jt−1 := 1, θ̃i,jt−1 := 0, for each

t ≥ 0 and agent i 6= 1. This can be accomplished by setting, for each period t, agent

i and asset k 6= j, θ̃i,kt−1 := θi,kt−1, ã
i
t := āit + (qt + dt)(θ

i
t−1 − θ̃it−1). Showing that Ẽ is

an AJ-equilibrium equivalent to Ē is immediate, since agents have identical wealth

levels at all times, and only the allocation of their wealth between Arrow securities

and infinitely-lived assets is changed. Applying the bubble equivalence theorem to Ẽ

(instead of E) produces an equivalent equilibrium Ê with the desired properties.

Proposition 4.2 is an instance of the “bubble equivalence theorem” of Kocher-

lakota (2008), who showed that an arbitrary bubble can be injected in an infinitely-

lived asset, while leaving agents’ budget constraints (hence consumption) unchanged,

as long as the debt constraints of the agents are allowed to be adjusted upwards by

their initial endowment of the asset multiplied by the bubble term. The introduction

of a bubble gives consumers a windfall proportional to their initial holding of the

asset, which can be sterilized, leaving their budgets unaffected, by an appropriate

tightening of the debt limits.

Another interpretation of Proposition 4.2, in the light of our Theorem 3.3, is as

follows. Assume that the competitive financial intermediaries that set the NTT debt

limits for the agents (see the discussion in the introduction and the model in Ábrahám

and Cárceles-Poveda (2010)) decide to tighten them. Being competitive, they take

the interest rates (pricing kernel) as given, and therefore, by Theorem 3.3, they

will choose new debt limits that are tighter by a (positive) discounted martingale.

Without a bubble, this reduction in available credit would lead to lower interest rates

(due to precautionary saving) and to a recession, for realistic calibrations (Guerrieri

and Lorenzoni 2011). The total reduction in credit is a discounted martingale, and a

21



bubble in an asset in unit supply equal to this reduction in credit would completely

compensate for the reduced liquidity in the economy.

The bubble equivalence theorem did not receive the attention it deserves, since

it was usually assumed that the new (tighter) debt bounds required to sustain the

bubble injection in a positive supply asset must eventually become positive, due to

the bubble component they now contain.9 Forced saving, however, seems implausible

(especially with enforcement limitations). Proposition 4.2 showcases the power of

Theorem 3.3, and points out that debt limits can remain nonpositive (and NTT) after

a bubble injection, if the penalties for default are sufficiently mild - agents are still

allowed to borrow some predetermined (possibly zero or arbitrarily small) amounts

after default. Keeping the agents’ initial endowments of assets fixed guarantees

the existence of an equivalent bubbly equilibrium only if the initial endowments of

long-lived securities and agents’ excess debt limits over the penalty levels satisfy an

additional consistency condition (always satisfied for example if only one agent owns

the asset j initially, and his debt limits are not identically equal to the penalty levels).

If we allow initial transfers (of stocks and Arrow securities) among agents, then a

bubble of size up to the (absolute value of) total debt limits in excess of penalty

levels can be injected in an asset in unit supply.

5 Conclusion

We consider an infinite horizon, complete markets economy, in which agents have

the option to default on debt at any period in exchange for a continuation utility

that can be date and state contingent, and can depend on the pricing kernel. For an

agent facing a given pricing kernel and penalty for default, we characterize the set

of debt limits that allow for maximum credit expansion while preventing default, à

la Alvarez and Jermann (2000), known as “not-too-tight” (NTT) debt limits. We

show that two discounted NTT debt limits for an agent facing a given pricing kernel

must differ by a martingale.

9Hellwig and Lorenzoni (2009) is an exception, as they show that with low interest rates aris-
ing under the penalty 2.5, debt limits can contain bubble (martingale) components that remain
bounded. However they do not connect this observation with the possibility of bubbles in asset
prices using Kocherlakota’s (2008) mechanism of transferring bubbles from debt limits into asset
prices. Moreover, the interdiction to borrow penalty (see 3.5) analyzed by Hellwig and Lorenzoni
(2009) is just a member the family of penalties allowed in Proposition 4.2.
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Our characterization is crucial for establishing the uniqueness of NTT debt limits

bounded (in absolute value) by the present value of future endowments. Moreover, it

can be used to show that the tighter bounds resulting from the injection of a bubble

using Kocherlakota’s (2008) mechanism can remain nonpositive, despite the bubble

component they contain. If agents are still allowed to borrow predetermined fixed

fractions (arbitrarily small and possibly zero) of their endowments upon default, an

equilibrium can sustain bubbles (on assets in unit supply) equal to the total debt

limits in excess of the penalty levels.

Thus economies with endogenous (NTT) debt limits provide robust examples of

bubbles, in the presence of rational, forward looking agents. These bubbles satisfy a

need for liquidity triggered by credit crunches.

A Omitted proofs in Section 3

Lemma A.1. Given any t ∈ N and Ft-measurable random variables ν ′ ≥ ν,

(c, a) ∈ Ct(ν, φ, p), (c
′, a′) ∈ Ct(ν

′, φ, p) ⇒ a′s ≥ as, ∀s ≥ t.

Proof. It is enough to prove that a′t+1 ≥ at+1 and the conclusion follows by iteration.

If c′t < ct, then on {a′t+1 > φt+1} it must be that a′t+1 ≤ at+1, as Vt+1 is strictly

concave by standard arguments and the first order conditions are (we drop the fixed

arguments p, φ in the indirect utility function)

u′
t(c

′
t)

V ′
t+1(a

′
t+1)

=
pt
pt+1

≤
u′
t(ct)

V ′
t+1(at+1)

.

Moreover, on {a′t+1 = φt+1}, φt+1 = a′t+1 ≤ at+1, thus a
′
t+1 ≤ at+1. This contradicts

at ≤ a′t, as

at = ct + Et

pt+1

pt
at+1 − et > c′t + Et

pt+1

pt
a′t+1 − et = a′t.

We proved that c′t ≥ ct. Clearly a′t+1 ≥ at+1 on the set {at+1 = φt+1}. On {at+1 >

φt=1}, agent’s first order conditions are

u′
t(ct)

V ′
t+1(at+1)

=
pt
pt+1

≤
u′
t(c

′
t)

V ′
t+1(a

′
t+1)

,
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implying that a′t+1 ≥ at+1, as required.

Proposition A.2. Let t ∈ N and φ, φ̄ ≤ 0 debt limits such that Bs(φs, φ, p) 6= ∅,

Bs(φ̄s, φ̄, p) 6= ∅, for all s ≥ t. For each n ≥ t natural, let ηn := α(t) ∧ n. Then

1. (psφs)
α(t)
s=t converges a.s. and in L1, and it is greater than the uniformly in-

tegrable submartingale (Zs)
α(t)
s=t :=

(

Espα(t)φα(t) − Es

∑α(t)−1
τ=s pτeτ

)α(t)

s=t
, where

pα(t)φα(t) := limn→∞ pηnφηn.

2. If Assumption 3.2 holds, then (Ms)
α(t)
s=t converges a.s. and in L1, and it is

bounded from below by Z and from above by the uniformly integrable submartin-

gale (Z̄s)
α(t)
s=t :=

(

−psφ̄s +
∑s−1

τ=t pτeτ
)α(t)

s=t
.

3. If Assumption 3.2 holds, then (Ms)
α(t)
s=t admits a (lower) Snell envelope (M̂)

α(t)
s=t ,

which is the largest submartingale dominated from above by M (that is M̂ ≤

M). The Snell envelope M̂ satisfies:

(i) Et(M̂s) = infs≤T<α(t)+1EtMT , for all t ≤ s < α(t).

(ii) M̂s = Ms ∧ EsM̂s+1, for all t ≤ s < α(t).

(iii) M̂α(t) = Mα(t), where M̂α(t) := limn→∞ M̂ηn, Mα(t) := limn→∞ Mηn.

Proof. Let (c, a) ∈ Ct(φt, φ, p). Aggregation of agent’s budget constraints gives

Et

ηn−1
∑

s=t

pscs = Et

ηn−1
∑

s=t

pses + ptφt − Etpηnφηn − Etpηn (aηn − φηn) . (A.1)

The inequality u′(x)x ≤ u(x) − u(0) ≤ ū − u and the first order conditions for the

problem Pt(φt, φ, p) give

0 < Et

ηn−1
∑

s=t

pscs =
pt

βtu′(ct)
· Et

ηn−1
∑

s=t

βsu
′(cs)cs ≤ Ū < ∞, (A.2)

where Ū := pt(βtu
′(ct))

−1 (ū− u)Et

∑

s≥t βs. Since (c, a) ∈ Ct(φt, φ, p), by the

transversality condition (Lemma 1.1 in the supplement to Bidian and Bejan 2012),

lim
n→∞

Etpηn (aηn − φηn) = lim
n→∞

Etpn (an − φn)1n<α(t) (A.3)

= lim
n→∞

pt
u′
t(ct)

Etu
′
n(cn)(an − φn)1n<α(t) ≤ lim

n→∞

pt
u′
t(ct)

Etu
′
n(cn)(an − φn) = 0.
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From (A.1)-(A.3),

lim
n→∞

(

Et

ηn−1
∑

s=t

pses − Etpηnφηn

)

= −ptφt + lim
n→∞

Et

ηn−1
∑

s=t

pscs ≤ Ū − ptφt. (A.4)

As φ ≤ 0, −Etpηnφηn ≥ 0. Let
∑α(t)−1

s=t pses := limn→∞

∑ηn−1
s=t pses. Using the

monotone convergence theorem in (A.4),

Et

α(t)−1
∑

s=t

pses = lim
n→∞

Et

ηn−1
∑

s=t

pses ≤ lim
n→∞

(

Et

ηn−1
∑

s=t

pses − Etpηnφηn

)

≤ Ū − ptφt < ∞.

Therefore
∑α(t)−1

s=t pses is integrable and (pηnφηn)n is L1-bounded,

sup
n≥t

−Et |pηnφηn | = sup
n≥t

Et |pηnφηn | < ∞. (A.5)

At any period s ∈ N, since Bs(φs, φ, p) 6= ∅, the agent can consume at least 0 if his

beginning of period s wealth is φs and he faces the bounds φ. Thus

psφs + pses ≥ Esps+1φs+1. (A.6)

It follows that
(

psφs −
∑s−1

τ=t pτeτ
)α(t)

s=t
is a supermartingale, which converges by (A.5)

(Kopp 1984, Corollary 2.6.2). We infer that (pηnφηn)n converges a.s., and hence

converges also in L1, since (−Etpηnφηn = Et|pηnφηn |)n converges by (A.4) (Kallenberg

2002, Lemma 1.32). As the supermartingale
(

psφs −
∑s−1

τ=t pτeτ
)α(t)

s=t
converges a.s.

and in L1, psφs −
∑s−1

τ=t pτeτ ≥ Es limn→∞ pηnφηn − Es limn→∞

∑ηn−1
τ=t pτeτ , thus

10

psφs ≥ Espα(t)φα(t) − Es

α(t)−1
∑

τ=s

pτeτ . (A.7)

We conclude that (psφs)
α(t)
s=t is bounded from below by the uniformly integrable sub-

martingale
(

Espα(t)φα(t) − Es

∑α(t)−1
τ=s pτeτ

)α(t)

s=t
.

2. Similarly, (A.6) with φ replaced by φ̄ shows that
(

psφ̄s −
∑s−1

τ=t pτeτ
)α(t)

s=t
is a

supermartingale. Thus (Z̄s)
α(t)
s=t :=

(

−psφ̄s +
∑s−1

τ=t pτeτ
)α(t)

s=t
is a positive submartin-

10Alternatively, we can use (A.1) written at an arbitrary period s ∈ [t, α(t)) rather than t and
take the limit n → ∞.
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gale dominating M , as Z̄ ≥ −p · φ̄ ≥ p(φ− φ̄) = M . Using Assumption 3.2, we infer

that Z̄ is a uniformly integrable submartingale, and therefore (pηnφ̄ηn)n converges

a.s. and in L1. Hence (Ms)
α(t)
s=t is uniformly integrable, converges a.s. and in L1,

and it is bounded from below, respectively from above, by the uniformly integrable

submartingale Z, respectively Z̄.

3. The (lower) Snell envelope (M̂s)
α(t)
s=t is constructed as M̂s := infs≤T<α(t)+1EsMT ,

for t ≤ s < α(t) + 1 (Kopp 1984, Theorem 2.11.3). The inf in the definition of M̂s

refers to the essential infimum over all finite stopping times T greater than s and

smaller or equal to α(t), which can be an uncountable family (Kopp 1984, Proposition

2.11.1). Kopp (1984, Theorem 2.11.3) assumes the integrability of supn |Mηn |, but

the boundedness conditions on M established in part 2 are enough for the existence

of infs≤T<α(t)+1 EsMT . Indeed, as the family (MT ) with T running over the finite

stopping times s ≤ T ≤ α(s) is downward filtering,11 there exists a sequence of stop-

ping times (Tn) with s ≤ Tn < α(t) + 1 such that infs≤T<α(t)+1 MT = limn→∞ MTn
.

Since ZTn
≤ MTn

≤ Z̄Tn
and (ZTn

)n, (Z̄Tn
)n are uniformly integrable by the optional

sampling theorem (Kopp 1984, Theorem 2.10.4), it follows that (MTn
)n is uniformly

integrable. Therefore M̂s = limn→∞EsMTn
and is well defined.

Parts (i) and (ii) are shown in Kopp (1984, Theorem 2.11.3). By (i), there exists

an increasing sequence of stopping times (Tn)n≥1 such that T1 = t, Tn ↗ α(t), and

for n ≥ 1, Tn+1 ≥ (Tn+1)∧α(t) and EtM̂(Tn+1)∧α(t) ≥ EtMTn+1
− 1

n
. Taking the limit

with n → ∞, EtM̂α(t) ≥ EtMα(t). As M̂ ≤ M , we conclude that M̂α(t) = Mα(t).

B Comparison with Hellwig and Lorenzoni (2009)

Our Theorem 3.3 is stronger than the main result in Hellwig and Lorenzoni (2009),

with a simpler proof which also fixes some oversights in their proof. Hellwig and

Lorenzoni’s (2009) result is a particular case of our Theorem 3.3. They focus on the

case when the penalty for default is the interdiction to borrow 2.5 and therefore the

sequence of debt limits identical equal to zero (φ̄ = 0) is NTT.

In this section, we show first that Hellwig and Lorenzoni’s (2009) result can be

extended to general penalties for default, and used to obtain a weaker form of our

11This means that for any two such stopping times T1, T2, there is another stopping time T such
that MT ≤ MT1

∧MT2
. The property is immediate and established in Kopp (1984, Theorem 2.11.3).
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Theorem 3.3,12 restricted to pairs of debt limits in which one is uniformly tighter

(greater everywhere) than the other, φ ≤ φ̄. However their result does not imply

ours, even after this generalization. Then we compare their proof with ours. The

main departure and simplification is that we bypass the complicated construction in

their Lemma 2 by using Snell envelopes. The other steps in the proof are similar, once

technical shortcomings (related mainly to transversality conditions and switching the

order expectations and limits) are taken care of.

Let φ, φ̄ be NTT for an agent given some penalties for default V d. Assume that

φ, φ̄ satisfy Assumption 3.1 and that φ ≤ φ̄. Consider a different (fictitious) agent

with perturbed endowments e′t := et + φ̄t −
1
pt
Etpt+1φ̄t+1. Notice that e′ ≥ 0 as

Bt(φ̄t, φ̄, p) 6= ∅, for all t. Denote by B′
t(νt, φ

′, p) and V ′
t (νt, φ

′, p) the budget and

indirect utilities at t of the agent with perturbed endowments and faced with some

arbitrary debt limits φ′ and initial wealth νt. It is immediate to check that

(c, a) ∈ Bt(φ
′
t, φ

′, p) ⇔ (c, a− φ̄) ∈ B′
t(φ

′
t − φ̄t, φ

′ − φ̄, p). (B.1)

Taking φ′ = φ̄ in (B.1), we infer that Vt(φ̄t, φ̄, p) = V d
t = V ′

t (0, 0, p). Therefore the

continuation utilities after default of the initial agent with endowments e and subject

to general punishments V d
t coincide with the continuation utilities after default of

the agent with endowments e′ and subject to the interdiction to borrow after default

(2.5). Choosing φ′ = φ in (B.1), we get Vt(φt, φ, p) = V d
t = V ′

t (φt − φ̄t, φ− φ̄, p), and

therefore φ− φ̄ are NTT for the agent with endowments e′ and subject to penalties

(2.5). Now the crucial ordering assumption φ ≤ φ̄ imposed here on the pair of debt

limits φ, φ̄ implies that φ − φ̄ ≤ 0 and therefore we can apply the result in Hellwig

and Lorenzoni (2009) to the agent with endowments e′, debt limits φ− φ̄ and subject

to penalties (2.5) to conclude that p(φ− φ̄) is a martingale.

Note that this reasoning cannot be applied to arbitrary NTT debt limits φ, φ̄,

since Hellwig and Lorenzoni’s (2009) proof crucially requires that an agent’s debt

limits must be nonpositive, hence φ − φ̄ ≤ 0 is needed. While we impose φ, φ̄ ≤ 0

in our proof, we do not require that φ ≤ φ̄ (that is, we do not require that one

of the debt limits is always tighter than the other). Therefore in some dates and

states φ can be larger than φ̄, while in other dates and states, φ̄ is larger than

φ. Such non-ordered debt limits are exactly the ones occuring in our discussion of

12We thank an anonymous referee for pointing this out to us.
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the multiplicity of equilibria resulting from perturbations of agents’ debt limits by

zero mean discounted martingales (see the discussion at the beginning of Section 4).

Therefore the partial characterization of NTT debt limits afforded by the extension

of Hellwig and Lorenzoni’s (2009) outlined above is of limited use and cannot be

applied, for example, to establish the uniqueness result of Section 4.

In the remaining of this section, we compare and contrast Hellwig and Lorenzoni’s

(2009) proof to ours. We first make the parallel between their “event tree” notation

and ours (which uses the standard language of stochastic processes), and then all

the discussion will be transcribed in our notation (for simplicity). For ω ∈ Ω and

t ∈ N, the date t “node” containing state (“leaf”) ω represents the set of states that

are known to be possible at t if the true state is ω, Ft(ω) := ∩{A ∈ Ft | ω ∈ A}.

For arbitrary τ ≥ 0 and ω̄ ∈ Ft(ω), Ft+τ (ω̄) is a date t + τ “successor” node of

Ft(ω). Hellwig and Lorenzoni (2009) use st for a period t node Ft(ω), and st+τ for a

successor Ft+τ (ω̄) (with ω̄ ∈ Ft(ω)). For fixed t, τ ≥ 0, node st, and successor st+τ ,

they let (see page 1158)

Nτ (s
t) = {Ft+τ (ω

′) | t+ τ < α(t)(ω′), ω′ ∈ Ft(ω)},

Bτ (s
t) = {Ft+τ (ω

′) | t+ τ = α(t)(ω′), ω′ ∈ Ft(ω)},

N(st) = {Fs(ω
′) | t+ τ < α(t)(ω′), ω′ ∈ Ft(ω)},

B(st) = {Fs(ω
′) | s = α(t)(ω′), ω′ ∈ Ft(ω)}, (B.2)

N(st+τ ; st) = {Fs(ω
′) | t+ τ ≤ s < α(t)(ω′), ω′ ∈ Ft+τ (ω̄)},

B(st+τ ; st) = {Fs(ω
′) | t+ τ ≤ s = α(t)(ω′), ω′ ∈ Ft+τ (ω̄)}.

Thus our use of the stopping time α(t) (as the first time the constraints φ bind

after t along an optimal path when agent starts with wealth φt at t) makes all the

above (rather complicated) notation introduced by Hellwig and Lorenzoni (2009)

redundant. They also define w(st+τ ; st) := 1
pt+τ

Et+τ

∑α(t)−1
s=t+τ pses on Ft(ω), and on

Ft+τ (ω̄), they set

φ̂(st+τ ; st) :=
∑

Fs(ω′)∈B(st+τ ;st)

P (Fs(ω
′)) · ps(ω

′)

P (Ft+τ (ω̄)) · pt+τ (ω̄)
φs(ω

′).

Notice that φ̂ is not well defined when α(t) is infinite. Based on our read of their

proof, we believe they intended φ̂(st+τ ; st) := limn→∞
1

pt+τ
Et+τpηnφηn , for t+τ < α(t),
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where ηn := n ∧ α(t). This limit can be shown to be finite by the arguments in

the first part of our Proposition A.2, or using their Lemma 1, once some minor

typos there are fixed. Specifically, last term in the first formula in Lemma 1 should

be limn→∞
1

pt+τ
Et+τpηn(a

∗
ηn

− φηn) instead of limn→∞
1

pt+τ
Et+τpna

∗
n1n<α(t), and the

transversality condition should be limn→∞
1

pt+τ
Et+τpηn(a

∗
ηn

− φηn) = 0 rather than

limn→∞
1

pt+τ
Et+τpna

∗
n1n<α(t) = 0 (where a∗ are the optimal asset holdings in the

problem Pt(φt, φ, p)). In Lemma 1 they also establish that w(st+τ ; st) < ∞ and φt+τ+

w(st+τ ; st) > φ̂(st+τ ; st) > −∞ (on Ft+τ (ω̄)). These conclusions follow also from our

Proposition A.2, which additionally proves that the process (psφs)
α(t)
s=t converge a.s.

and in L1.

The crucial step in their proof is Lemma 2, where they show the existence of

some “auxiliary” debt limits (φ̃s)s≥t such that

φ̃s =

{

φs, if s = αk(t) for k ≥ 0,
1
ps
Es min{ps+1φs+1, ps+1φ̃s+1} otherwise.

The bounds φ̃ are the limit of a nondecreasing sequence of debt bounds φ(n) (thus

φ(n) ↗ φ̃), obtained iteratively. Condition φ ≤ 0 is essential to guarantee bound-

edness from above of (φ(n))n and the existence of the limit φ̃. Lemma 3 shows,

furthermore, that φ̃ ≤ φ.

Our proof also uses some auxiliary debt limits M̂/p, where M̂ is the “piecewise”

Snell envelope of p · (φ− φ̄) (= p ·φ for φ̄ = 0) on intervals (αk(t), αk+1(t)]. Therefore

we bypass entirely their Lemma 2 and the need for φ − φ̄ to be nonpositive. This

is the major simplification in our proof and what enables us to obtain the general

Theorem 3.3.

Finally Lemma 4, respectively Lemma 5 of Hellwig and Lorenzoni (2009) are

similar to our Step 2, respectively Step 3 in the proof of Theorem 3.3. They don’t

check that the transversality condition holds in the relaxed problem in their Lemma

4 (we dealt with this in our Step 2), which is rather delicate. We also had to use

repeatedly in these two steps the a.s and L1 convergence of the process (psφs)
α(t)
s=t

(shown in our Proposition A.2) in order to exchange the order of limits and expec-

tations. This property is used implicitly by Hellwig and Lorenzoni (2009), disguised

by the notation (B.2).
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C Transversality conditions

We analyze the problem Pt(ât, φ, p) of a consumer that faces debt bounds φ, pricing

kernel p and starts with wealth ât (Ft-measurable) at period t (see Section 3 in the

main text). Let (c̄, ā) ∈ Ct(ât, φ, p) be the optimal consumption (assumed strictly

positive) and asset holdings for the agent. Familiar variational arguments show that

(c̄, ā) satisfies the following Kuhn-Tucker necessary conditions, for all s ≥ t:

u′
s(c̄s)− u′

s+1(c̄s+1)
ps
ps+1

≥ 0, (C.1)

(

u′
s(c̄s)− u′

s+1(c̄s+1)
ps
ps+1

)

(ās+1 − φs+1) = 0. (C.2)

Let ēs := es + φs − Es
ps+1

ps
φs+1, for all s ≥ t. Adapting the arguments of Forno and

Montrucchio (2003), we obtain the following necessary transversality condition:13

Lemma C.1 (Necessary transversality condition). The optimal path (c̄, ā) satisfies

lim
s→∞

Etu
′
s(c̄s)(ās − φs) = 0. (C.3)

Proof. Fix an ε̄ > 0 a period s > t. Concavity implies that for any 0 < ε < ε̄ and

n ≥ t,

un(c̄n)− un(c̄n + ε(ēn − c̄n)) ≤
ε

ε̄
(un(c̄n)− un(c̄n + ε̄(ēn − c̄n))) .

We construct the alternative asset holdings process (an(ε))
∞

n=t where an(ε) = ān if t ≤

n ≤ s, and an(ε) = (1− ε)ān+ εφn if n ≥ s+1. It sustains the feasible consumption

process (cn(ε))
∞

n=s defined by cn(ε) = c̄n if t ≤ n < s, cs(ε) = c̄s+Es
ps+1

ps
(ās+1−φs+1),

and cn(ε) = c̄n + ε(ēn − c̄n) for n > s. Optimality of c̄ implies that

0 ≤ Et (us(c̄s)− us(cs(ε))) + lim sup
T→∞

Et

T
∑

n=s+1

(un(c̄n)− un(cn(ε))) . (C.4)

13 The proof works for general period utilities ut(·), not necessarily of the discounted and bounded
variety assumed in the text, if one uses a weak optimality criterion (Forno and Montrucchio 2003)
and if there exists ε̄ > 0 such that E

∑∞
s=t

(us(c̄s)− us(c̄s + ε̄(ēs − c̄s)))
+
< ∞.
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Notice that

T
∑

n=s+1

1

ε
(un(c̄n)− un(cn(ε))) ≤

∞
∑

n=s+1

1

ε̄
(un(c̄n)− un(cn(ε̄)))

+ ,

and the term
∑∞

n=s+1
1
ε̄
(un(c̄n)− un(cn(ε̄)))

+ is integrable, by hypothesis. Fatou’s

lemma gives

lim sup
T→∞

Et

T
∑

n=s+1

1

ε
(un(c̄n)− un(cn(ε))) ≤ Et lim sup

T→∞

T
∑

n=s+1

1

ε
(un(c̄n)− un(cn(ε)))

≤ Et

∞
∑

n=s+1

1

ε̄
(un(c̄n)− un(cn(ε̄)))

+ . (C.5)

Dividing both sides of (C.4) by ε and using (C.5),

−Et

1

ε
(us(c̄s)− us(cs(ε))) ≤ Et

∞
∑

n=s+1

1

ε̄
(un(c̄n)− un(cn(ε̄)))

+ < ∞.

By the monotone convergence theorem, when ε ↘ 0, the left hand side of the above

equation converges to Etu
′
s(c̄s)

ps+1

ps
(ās+1 − φs+1), which equals Etu

′
s+1(c̄s+1)(ās+1 −

φs+1), due to the Kuhn-Tucker equations (C.1),(C.2). The conclusion follows by

letting s → ∞.

We include for completeness the standard proof of sufficiency of the Kuhn-Tucker

and transversality conditions for the optimality of a path.

Lemma C.2 (Sufficient transversality condition). If a feasible path (c̄, ā) ∈ Bt(ât, φ, p)

satisfies the Kuhn-Tucker conditions (C.1) and (C.2), then for any other feasible path

(c, a) ∈ Bt(ât, φ, p) and any bounded stopping time T ≥ t,

Et

T
∑

s=t

(us(cs)− us(c̄s)) ≤ Etu
′
T+1(c̄T+1)(āT+1 − φT+1). (C.6)

Thus a sufficient condition for (c̄, ā) to be optimal for problem Pt(ât, φ, p) is

lim inf
s→∞

Etu
′
s(c̄s)(ās − φs) = 0, (C.7)
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Proof. Let µs+1 := u′
s(c̄s) − u′

s+1(c̄s+1)
ps

ps+1
. Consider an arbitrary feasible path

(c, a) ∈ Bt(ât, φ, p). Using concavity of us(·) and the budget constraints,

Et

T
∑

s=t

(us(cs)− us(c̄s)) ≤ Et

T
∑

s=t

u′
s(c̄s)(cs − c̄s) =

= Et

T
∑

s=t

u′
s(c̄s)

(

as − φs − Es

ps+1

ps
(as+1 − φs+1)

)

−

−Et

T
∑

s=t

u′
s(c̄s)

(

ās − φs − Es

ps+1

ps
(ās+1 − φs+1)

)

.

We analyze separately the last two terms. Using the Kuhn-Tucker conditions

(C.1) and (C.2), which show that µs+1 ≥ 0 for all s ≥ t, it follows that

Et

T
∑

s=t

u′
s(c̄s)

(

(as − φs)− Es

ps+1

ps
(as+1 − φs+1)

)

= Et

T
∑

s=t

(

u′
s(c̄s)(as − φs)−

(

u′
s+1(c̄s+1) +

ps+1

ps
µs+1

)

(as+1 − φs+1)

)

≤ u′
t(c̄t)(at − φt)− Etu

′
T+1(c̄T+1)(aT+1 − φT+1) ≤ Etu

′
t(c̄t)(at − φt).

Similarly, using both (C.1) and (C.2),

Et

T
∑

s=t

u′
s(c̄s)

(

(as − φs)− Es

ps+1

ps
(as+1 − φs+1)

)

= u′
t(c̄t)(āt − φt)− Etu

′
T+1(c̄T+1)(āT+1 − φT+1).

Moreover at = āt since they equal the initial period t wealth of the consumer, ât.

Thus

lim inf
T→∞

Et

T
∑

s=t

(us(cs)− us(c̄s)) ≤ lim inf
T→∞

Etu
′
T+1(c̄T+1)(āT+1 − φT+1) = 0,

and therefore (c̄, ā) is optimal for Pt(ât, φt, p).
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