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Abstract

We introduce the Infinite Period Traveling Salesman Problem (oo-
TSP), a generalization of the classical TSP, in which a single service
provider repeatedly visits the same set of customers. Our approach
leverages the aspiration core, a cooperative game-theoretic concept
that extends the classical core to cases where it may be empty while al-
lowing the formation of proper coalitions. The aspiration core provides
robust cost allocation rules and identifies the subsets of customers who
should be visited together in specific tours. When the core of the one-
shot Traveling Salesman Game is empty, the suggested tour schedule
leads to a strictly lower average cost per visit than repeating a sin-
gle grand tour. We further refine our framework using the aspiration
nucleolus, a unique and “fair” cost allocation selected from the aspira-
tion core. Our solutions preserve stability and are applicable to general
graphs that may be incomplete and may violate the triangle inequality.

Keywords: Traveling Salesman Problem; empty core; aspiration core;
aspiration nucleolus

1 Introduction

The typical motivation for the classical traveling salesman problem (TSP) is
the following. A service provider is hired by a group of customers to render
a specific service at their different locations. The provider starts from the
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company’s hub or home city, visits each customer once, and returns to the
hub. The problem has two main objectives: finding the route that mini-
mizes total cost, and ensuring a “fair” distribution of this cost among the
serviced customers. The cost allocation goal is, typically, coalitional ratio-
nality, meaning that no subgroup of customers has an incentive to negotiate
separately with another service provider. Such cost allocations are said to
be in the core of the corresponding cooperative game.

We address the challenges faced by agents/service providers who travel
to the same set of locations frequently. Each location has to be visited
repeatedly, over an arbitrarily large horizon, and the visits do not need to
happen within a strict or fixed time frame. Rather, the service provider must
design a schedule of tours that optimally balances frequency and cost. We
will refer to the problem as the Infinite Period Traveling Salesman Problem
and will abbreviate it as co-TSP.

Examples of this sort are abundant in a variety of industries, such as
healthcare, utilities, agriculture, or consumer and subscription services. For
example, electric utilities must periodically check infrastructure but can
often flexibly route crews; delivery trucks, buses, or rental cars need reg-
ular servicing, but providers can batch visits flexibly; agronomists need to
check crop health throughout the season, but timing can be somewhat flex-
ible; home healthcare providers want to plan efficient routes across their
patients with chronic conditions, but the exact timing can shift within a
window; many commercial or residential appliance systems need inspections
and cleanings every so often, but not at rigidly fixed dates. In all these
cases, providers must repeatedly visit a set of customers/assets, but with
some flexibility in the exact timing between visits. The provider wants to
optimize travel routes to these customers across an ongoing, rolling horizon.

We argue first that this problem is not equivalent to the classical TSP.
This is illustrated in the following example.

Example 1.1 A service provider must visit nine different cities indefinitely
many times. The cities are connected by roads according to the Petersen
graph (see |Tamir| (1989) and [Petersen| (1898)) as shown in Figure[1 The
trips must start and end at the home node, labeled as 0. The cost of using
any road is $1.

We start by identifying the solution of the classical TSP for this graph.
That corresponds to the case where each city requires only one visit. How-
ever, since the graph is not complete, the provider will need to pass through
some cities more than once during the same tour. In this case, the minimum



Figure 1: The Petersen graph

cost to visit all cities at least once is $11. A sample route that achieves this
cost is shown above.

One may think that the co-TSP is equivalent to the classical TSP because
a possible approach to the infinite period scenario would be to repeatedly use
an optimal route for the classical (one-shot) TSP. However, this solution may
be suboptimal. Indeed, for this example, it is possible to build a schedule
of tours that visits each city twice for a total cost of less than 2 x 11 = $22.
The schedule consists of the three (Hamiltonian) tours depicted in Figure

node 1| node 2 | node 3| node4 | node 5 | node 6 | node 7 | node 8 | node 9 Cost
Tour1 1 1 1 1 1 1 1 $ 8
Tour 2 1 1 1 1 1 1 1 $ 8
Tour3 1 1 1 1 $ 5
Total 2 2 2 2 2 2 2 2 2 $ 21

Figure 2: Optimal schedule with 2 visits

Iterating this schedule of tours reduces the cost per visit to (8 +8+5)/2 =
$10.50 < $11.

With three visits to every city, the cost savings increase even more.
Indeed, the schedule of four tours depicted in Figure |3| brings the cost per
visit down to (9 + 9+ 8+ 5)/3 = 103.



node 1| node2 | node 3| node4 | node5 | node6 | node7 | node 8 | node 9 Cost
Tour1l 1 1 1 1 1 1 1 1 $ 9
Tour2 1 1 1 1 1 1 1 1 $ 9
Tour3 1 1 1 1 1 1 1 $ 8
Total 3 3 3 3 3 3 3 3 3 $ 31

Figure 3: Optimal schedule with 3 visits

The previous example prompts questions about the asymptotic behav-
ior of the average cost as the number of visits increases indefinitely. For
the visiting frequencies discussed earlier, the optimal average cost per visit
declined as the number of visits grew. Although such monotonicity in the
number of visits is not a general result, we will show that the average cost
eventually converges as the number of visits increases. To capture the idea
of an infinite time horizon, we let the number of visits tend to infinity and
study the asymptotic behavior of the minimum average cost per visit. We
then ask whether this limiting cost can be achieved via an iterative schedule
of tours, and whether it can be distributed to customers in a “fair” way.

We show that the co-TSP problem can be solved by using a novel link
between the problem described above and a solution concept in cooperative
game theory, called the aspiration core. This concept addresses not only
cost-allocation vectors but also coalition formation which, in the context of
the problem analyzed here, translates into subtours of subsets of the existing
customer base. When the core is non-empty, the aspiration core recommends
forming the grand coalition (i.e., visiting all customers in one tour) and
aligns its proposed cost allocations with those of the core. Conversely, if
the core is empty, it suggests a family of proper coalitions (i.e., subgroups of
customers that should be visited in one tour) along with likely cost-allocation
vectors that are stable to coalitional deviations. In this way, the aspiration
core generalizes the core to cover the entire space of cooperative games and
informs the construction of a solution for the oo-TSP.

Our Theorem [5.2] together with Proposition [3.2] establishes that the cost
per visit can be lowered if and only if the corresponding (one-shot) Traveling



Salesman Game (TSG) has an empty core. Given that the cost per visit
might sometimes increase with the number of visits, we also ask about the
asymptotic behavior of the cost savings when the number of visits grows
large. Proposition finds the limit towards which such savings converge.

Our results highlight the close relation between the aspiration core solu-
tion concept and the co-TSP. In particular, we show that:

1. The asymptotic value of the minimum cost per visit is determined by
the aggregate cost allocation of the aspiration core vectors.

2. The optimal schedule of tours that achieves the asymptotic minimum
average cost per visit can be built using the coalitions suggested by
the aspiration core.

3. The cost of the optimal schedule can be allocated to customers in a
way that it cannot be improved upon by any coalition.

Since the aspiration core is typically not single-valued, multiple optimal
visiting strategies may exist. The challenge, then, is how to choose among
them. We propose a specific single-valued selection from the aspiration core,
known in the literature as the aspiration nucleolus Bennett| (1983). The as-
piration nucleolus —which is related but different from the original nucleolus
defined by [Schmeidler| (1969)— has a number of desirable properties, includ-
ing non-emptiness, uniqueness, and anonymity. Each of these properties is
of practical relevance for the problem studied here.

The aspiration nucleolus can be described as identifying the coalitionally
rational payoff distribution considered the most “stable” among all players
because it iteratively maximizes the “savings” of all coalitions, starting with
the least advantaged one. The “savings” in this context refers to the differ-
ence between the cost incurred by serving a coalition and its allocated cost
charge. Because it is a solution concept that does not depend on the names
of the players (and thus, it is anonymous), it preserves all the symmetries
of the game.

The paper is organized as follows. Section 3 defines the problem and
shows examples in which the core of the associated (one-shot) TSG is empty.
Section 4 introduces the aspiration core and a number of its properties.
Section 5 contains our main results. It applies the aspiration core to the
associated TSGs and analyzes the alternative solutions proposed by this
cooperative solution concept. Section 6 describes the aspiration nucleolus
as a single-valued selection of the aspiration core, and Section 7 concludes.



2 Literature

The o0o-TSP we present here shares some similarities with, but it is dif-
ferent from the TSP with multiple visits, mTSP (see Bektas| (2006) and
Cheikhrouhou & Khoufi (2021) for surveys of that literature). Like in the
mTSP, every node has to be visited multiple times but, unlike in the mTSP,
there is no fixed bound on the number of visits and, more importantly, there
is only one traveling service provider who has to visit all nodes with equal
frequency, indefinitely many times.

The papers that are closest to ours are |Sun & Karwan| (2015) and |Sun
et al.| (2018)). [Sun & Karwan (2015) studied the problem of repeated visits
to each node when the required frequency is the same for all nodes, and
attempted to identify a set of tours and number of visits to each node that
minimize the average cost of visiting all nodes. [Sun et al.| (2018)) extend that
analysis to a situation where different nodes require different visit frequency.
These papers also make the observation that the average cost per visit may
be lowered below the cost of visiting each node once. However, they do not
investigate the asymptotic behavior of the average cost and do not make the
connection between the optimal schedules and the aspiration core. More-
over, both papers restrict attention to complete weighted graphs that satisfy
the triangle inequality. We focus on the case of equal frequencies, but our
results apply to arbitrary connected graphs.

The problem of finding the minimum traveling cost of serving a finite set
of customers (i.e., the solution of the classical TSP) is intrinsically related to
that of identifying “fair” divisions of that cost among the serviced customers.
The game theoretical concept of a core has been used for that purpose. A
traveling salesman game (TSG) assigns to each subset of customers S C N
the minimal cost ¢(S) required to serve them. A core cost allocation z € RY
satisfies:

L > ienv®i=c(N).
2. Y iegwi < c(S).

It is known that many TSG-s have empty cores. Tamir| (1989)) gives
examples of TSP-s on undirected graphs with |[N| = 6,7,8 for which the
associated games have empty cores. On the other hand, if the cost matrix
is asymmetric, even games defined by graphs with four nodes can have an
empty core, as shown in [Potters et al.| (1992).

The literature on cooperative games has provided two fundamentally
different approaches to deal with empty-core games. The reason for the core



emptiness is that proper coalitions are too powerful with respect to the grand
coalition, therefore being able to improve upon any proposed allocation. A
first option, suitable when the formation of the grand coalition is a required
modeling feature, is to restrict the blocking ability of proper coalitions. This
gives rise to solution concepts such as the e-core (Shapley & Shubik (1966)E]
and the least core (Maschler et al.| (1979)).

Alternatively, one can focus the analysis on the formation of proper
coalitions. Such a mindset led researchers to the Aspiration Core solution
concept (Cross (1967), Bennett| (1983), Bejan & Gomez| (2012)). Together
with a stable cost allocation, this concept proposes the formation of a num-
ber of (possibly overlapping) proper coalitions. If the core is not empty, the
grand coalition can form as, in that case, it is at least as powerful as other
combinations of proper coalitions. The aspiration core coincides then with
the core. However, when the core is empty, there must exist a family of
proper coalitions which, together, are more powerful than the grand coali-
tion. The aspiration core solution concept indicates, in that case, that those
coalitions would form.

We show that the Aspiration Core and the optimal solution to the oo-
TSP are equivalent. Both propose the same smaller tours and lower the cost
per visit in the same amount. Moreover, the aspiration core cost allocations
prevent proper coalitions from leaving.

3 The formal co-TSP problem

The TSP can be represented mathematically via a weighted, connected, not
necessarily complete, directed graph G = (V, A,l) where V, A, and [ are
defined as follows. V := {0} UN is a finite set of nodes, with 0 representing
the location of the hub (or the home city) and each i € N being the location
of a customer. A C {(i,7) CV x V | i # j} is the set of arcs between the
nodes in V. A graph is called complete if the above inclusion holds with
equality. The function [ : A — Ry associates a length (or weight, or cost)
l(a) € Ry to each arc a € A. The arcs (i,7) and (j,7) may have different
costs in a general directed weighted graph. An undirected weighted graph
can be seen as a particular case of a directed weighted graph for which
(i,7) € A if and only if (j,7) € A and I(i,5) = I(j,4) for every (i,j5) € A.

UFaigle et al.| (1988) also propose a concept of e-core, but that is different from the
earlier one introduced by |[Shapley & Shubik| (1966) in the economics literature. Both
concepts capture the idea of “taxing” proper coalitions to prevent blocking, but [Shapley’
& Shubik] (1966) consider a lump-sum tax that is equal across coalitions, while [Faigle et al.
(1988)) consider a tax that is proportional to the cost of serving each coalition.



In light of this observation, we focus on the more general case of directed
graphs, with the understanding that the analysis also applies to the subclass
of undirected weighted graphs.

Let G = ({0} UN, A, 1) be a connected, directed, weighted graph. There
are no restrictions imposed on the length function . In particular, [ need
not satisfy the triangle inequality, and it may be that [(i,j) # [(j,4) for
some (i,j) € A. For every k € N, a k-path (or simply a path) is defined as a
vector of nodes p := (v1,ve, ..., vk, vkr1) such that, for every ¢ € {1,...k},
a; := (v, vi41) € A. The length of the k-path p is then I(p) := Zle l(a;).

For every non-empty S C N, a tour of S in G is a path that starts
and ends at node 0 and goes at least once through each node of S. Thus,
(v1,v2, ..., Vk, Vg11) 18 & tour of S if v1 = vgy1 =0, (v, vi41) € A for every
i=1,...,kand S C {vg,...,v}. Note that a tour may use the same node
or the same arc more than once and may visit nodes that are not in S. For
every non-empty S C N we let T(.S) denote the set of all tours of subset S.

For every non-empty S C N, we define the cost of visiting the nodes in
S as

c(S) :=min{l(t) | t € T(S)}, (1)

and extend the functional ¢ to 2V by letting ¢(#) = 0. The pair (N,c) is
called a traveling salesman game (TSG). In the terminology of cooperative
game theory, N is referred to as the set of players and ¢ : 2V — R, is the
characteristic function.

The classical Traveling Salesman Problem (TSP) associated with G =
({0} U N, A,l) amounts to finding a tour ¢* € T(N) such that I(t*) = ¢(N).
Once the minimal-cost tour t* € T(N) is found, the question is how to
allocate the cost ¢(IN) among the customers in N. The core of the TSG
(N, ¢), denoted by Core(c), is the set of all cost-allocation vectors z € RY
that satisfy

z(N) = ¢(N) (2)
z(S) < ¢(9) for every S C N. (3)

Any vector = € Rf that belongs to the core is a natural candidate to
solve the TSP cost allocation question. First, as x(N) = c¢(IV), the total
travel cost is covered. Second, no subset of players could obtain a lower
cost by acting on their own (i.e., by contracting separately with a different
service provider) because x(S) < ¢(S) for every S C N. As we will see from
the examples presented below, some TSG-s may have an empty core.

We introduce next some notation that will be used to formulate the
infinite variant of the T'SP. A finite schedule is a vector (T)g=1,. Kk such



that K is a positive integer, T, C N for every k, and Ule T, = N. Note
that repetitions of subsets are allowed in a schedule. The frequency of node
i € N in the finite schedule o = (T1,...,Tk,...,Tk) is defined as fi(o) =
Zle I, (i), where I7, denotes the indicator function of the set 7. Clearly,
filo) > 1, as (T1,...,Tg,...,Tx) is a cover of N. The frequency of the
finite schedule o is then defined as f(0) = min;en fi(o). The set of all finite
schedules with frequency F is denoted by X, and ¥ = (Jj_; XF is the set
of all finite schedules.

The cost of the finite schedule o = (T1,...,Tk,...,Tx) € ¥ is ¢(o) =
Zszl ¢(Ty) and we define its average cost per visit as ACV (o) = Jcc((z_))
A finite schedule o offers potential cost savings with respect to the original
TSP if c(0) < f(o)c(N) or, equivalently, if its average cost per visit ACV (o)
is strictly lower than ¢(N).

As illustrated by Example the lowest average cost per visit, inf,ex,, %
may vary with the number of visits, F'. We are interested in characterizing
the asymptotic behavior of the average cost when the number of visits grows
arbitrarily large. That is,

lim inf <9 (4)
F—oooeXp f(U )
We will show that the limit in exists, and denote by ¢*(N) its value. We
will refer to ¢*(N) as the asymptotically optimal cost per visit of serving the
customers in N. Clearly, ¢*(N) < ¢(N).

We then ask whether ¢*(N) can be achieved through some infinite sched-
ule. An infinite schedule is an infinite-dimensional vector of tours (7%)32,
with U2, T, = N. We let ¥°° denote the set of infinite schedules. For every
schedule o = (T})32, € ¥ and K € N large enough (i.e., K > K, where
Ky is such that UkK:"lTk = N), we define its K-th truncation as the finite
schedule o := (T1,T5, ..., Tk ), and its average cost per visit as

ACV (o) := Kl_ig_loo ACV (oK),

whenever the limit exists. We say that an infinite schedule o* € 3% solves
the co-TSP if ACV (c*) = ¢*(N).

Note, however, that if some infinite schedule ¢* € >° achieves the
asymptotically optimal cost, then so does any infinite schedule obtained
from o* by adding to it finitely many arbitrary tours. Therefore, the class
of infinite schedules that achieve the asymptotically optimal average cost,
if non-empty, is infinite itself. Moreover, some of the schedules in that set
are clearly undesirable from a practical point of view. However, we will



show that there always exists a finite schedule that achieves the asymp-
totically optimal average cost, when repeated indefinitely. For a finite
schedule 0 = (T1,...,Tk) € X, we let 0> € X denote the infinite sched-
ule obtained through the indefinite repetition of the tours in . That is,
o> :=(T,....,Tk,T1,...., Tk, ...). We will show that there exists o* € 3 such
that ACV (c**°) = ¢*(N).

Finally, we ask if there exists a cost allocation vector z* € Rf of per-
visit charges that covers the asymptotically optimal average cost (that is,
x*(N) = ¢*(N)) and that is stable to coalitional deviations. A subgroup of
customers, S C N, who might explore entering into a long-run contract with
a different service provider takes into account the (possibly lower) average
cost per visit of such contract, ¢*(S), rather than ¢(S). Therefore, coalitional
stability in this context requires that x*(S) < ¢*(S) for every non-empty
S CN.

The next Proposition demonstrates that the asymptotic average cost of
an infinitely repeated finite schedule is equal to the average cost of the finite
schedule.

Proposition 3.1 Let o € X be an arbitrary finite schedule and let 0°° € 3
be the infinite schedule obtained by repeating o indefinitely. Then ACV (o)
is well defined and ACV (o) = ACV (c°°).

Proof. Let 0 = (Th,...,Tk,...,Tx) € ¥ for some K € N, and let
M > K, arbitrary. Then there exist o, 8 € N with 0 < g8 < K such that
M = aK + . The following inequalities hold

ac(o) < c(ogy) < (a+1)c(o), (5)
af(o) < flogg) < (a+1)f(0), (6)

which imply that
ACV (o) — 14161/53) < ACV (o) < ACV (o) + ACZ(U). (7)

Letting M — oo (and thus @ — o) in (7)), we obtain that limy;_,.c ACV (057)
exists and
ACV (0™) = N}im ACV (o37) = ACV (o),
— 00

as desired. m

Proposition [3.I] implies that, to find a solution for the co-TSP, it is
enough to find a finite schedule o* € 3 and a cost allocation vector z* € Rf
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such that ACV (0*) = ¢*(N) = 2*(N) and z*(S) < ¢*(S) for every S C N.
Proposition also indicates that a service provider entering into a long-run
contract with a set of customers can offer to sell those customers packages
of f(o*) visits at a cost of =} per visit for each customer i € V.

The next proposition identifies a solution of the co-TSP when the core
of the original TS-game is non-empty.

Proposition 3.2 Let the weighted graph G = ({0} U N, A, 1) have the asso-
ciated cost function c. If Core(c) # 0, then ¢*(N) is well defined, ¢*(N) =
¢(N), and the schedule {N}>° solves the co-TSP.

Proof. Let ¢ = (T1,...,T,...,Tk) € ¥ and let = € Core(c). Then,

) 1 & 1 & fi(o)
ACV(6) = =Y c(Th) > w—= > a(Tx) = Z z; > z(N).  (8)

Thus, the average cost per visit of any finite schedule is bounded below by
¢(N) and therefore inf, ¢y, ACV (c) > ¢(N) for every F. On the other hand,
infyex, ACV (o) < ACV({N}) = ¢(NN), which implies that inf,cx, ACV (o)
¢(N). Thus, ¢*(N) is well defined and equal to ¢(N).

As ACV({N}) = ¢(N), Proposition implies that ACV({N}*°) =
¢(N) and therefore the schedule {N}*° solves the co-TSP. m

However, as argued in the Introduction, many TSP-s generate empty-
core games. Next, we propose a methodology to solve the co-TSP in those
cases.

4 Aspirations and the Aspiration Core

We present here a couple of solution concepts from the cooperative game
literature, which are useful for the study of empty-core games. These apply
to cooperative games (N, c) where N is a finite set and ¢ : 2V — R, is a
characteristic function with ¢()) = 0.

A payoff vector x € RJX is called coalitionally rational if

z(S) < ¢(5) for every S C N. (9)

In the context of a cost game, such vectors capture the idea of a “fair” cost
allocation in the sense that no coalition is asked to pay more than the cost
it generates.

An allocation x € Rf is called aspirationally feasible if, for every i € N
there exists S C N with S 3 ¢ such that z(S) = ¢(S). The aspiration
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set, denoted Asp(c), is the set of all allocations z € Rf that are coalition-
ally rational and aspirationally feasible. The elements of Asp(c) are called
aspirations.

Aspirational feasibility relaxes the traditional feasibility requirement by
allowing players to achieve their payoffs within some coalition rather than
necessarily within the grand coalition. This approach provides an alternative
way of thinking about stability and coalition formation as it allows for the
possibility that players may form smaller coalitions. Clearly, every payoff
that satisfies the standard feasibility condition (i.e., z(N) = ¢(N)) is also
aspirationally feasible.

For any aspirationally feasible cost allocation x € Rf we define its gen-
erating collection as

GC(x) = {S C N [ z(S) = ¢(5)}- (10)

These are the coalitions that are asked to cover their entire cost at the
allocation vector x. Clearly, GC(x) is a cover (but not necessarily a partition)
of N for every x that is aspirationally feasible. As we will see, the coalitions
in the generating collection are the building blocks to create the cost-saving
schedules proposed in this work.

The aspiration coreﬁ of a game (N, c), denoted AC(c), is the subset of
those aspirations that cover the highest total cost. Thus,

AC(c) = argmax{z(N) | x € Asp(c)}. (11)

Let ¢(IN) denote the highest total costﬂ that can be covered with an aspira-
tion allocation. Thus, z(N) = ¢(N) for every z € AC(c).

Let N := {S C N | S # 0} be the set of all non-empty coalitions of
N. A collection of coalitions B C N is called balanced (respectively weakly
balanced) if there exist positive (respectively non-negative) numbers (called
balancing weights) (As)sep such that, for every i € N,

> Is(i)hs =1, (12)

SeB

2The aspiration core is also known in the game theory literature as the balanced aspi-
ration set. See Bennett| (1983)) and Bejan & Goémez (2012).
3The e-core, e-C(c), as defined in [Faigle et al.| (1988) and [Sun & Karwan| (2015) is

closely related to the aspiration core. It can be easily verified that for e = ;E%; -1,

z € eC(c) if and only if ;7 € AC(c). It should be noted that the e-core as defined by
the above authors is different from the homonym concept used in economics (see |Shapley

& Shubik| (1966) and Maschler et al.| (1979)). The minimal a-core concept described by
c(N)
c(N)*

Toriello & Uhan (2013) also coincides with the aspiration core when o =

12



where Ig denotes the indicator function of subset S.
The following results are proved in Bennett (1983)).

Proposition 4.1 Every cooperative game c : 2N — R, satisfies the fol-
lowing properties:

1. 0 # AC(c).
2. If Core(c) # 0, then AC(c) = Core(c).

3. Ifx e Rf is a coalitionally rational payoff, then x € AC(c) if and only
if GC(x) is balanced.

4. There exists a balanced family of coalitions B with balancing weights
(As)ses such that ¢(N) = Y gc3 Asc(S).

A balanced collection of coalitions B C N is called minimally balanced if
no proper subset of B is balanced. The following Lemma provides a useful
characterization of minimally balanced collections.

Lemma 4.2 If a balanced collection B C N is minimal, then |B| < |N| and
the balancing weights (As)sep are unique, strictly positive, and rational.

For proofs of these results, we refer the reader to |Shapley| (1967)) and
Kannai (1992).

5 Applying the Aspiration Core to the TSG

To fix ideas, consider the following example.

Example 5.1 A service provider must visit 6 different customers indef-
witely many times. The customers’ locations are connected by roads as
shown in Figure E] Trips must start and end at the service provider’s hub,
labeled as node 0. The cost of using any road is $1.

The minimum cost to visit all cities is ¢(IN) = 8, as illustrated by the red
tour depicted in Figure One can verify that 29 = (1.6,1.6,1.6,0.9,0.9,0.9)
belongs to the aspiration core of the corresponding TS-game. As xg is
coalitionally rational, we see that xg € AC(c) because

GC(xo) = {{1,2,4,5},{1,3,4,6},{2,3,5,6}}

4A similar problem on a Euclidian 6-node complete graph was presented by |[Faigle et al.
(1988]), |Sun & Karwan| (2015) and [Sun et al.| (2018]).
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Figure 4: Optimal tour with 1 visit

is a balanced family of coalitions, with a balancing weight of % for each of
the three sets. Since z¢(N) > ¢(N), it must be that the core of the game ¢
is empty. Consider the schedule depicted in Figure [5] suggested by the gen-
erating collection of z¢. That is, oy, := ({1,2,4,5},{1,3,4,6},{2,3,5,6}).

node 1| node 2 | node 3 | node4 | node 5 | node 6 Cost
Tour1 1 1 1 1 $ 5
Tour 2 1 1 1 $ 5
Tour3 1 1 1 1 $ 5
Total 2 2 2 2 2 2 $ 15

Figure 5: Optimal schedule

Each customer is visited twice, and the total cost incurred is z({1,2,4,5})+
x({1,3,4,6}) + =({2,3,5,6}) < 54+5+5 =15 < 16 = 2¢(N). We will
show next that the indefinite iteration of this schedule solves co-TSP. More
precisely, we show that, if the salesperson’s travels have to be repeated in-
definitely, the aspiration core vectors can be used to construct solutions for
the oco-TSP, as well as corresponding cost allocations to customers. This is
formalized in the following theorems.

Theorem 5.2 Let the weighted graph G = ({0} UN, A, 1) be associated with
the game ¢ and choose any aspiration core vector x € AC(c). Then, there
exists an associated schedule o, = (T1,..., Tk, ..., Tx) € ¥ such that:
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1. All the tours in the schedule o, belong to the gemerating collection

GC(z).
2. ACV(0;) = mingex ACV (o) = é(N).

Proof. Let o = (T1,...,T,...,Tk) € ¥ be an arbitrary schedule and let
x € AC(c). By the definition of the aspiration core we know that z(N) =
¢(N) and ¢(Ty) > z(T}), for every k. Therefore, the sequence of inequalities

shown in (8)) shows that ACV (o) = f((g)) > ¢(N).

We construct next a schedule o, € ¥ that satisfies ;((‘;‘: )) = ¢(N) and thus
it achieves the minimum cost per visit. By item 3 in Proposition[4.1], we know
that GC(x) is balanced. Take a minimally balanced family of coalitions B =
{Sm |m=1,...,M} CGC(x). For every m, let A, be the balancing weight
corresponding to coalition S,,. According to Lemma these balancing
weights are strictly positive and rational so, for every m, we can choose
Qm, by, € Nsuch that A, = ‘;—Z and the greatest common factor g.c.f.(ay,, by,)
is equal to one for every m = 1, ..., M. Let F' = l.c.m.(by,...,bas) be the least
common multiple of the denominators b1, ...,by, and let K = E%:l I;)iqm.

Define the schedule o, = (T1,...,Tk,...,Tk) € X(N) as follows. Set
Ty = Sy if k < 5% and set Ty, = Sy, if

m—1 m
Fa; <k< Fa; VYm =2 M

j=1 bj - Z:: bj o

so that every subset S,, € B appears £, o= times in schedule 0.

We show next that all the 1nequaht1es in . ) hold with equality when
applied to o,. First, ¢(Ty) = z(Tx) because Ty € GC(x) for every k < K.
Moreover, J;Z((Cf:)) = 1 because the frequency of every node i € N in schedule
o5 is F. Indeed,

K M Fa M
k=1 m=1 m m=1

where the last equality follows from the fact that B is balanced with the

weights (Am)m=1,...m. Therefore, f((%)) = x(N), which proves that o, min-

imizes the average cost per visit. This completes parts (1) and (3) of the
theorem. By construction, all the tours in the schedule o, belong to GC(z),
which proves part (2). m
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As an illustration of Theorem [5.2], let us revisit Example The
corresponding TSG satisfies, for instance, c¢({1}) = ¢({2}) = ¢({3}) = 2,
c({4}) = c({5}) = c({6}) = c({7}) = c({8}) = c({9}) = 4, (N \ {i}) =9
for every i € N, and, as argued before, ¢(N) = 11. One can verify that
x = %, %, %, %, %, %, %, %, %) is coalitionally rational with corresponding gen-
erating collection

Go(x) = {S C N ||s] = 8},

which is minimally balanced with the weights A\g = é for every S € GC(x).
Therefore, z € AC(c). This suggests the optimal schedule depicted in Figure
(63

Figure 6: Optimal schedule for the Petersen graph

Each tour in this schedule visits all cities except one. Overall, the ser-
vice provider visits each city eight times. This suggests that, if the service
provider wants to sell packages of bundled visits to its customers, it should
sell packages of 8 visits. Theorem guarantees that this is the finite
schedule that minimizes the average cost per visit to its optimal value of
(9 x9)/8 = 10.125. Furthermore, if the total cost is allocated to customers
according to the vector x, then no coalition has an incentive to deviate, as
x € AC(c).

The next Proposition computes the long-run optimal average cost.

Proposition 5.3 Let ¢*(N) :=limp_,o infyex, ACV(c). Then ¢*(N) is
well defined and c*(N) = ¢(N).
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Proof. Let z € AC(c) and construct the associated finite schedule o, as in
the proof of Theorem Any F € N can be written as F' = af(o,) +r
where a,7 € N and 0 < r < f(0;). Define then a schedule 7 € ¥ (with
slight abuse of notation) as

T=(0gy...,00,N,...,N).
—_———— ——
a times r times

Then f(7) = af(oy) +r = F and indeed 7 € ¥p. Using Theorem
we have the following:

AN) < inf ACV(0) < ACV(7) = ~lac(os) + re(N)] =

CEXR F

1 3 1. _
= —[af(02)e(N) +re(N)] = Z[Fe(N) +r(e(N) = &(N))] =
= 2(N)+ = (c(N) — &N))

F

When F tends to infinity, all terms in this inequality converge to ¢(V).
In particular, imp_, o inf,ex,, ACV (o) exists and it is equal to ¢(N). Thus,
c¢*(N) = ¢(N) as desired. m

The next theorem shows how to construct a (per-visit) cost allocation
vector that covers the asymptotically optimal average cost and it is coali-
tionally rational.

Theorem 5.4 Let the weighted graph G = ({0} U N, A,l) be associated
with the game c. There exists x* € RN such that z*(N) = ¢*(N) and
x*(S) < ¢*(S) for every S C N.

Proof. Let x € AC(c) be an arbitrary aspiration core vector. Then
(N) = ¢(N) = ¢*(N) and z(S) < ¢(S). We prove next that x remains
coalitionally rational even when each coalition S C N expects to pay no
more than ¢*(S) < ¢(9).

Fix some S C N and let (S, cg) be the truncation of game (N, ¢) to the
subset S. That is, cg(T) := ¢(T) for every T' C S . Applying Proposition
5.3 to the game (S, cg) for every S C N, we obtain ¢*(S) = &(S). Moreover,
by item (4) of Proposition applied to the game (S, cg), there exists a
balanced family of subsets of S, Bg with the associated weights (Ar)7eBg,
such that > -, Ar = 1 for every i € S, and

() =e(S) =Y Are(T). (13)

TeBs
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Since z € AC(c), z(T) < ¢(T) for every T C N. Using equation (L3,
we have

H(S)=2a(S) = Y Ma(T) =D > Arai = x(S), (14)

TeBs €S T2

which completes the proof. m

6 Selecting a “fair” cost allocation

Since, typically, the aspiration core is not single-valued, we describe next a
procedure that selects a single cost allocation vector from the set of aspira-
tion core allocations. Our methodology uses the concept of the aspiration
nucleolus, which was introduced by Bennett| (1981)). Among several other de-
sirable properties, the aspiration nucleolus always belongs to the aspiration
core.

For every x € Asp(c), and every coalition S C N, define the savings
of S with respect to x as e(z,5) = ¢(S) — z(S5) and denote the savings
vector by e(x) = (e(z,S))scn € R2"~1. Let f(e(x)) be the vector obtained
from e(x) by rearranging its coordinates in non-decreasing order. Thus,
O(e(x)) implicitly ranks coalitions in terms of their “satisfaction” with the
cost saving embedded in the allocation vector x, with the least satisfied
coalition listed first. The aspiration nucleolus iteratively maximizes the
savings of all coalitions, prioritizing the least satisfied coalitions. It is defined
as follows.

For every x,y € Asp(c), we say that 6(e(z)) dominates 6(e(y)) in the
lexicographic order, f(e(x)) =1, 0(e(y)), if and only if

1. Oi(e(z)) > 61(e(y)) or
2. there exists m € N, m < 2V — 1, such that

(a) 0j(e(z)) = 0;(e(y)) V j < m, and
(b) Omi1(e(r)) > Omii(e(y))-

The Aspiration Nucleolus is defined as the aspiration associated with the
maximal element of the set {0(e(z)) | = € Asp(c)} with respect to . That
is,

AspNuc(e) = {a € Asp(c) | 6(e(x)) =1 B(e(y)), Vy € Asp(c)}.
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The aspiration nucleolus is always an element of the aspiration core. Be-
sides maximizing savings for the worse off coalitions, the aspiration nucleolus
also satisfies anonymityﬂ This guarantees that the allocations players re-
ceive do not depend on their identities. Referring back to Example [4 the
aspiration core of the corresponding TS-game is

AC(c) = {(a,b,¢,2.5 — a,2.5 — b,2.5 —¢) € RS | a,b,c € [1.5,2]}.

Given the symmetry of the graph, it seems reasonable that nodes that play
the same role —such as nodes 1, 2 and 3— be charged the same price. More
precisely, a single-valued solution concept ¢(c) is said to satisfy anonymity
if for every cooperative game ¢ on N and bijection 7 : N — N, ¢;(c) =
qﬁﬂ(i)(c“), where the characteristic function ¢ : 2V — R, is defined as
c™(S) :=¢(n(S)) for every S C N, and ¢"(0) = 0.

In the context of Example [4, with N = {1,2,3,4,5,6}, let 7 : N — N
be defined by 7(1) = 2, n(2) = 3, n(3) = 1, n(4) = 5, n(5) = 6, and
m(6) = 4. It can be readily verified that, given the symmetry of the game,
for every S C N, ¢(S) = ¢(n(5)) and thus ¢ = ¢". Therefore, anonymity
implies that if z € AspNuc(c), then 1 = z9 = 23 and x4 = x5 = xg, thus
addressing the concern raised before. In fact,

AspNuc(c) = {(1.75,1.75,1.75,0.75,0.75,0.75) }.

Since every aspiration x € Asp(c) is coalitionally rational, it provides
non-negative savings, ¢(S) — x(.5), to every coalition S. This means that
coalitions which obtain zero savings are the ones that are worse off when
using x to allocate costs. These coalitions form the generating collection
GC(x). By definition, the aspiration nucleolus minimizes the number of
coalitions with zero savings. This shortens the list of candidates that can
be used to build a schedule of tours that, when indefinitely repeated, solves
oo-TSP.

As shown earlier, cost-saving tour schedules are possible if and only
if the core of the original TS-game is empty. Tamir (1989) and Kuipers
(1993) proved that any TSP derived from an undirected graph with [N| <5
generates a game with a non-empty core. Therefore, Example[d]describes the
smallest undirected graph for which the corresponding TSG has an empty
core. However, as the following example illustrates, TSP-s derived from
directed graphs can generate empty-core games even if |[N| < 5.

5For a list of other properties as well as a an axiomatic characterization of the aspiration
nucleolus, the reader is referred to Hokari & Kibris| (2003]).
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Example 6.1 Consider the set of players N = {1,2,3,4} and the complete
graph ({0} U N, A) where costs are defined as in Figure @H

Original graph Minimum cost tour: c(N) = 6

Figure 7: Directed graph with a non-balanced TSG

There is no Hamiltonian circuit that only involves arcs of cost $1. There-
fore, visiting the four cities in a single tour must cost more than $5. The
minimal cost of the one-shot TSP is $6 and it is achieved, for example, with
the tour depicted in Figure The rest of the TSG is defined as follows.
c({1}) = c({4}) = 2, c({2}) =4, and ¢({3}) = 3. If |S| = 2, then ¢(S) =4
except for ¢({3,4}) = 3. If |S| = 3, then ¢(S) = 4 except for ¢({1,3,4}) = 5.

For this TSG, the aspiration core is

AC(c) = {(a,2.5 —a,1.5,1.5) € R* | a € [1.5,2]},
which implies that the asymptotic minimal cost is $5.50. To choose among
cost allocations, we can use the aspiration nucleolus
AspNuc(c) = {(1.75,0.75,1.5,1.5) }

with generating collection {{1,2,3},{1,2,4},{3,4}}, leading to the optimal
tour schedule shown in Figure
The corresponding cost per visit is (4 + 4 + 3)/2 = $5.50.

5This example is taken from [Potters et al.| (1992).
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c({1,2,3}) = 4 c({1,2,4) = 4 c({3,4}) =3

Optimal tour schedule

Figure 8: Optimal schedule for the directed graph

7 Concluding remarks

We introduced and analyzed the Infinite Period Traveling Salesman Problem
(0o-TSP), which extends the classical TSP by considering an arbitrarily
large time horizon with repeated visits to customer locations. Our study
focused on minimizing the long-run (or asymptotic) average cost per visit
while ensuring a fair cost allocation among customers. By leveraging some
cooperative game theory results, we established a new and fundamental link
between the co-TSP and the aspiration core solution concept.

Our results demonstrate that the feasibility of reducing the average cost
per visit over time is directly linked to the core emptiness of the correspond-
ing one-shot TSG.

When the core of the one-shot TSG is empty, multiple stable solutions
may exist. To address this ambiguity, we introduced the aspiration nucle-
olus as a single-valued selection from the aspiration core. This refinement
ensures uniqueness, fairness, and anonymity in cost allocation, making it
a practically-relevant tool for designing stable long-term service schedules.
The aspiration nucleolus identifies the most stable cost distribution by pri-
oritizing the least advantaged coalitions and preserving the symmetries of
the problem.

Our findings contribute to both the theoretical and practical understand-
ing of long-term routing problems. The connection between the aspiration
core allocations and the optimal long-run cost minimization suggests new
avenues for designing efficient and fair service schedules in contexts where
repeated visits are required. Future research may explore extensions of this
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framework to stochastic demand variations, or multi-provider competitive
environments.
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