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Abstract

The paper shows that the aspiration core of a TU-game coincides
with the set of competitive wages arising in a labor market economy in
which time is indivisible, but workers and firms can sign contingent la-
bor contracts and trade in employment lotteries. The set of firms that
are active in the market is endogenously determined at equilibrium
and it coincides with the generating collection of the corresponding
aspiration core allocation.
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1 Introduction

In economies with non-convexities arising from the indivisibility of some com-
modities, it is often the case that a competitive equilibrium does not exist.
When competitive equilibria do exist, the corresponding allocations are in
the core of the economy (under some assumptions on preferences and endow-
ments). On the other hand, if equilibria for the economy with indivisible
commodities do not exist, a market clearing price may still exist in the econ-
omy with a richer market, in which (the same) agents can trade not only the
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indivisible commodities, but also lotteries over bundles of commodities. Such
markets have been analyzed, among others by Rogerson (1988), Prescott and
Townsend (1984), Shell and Wright (1993), Garratt (1995), (see also Prescott
and Shell (2002) for a survey). We consider here a class of private-ownership,
finite, production economies with indivisible labor and show that, if workers
and firms can trade in employment lotteries, an equilibrium always exists
and it belongs to the aspiration core, a non-empty core extension. Moreover,
every aspiration core allocation can be supported as a lottery equilibrium of
an economy in that class. The analysis furthers our understanding of the
relationship between the Walrasian equilibrium, lottery equilibrium and the
core.

Most cooperative solution concepts do not address the payoff distribution
and coalition formation problems simultaneously. The core, for instance, if
non-empty, implicitly assumes the formation of the grand coalition. Zhou
(1994) defines a new type of bargaining set which addresses both questions
but, as shown by Anderson, Trockel, and Zhou (1997), Zhou’s (1994) bar-
gaining set cannot be decentralized using a market economy. Like Zhou’s
(1994) bargaining set, the aspiration core is defined in such a way that both
payoffs and formed coalitions arise endogenously. This paper endows it with
the link to competitive equilibrium that Zhou’s (1994) bargaining set is lack-
ing and shows that, similar to the core, which it extends, the aspiration core
can be identified with the equilibrium outcomes of a specific lottery market.
These equilibria involve only degenerate lotteries if and only if the aspiration
core coincides with the core (and thus the core is non-empty).

To obtain our results, we exploit the equivalence between coalitional
games and economies. We show that there is a natural way to construct
a private-ownership, production economy with indivisibe labor from every
TU-game, and a TU-game from every quasi-linear economy. Moreover, for
super-additive games, these two processes are inverses to each other. The pa-
per is therefore related to the literature on market games initiated by Shapley
and Shubik (1969) and Shapley and Shubik (1975), where the equivalence be-
tween totally balanced games and convex pure-exchange economies is used to
show that there is a bijection between the core payoffs of such games and the
Walrasian equilibrium allocations of their corresponding “direct” economy.
Later, Garratt and Qin (1997) focused on super-additive, balanced games and
showed that core elements can be supported as lottery equilibria of an as-
sociated pure-exchange economy with indivisible goods. Their results imply
that some indivisible-good economies may have no lottery equilibrium (pre-
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cisely, those economies that generate super-additive, non-balanced games)
and therefore non-convexities generated by indivisibilities are not eliminated
by the use of lotteries.

We define here a weaker notion of lottery equilibrium for production
economies with indivisible labor and show that such equilibria always ex-
ist. Moreover, for every super-additive game, its aspiration core (Cross
1967, Bennett 1983) is in a bijection with the set of lottery equilibria of
the indivisible-labor production economy that represents the game. Our
construction allows for the endogenous creation of firms through a process
that mimics the coalition formation approach described in the aspiration lit-
erature. For games that are not balanced, the grand coalition cannot form
because its worth cannot be divided among the individual players in such a
way that the demands of all smaller coalitions are satisfied. By contrast, the
standard literature on market games (Shapley and Shubik 1969, Shapley and
Shubik 1975, Billera 1970, Qin 1993, Garratt and Qin 1997) analyzes only
balanced games, where the final allocation of payoffs can always be realized
by the grand coalition.

The production economy we associate to any TU-game makes the coali-
tion formation process explicit. Given a TU-game v, members of coalition S
may join efforts working in a firm whose productivity depends on v(S). Since
many economic examples do not allow an agent to simultaneously be part
of two different enterprises, we assume here that labor is indivisible. Due to
the inherent non-convexity introduced, such economies do not always have
a Walrasian equilibrium, but we show that if agents and firms are allowed
to trade lottery contracts specifying a positive probability of unemployment,
an equilibrium always exists. Equilibrium wages prevailing in such markets
for employment lotteries map, through a bijection, into the aspiration core of
the game. Firms that form with positive probability in equilibrium are those
whose coalitions of workers belong to the corresponding generating collection
(the family of those coalitions that can satisfy the demands of their mem-
bers). Our results posit the aspiration core payoffs as being the competitive
market values of the individual players’ participation into various coalitions.

Sun, Trockel, and Yang (2008) analyzed the role of labor indivisibilities
too, but their analysis focuses on coalition production economies in which
no trade in lotteries is allowed. They showed that competitive equilibria
of such economies are in a bijective correspondence with the core vectors
of the super-additive completion of the game, whenever the super-additive
completion is balanced. We obtain the same result for private-ownership
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economies. Moreover, since the aspiration core of a game v coincides with
the core of v (or the core of the super-additive completion of v) whenever the
latter is not empty, our results are a generalization of both Garratt and Qin’s
(1997) and Sun, Trockel, and Yang’s (2008) results to arbitrary TU-games.

2 An Illustrative Example

Consider an economy with three agents (we will call them truck drivers) and
four firms. Agents have identical skills and each is endowed with one unit
of time which can be supplied as labor. Each firm owns a truck and hires
labor to produce the same output good (deliveries). The first three firms
have production functions of the form Fj : R3

+ → R+, with Fj(l1, l2, l3) =
min{l[j], l[j+1]}, where [k] := k(mod 3) + 1.1 The fourth firm’s production
function is F4 : R3

+ → R+, defined as F4(l1, l2, l3) = min{l1, l2, l3}. Thus,
every delivery needs the labor input of at least two truck drivers. Firm 4 is
equally owned by all agents, while firm j, with j ∈ {1, 2, 3}, is equally owned
by agents {[j], [j + 1]}. Truck drivers care only about their wealth and have
no disutility of labor.

If labor is indivisible (agents cannot receive part-time contracts) then an
equilibrium does not exist. Indeed, if such equilibrium existed, its corre-
sponding allocation would be Pareto optimal, and therefore either all drivers
would be employed by firm 4, or two drivers would be employed by one of
the first three firms while the others (firms and worker) would remain idle.
The first allocation requires a wage of 1

3
to be supported as an equilibrium,

while the second allocation requires a wage of 1
2
. However, at a wage w = 1

3
,

all firms would want to hire, and therefore labor market would be in excess
demand. At a wage of w = 1

2
, firm 4 shuts down and each of the first three

firms is indifferent between shutting down or hiring two drivers. Therefore, 1
2

cannot be an equilibrium wage either and thus an equilibrium does not exist.
There is a natural way to associate a TU-game to this economy by as-

suming that a coalition of agents can choose how to operate every firm they
fully own (and only those). Then, the TU-game associated to this economy
is defined by: v(∅) = v(1) = v(2) = v(3) = 0, v(1, 2) = v(1, 3) = v(2, 3) =
v(1, 2, 3) = 1. The game has an empty core. As we will show later, this is
intrinsically related to the non-existence of a Walrasian equilibrium for the
production economy. The reason for the emptiness of the core is that the

1We denote by k(mod 3) the remainder of the Euclidean division of k by 3.
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grand coalition is not powerful enough (in terms of the value it can generate)
relative to the two-player coalitions. Since players are identical and each can
form a two-player coalition with another, every player naturally “aspires” to
receive a payoff of (at least) 1

2
. Clearly, such demands cannot be satisfied

simultaneously. Yet, their sum is the minimum needed to satisfy all proper
coalitions (Zhao (2001) calls it the “minimum no-blocking payoff”). We are
going to show that these are precisely the payoffs that arise as equilibrium
wages in the original production economy if lottery trading is allowed.

Assume therefore that truck drivers can submit job applications to more
than one firm and randomize over which offer to accept. Firms can also offer
employment contracts that stipulate a probability of being laid off (or a prob-
ability of delivery cancellation). In this case w = 1

2
is an equilibrium wage.

At this wage, each driver chooses to submit exactly two job applications to
firms 1, 2 or 3 and accepts each firm’s offer with equal probability. Firm 4
shuts down, and each of the first three firms hires two drivers, offering them
employment contracts that carry a 50% chance of delivery cancellation (or,
equivalently, job termination). There are three essentially different outcomes
arising from these equilibrium wages, each occurring with probability 1

3
. In

each of the outcomes, two workers are employed by one firm and the other
worker and firms are inactive.

The vector of wages the agents receive at this employment lottery equi-
librium coincides with the vector of aspirations described before. Moreover,
identifying each firm with the set of workers it employs, the set of potentially
active firms coincides with the family of coalitions –of the associated game–
that can pay their members their aspiration payoffs.

The vector of aspirations, together with the coalitions that can support it,
describes a solution concept for TU-games called the aspiration core (which
will be defined properly in the next section). The concept, suggested first by
Cross (1967) and later formalized by Bennett (1983), is a core extension: it
is always non-empty and it coincides with the core when the latter is non-
empty. Our results show that this TU-game solution concept is intrinsically
related to lottery equilibria of economies with indivisible commodities, in the
same way the core is related to Walrasian equilibria. The rest of the paper
formalizes and generalizes these results, making them applicable to arbitrary
TU-games.
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3 TU-games and the Aspiration Core

Let N = {1, 2, ..., N}2 be a finite set of players, N the collection of all non-
empty subsets of N , and for every i ∈ N define Ni = {S ∈ N | S 3 i}.
Let ∆N (respectively ∆N ) be the unit simplex in RN (respectively RN ),
and ei ∈ ∆N (respectively eS ∈ ∆N ) the vertex corresponding to i ∈ N
(respectively S ∈ N ). For every S ∈ N , let 1S ∈ {0, 1}N denote the indicator
function of S.

A TU-game (or simply a game) is a pair (N, v) with v : N → R+. For
every S ∈ N , v(S) is called the worth of coalition S. A game (N, v) is called
super-additive if for every S, T ∈ N with S ∩T = ∅, v(S) + v(T ) ≤ v(S ∪T ).
Given a game (N, v), a possible outcome is represented by a payoff vector
x ∈ RN . Given x ∈ RN and S ∈ N , let x(S) :=

∑
i∈S xi. A payoff vector

x ∈ RN is feasible for coalition S if x(S) ≤ v(S). It is individually feasible
if for every i ∈ N , there exists S ∈ Ni such that x is feasible for S. We say
that coalition S is able to improve upon the outcome x ∈ RN if x(S) < v(S).
A vector x ∈ RN is stable if it cannot be improved upon by any coalition.
The core of a game (N, v) is the set of stable outcomes that are feasible for
N , that is,

C(N, v) := {x ∈ RN | x(S) ≥ v(S) ∀S ∈ N , x(N) = v(N)}.
A stable payoff vector x ∈ RN that is individually feasible is called an

aspiration. We denote by Asp(N, v) the set of aspirations of game (N, v).
It is known that for any game (N, v), Asp(N, v) is a non-empty, compact
and connected set (Bennett and Zame 1988). The generating collection of an
aspiration x is the family of coalitions S that can attain x, that is,

GC(x) := {S ∈ N | x(S) = v(S)}.

Given a coalition S ∈ N , a family of coalitions B ⊆ 2S \ {∅} is called
balanced if every T ∈ B can be associated with a non-negative number λT
such that, for every i ∈ S,

∑
T∈B∩Ni

λT = 1. The numbers λT are called
balancing weights. The family B+ := {T ∈ B | λT > 0} is also balanced
with respect to the corresponding weights (λT )T . The balanced cover of
a game (N, v) ∈ Γ is the game (N, v̄) ∈ Γ defined for every S ∈ N as
v̄(S) := max

∑
T∈B λTv(T ), where the maximum is taken over all balanced

2By a standard abuse of notation, we use the same symbol for a finite set and the
number of its elements.
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families of coalitions B ⊆ 2S \ {∅}. Given a game (N, v) ∈ Γ, a balanced
family B with respect to N and with associated balancing weights (λS)S is
called optimally balanced if v̄(N) =

∑
S∈B λSv(S). The game (N, v) is called

balanced if v̄(N) = v(N). It is known that the core of a game is non-empty
if and only if the game is balanced (Bondareva 1963, Shapley 1953).

The aspiration core (Cross 1967, Bennett 1983) of a game (N, v), denoted
AC(N, v), is the set of those aspirations x ∈ Asp(N, v) for which GC(x) is
balanced. It is known that AC(N, v) = C(N, v) if and only if v is balanced
and AC(N, v) = C(N, v̄) 6= ∅ for every game (N, v). Moreover (see Bennett
(1983) and Bejan and Gómez (2012)),

AC(N, v) = arg min
{
x(N) | x ∈ RN , x(S) ≥ v(S),∀S ∈ N

}
.

4 Games as Economies with Indivisible La-

bor

In the spirit of Shapley and Shubik (1969), we are going to establish an
equivalence between the family of all super-additive TU-game and a specific
class of quasi-linear, private-ownership production economies with indivisible
inputs, which will be called direct production economies.

We focus here on quasi-linear production economies with one output and
several indivisible inputs. A typical economy, E , consists of a finite set of
consumers, I, a finite set of firms, J , and K + 1 tradable goods. Good
0, the output, is a perfectly divisible composite commodity, denoted by C.
Goods 1, ..., K are indivisible inputs, which can also serve as consumption
goods. For every j ∈ J , F j : NK → R+ denotes firm j’s production function,
which is non-decreasing in every argument and satisfies F j(0) = 0 for every
j ∈ J . Each consumer i ∈ I is characterized by the utility function U i :
R+ × NK → R with U i(c, l) = c + ui(l), endowment of indivisible goods
ωi ∈ NK and endowment of shares in firm j’s profits, θji ∈ [0, 1]. It is
assumed that

∑
i∈I θ

j
i = 1 for every j ∈ J .

A Walrasian equilibrium for this economy consists of a vector of rela-
tive prices for the indivisible goods, w̄ ∈ RK

+ , an allocation (c̄i, l̄i)i for the
consumers, and a vector of labor inputs L̄ = (L̄j)j such that the following
conditions are satisfied:

1. for every j ∈ J , Π̄j := F j(L̄j)−w̄·L̄j = max
{
F j(Lj)− w̄ · Lj | Lj ∈ NK

}
,
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2. for every i ∈ I, (c̄i, l̄i) ∈ arg max
{
U i(c, l) | c+ w̄ · l = w̄ · ωi +

∑
j∈J θ

j
i Π̄

j
}
,

3.
∑

i∈I l̄
i +
∑

j∈J L̄
j ≤

∑
i∈I ω

i, and
∑

i∈I c̄
i ≤

∑
j∈J F

j(L̄j).

For every subset of consumers S ∈ N , let JS := {j ∈ J |
∑

i∈S θ
j
i = 1} be

the set of firms that are fully owned by consumers in S. An allocation (ci, li)i
is called feasible for coalition S if for every firm j ∈ JS there exists Lj ∈ NK

such that
∑

i∈S c
i ≤

∑
j∈JS F

j(Lj) and
∑

i∈S l
i +
∑

j∈JS L
j ≤

∑
i∈S ωi. We

denote by F(S) the set of feasible allocations for coalition S. Given an
economy E , we define its associated TU-game, (I, VE) by letting, for every
S ⊆ I, S 6= ∅

VE(S) := max

{∑
i∈S

U i(ci, li) | (ci, li)i∈S ∈ F(S)

}
. (1)

Proposition 4.1 If
(
w̄, (c̄i, l̄i)i∈I , (L̄

j)j∈J
)

is a Walrasian equilibrium for E,
then Ū = (Ū i)i∈I ∈ C(I, VE), where Ū i := c̄i + ui(l̄i), ∀i ∈ I.

Proof. We need to show that Ū(S) ≥ VE(S) for every S ∈ N and
Ū(N) = VE(S). The last equality is an immediate consequence of the first
welfare theorem and the definition of VE . Assume therefore that for some
S ∈ N , Ū(S) < VE(S) and let (ci, li)i∈S and (Lj)j∈JS be such that

∑
i∈S c

i =∑
j∈JS F

j(Lj),
∑

i∈S l
i +
∑

j∈JS L
j =

∑
i∈S ω

i, and Ū(S) <
∑

i∈S c
i + ui(li).

One can then construct (zi)i∈S such that
∑

i∈S z
i =

∑
i∈S c

i and c̄i +ui(l̄i) <
zi + ui(li) for every i ∈ S. This implies that, for every i ∈ S,

w̄ · ωi +
∑
j∈J

θji Π̄
j < zi + w̄ · li.

Summing up these inequalities over i ∈ S and using that
∑

i∈S z
i =

∑
j∈JS F

j(Lj)

and
∑

i∈S l
i +
∑

j∈JS L
j =

∑
i∈S ω

i, we get:∑
j∈JS

Π̄j +
∑

j∈J\JS

Π̄j
∑
i∈S

θji <
∑
j∈JS

F j(Lj)− w̄ · Lj,

which is a contradiction, because Π̄j ≥ 0 for every j ∈ J and Π̄j ≥ F j(Lj)−
w̄ · Lj for every j ∈ JS.

We show next that a production economy, denoted E(v), can be con-
structed from every TU-game (N, v) such that v = VE(v). The economy is
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defined as follows. There are N consumers, 2N−1 firms and N+1 commodi-
ties. Commodity 0, denoted by C, is the output; the other N commodities,
denoted L1, ..., LN , represent agent-specific human capital (or skilled labor).
Labor is indivisible, while the output C is perfectly divisible. Therefore,
each consumer’s consumption set is R+ × NN . Consumers care only about
the amount of composite good C they consume and experience no disutility of
labor. Thus Ui(C, l1, .., lN) = C, ∀i ∈ N . Every consumer i is endowed with
one unit of human capital Li and zero units of the output good. Firms are
indexed by S ∈ N and each firm S uses human capital (skilled labor) (Li)i∈S
to produce the composite commodity according to the following production
function: F S(L) := v(S) ·min{Li | i ∈ S}, for every L ∈ NN . Moreover, each
consumer i owns an initial share θSi = 1

|S| · 1S(i) in firm S. 34

Given the description of the economy E(v), firms T ⊆ S are the only ones
fully owned by the set of consumers S and, since the game v is super-additive,
this implies that VE(v) = v. Moreover, as we show next, there is a one-to-one
and onto correspondence between the competitive equilibria of the economy
E(v) and the core allocations of the game (N, v). Core vectors of the game
(N, v) are identified with the equilibrium wages (or utilities) agents receive
by selling their time/skills in a competitive market.

Proposition 4.2 A payoff vector w̄ is in the core of the game (N, v) if
and only if

(
w̄, (w̄i, 0)i∈N , (l̄

S · 1S)S∈N
)

is a competitive equilibrium for E(v),
where l̄S = 0 for every S ( N and l̄N = 1.

Proof. Note that at every equilibrium of the economy E(v), agents supply
all their labor, their consumption of the divisible commodity is equal to the
(relative) wage they receive, and firm S’s vector of inputs must be of the
form l̄S ·1S, with l̄S ∈ {0, 1}. Therefore, if v(S) > w̄(S) then firm S is active
at the vector of relative wages w̄. Moreover, its choice of l̄S = 1 is optimal if
and only if v(S) = w̄(S). Hence,

(
w̄, (w̄i, 0)i∈N , (−l̄S · 1S, l̄Sv(S))S∈N

)
with

l̄S = 0 for every S ∈ N , S 6= N , and l̄N = 1 is a competitive equilibrium for

3Sun, Trockel, and Yang (2008) and Inoue (2010) have proposed an alternative way of
relating TU-games to economies by associating a coalition production economy to every
game.

4Since firms’ technologies have constant returns to scale, the initial distribution of
shares is irrelevant for the competitive equilibrium. Our results remain true for other
distributions of shares as long as for every S ⊆ N , every consumer in S has ownership in
firm S and, together, consumers in S fully own firm S.
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E(v) if and only if v(N) = w̄(N) and v(S) ≤ w̄(S) for every S ( N , which
implies that w̄ ∈ C(N, v).

An immediate implication of Proposition 4.2 is that if (N, v) is a non-
balanced game, then the economy E(v) has no Wlarasian equilibrium. We
show next that, if firms and consumers are allowed to sign employment con-
tracts contingent on the outcome of a lottery, equilibrium wages always exist
and coincide with the aspiration core vectors of the corresponding game v.
Aside from establishing a novel connection between equilibria with employ-
ment lotteries and the aspiration core, our treatment also extends the anal-
ogy between games and direct economies presented in Shapley and Shubik
(1975), Garratt and Qin (1997), and Sun, Trockel, and Yang (2008). In par-
ticular, we show that not only payoffs, but formed coalitions (in game v) and
productive firms (in economy E(v)), coincide. For any coalition S ∈ N , its
balancing weight λS in an optimally balanced family B is linked to the prob-
ability that firm S is active in the lottery equilibrium of the corresponding
direct production economy.

5 Equilibria with Employment lotteries

Assume that consumers and firms may choose to default on their labor con-
tracts. Consumers may contemplate switching between equally-paying jobs,
while firms can layoff workers and get out of business. However, rather than
modeling strictly enforceable contracts and punishments for default, we de-
sign our model such that the probabilities of default will be embedded in the
equilibrium market prices. We assume therefore that consumers and firms
trade in labor or employment lotteries specifying, for each party, a probability
of employment termination as described below.

A labor lottery for agent i is a vector pi ∈ ∆Ni
such that

∑
S∈Ni

pSi = 1.

Thus, pSi specifies the probability with which agent i chooses to work for firm
S (or, alternatively, 1 − piS can be interpreted as the probability that i will
terminate his/her contract with firms S, if hired). Given a wage level wi,
agent i chooses a probability distribution over the firms S ∈ Ni. The utility
consumer i derives from choosing the labor lottery pi and consumption c is

U i(pi, c) := c+
∑
S∈Ni

piSui(e
S) = c,

for all (pi, c) ∈ ∆Ni
× R+.

10



An employment lottery for firm S specifies a probability, φS ∈ [0, 1] of
maintaining employment from that firm or, equivalently, a probability 1−φS
of being laid off. Alternatively, one can interpret φS as the probability that
S remains in business. Each firm S chooses an employment lottery and,
contingent on being active, an operating level (labor force size) kS ∈ N.
Each firm S is assumed to maximize its expected profits and thus it solves

max {φS · kS (v(S)− w(S)) | φS ∈ [0, 1], kS ∈ N} . (2)

As opposed to the standard employment lottery models which assume a
continuum of agents (e.g., Rogerson (1988)), our economy is finite and thus
we cannot rely on the law of large numbers to ensure labor market clearing.
Along the lines of Garratt (1995) we say that a vector of labor/employment
lotteries is feasible if its elements are the marginals of some (auctioneer-run)
joint lottery on the set of feasible labor contracts. More precisely, we define
a (pure) labor contract as a vector x ∈ {0, 1}N , in which the component
xS is equal to 1 if and only if firm S is active (and thus every consumer
i ∈ S is employed full-time). A labor contract is feasible if [xS = xS′ = 1]⇒
[S ∩ S ′ = ∅] for all S 6= S ′.

Note that feasibility of labor contracts only requires that there is no excess
demand for labor/human capital. It does not require that the labor market
clears. For every feasible labor contract x, define T (x) :=

⋃
{S | xS = 1} as

the set of employed agents. At a feasible labor contract, T (x) may be a strict
subset of N . Denote the set of all feasible labor contracts by X , and consider
an arbitrary probability distribution γ on X . Then, given γ, the probability
that firm S is active is

∑
{x|xS=1} γ(x), while the probability that consumer

i is employed is γi :=
∑
{x|T (x)∈Ni} γ(x).

Definition 5.1 A set of labor and employment lotteries ((pi)i∈N , (φS)S∈N )
is feasible if

1. There exists γ ∈ ∆X such that φS =
∑
{x|xS=1} γ(x), for all S ∈ N ,

2. pSi = φS∑
T∈Ni

φT
, for every S ∈ N and every i ∈ S, and pSi = pSj if

i, j ∈ S.

The first condition is a compatibility condition for labor demand. It re-
quires that the probability of firm S operating coincides with the marginal of
a joint probability distribution over the set of feasible labor contracts. The
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second condition requires that the probability that agent i assigns to work-
ing for firm S is exactly the probability of firm S operating, conditional on i
being employed. The second part of condition 2 captures the labor comple-
mentarities embedded in firms’ technologies. Note that the two conditions
imply that

∑
S∈Ni

φS = γi > 0 and γi = γj for all i, j ∈ N .

Definition 5.2 An employment lottery equilibrium for economy E(v) is a
vector (

(w̄i)i, (p̄i)i, (φ̄S)S, (k̄S)S
)

such that

1. p̄i ∈ ∆Ni
for every i ∈ N

2. (φ̄S, k̄S) solves (2) for every S ∈ N

3. kS = 1, for all S ∈ N

4. ((p̄i)i, (φ̄S)S) is feasible according to Definition 5.1.

We can now relate aspiration core allocations and equilibrium wages.

Theorem 5.3 If w̄ ∈ AC(v) and (λS)S is a system of balancing weights
associated with GC(w̄), then[

(w̄i)i∈N , ((λS)S∈Ni
)i∈N ,

(
λS
Λ

)
S∈N

, (kS = 1)S∈N

]
is an employment lottery equilibrium for the economy E(v), where Λ :=∑

S∈N λS.
Reciprocally, if [(w̄i)i∈N , (p̄i)i∈N , (φ̄S)S⊆N , (k̄S)S⊆N ] is a lottery equilib-

rium for E(v), then w̄ ∈ AC(v) and S ∈ GC(w̄) whenever φ̄S > 0.

Proof. Let w̄ ∈ AC(v) and (λS)S a system of balancing weights associ-
ated with GC(w̄). Define p̄Si := λS, φ̄S := λS

Λ
and γ ∈ ∆X such that γ(x) = φ̄S

if x = eS for some S ∈ N and γ(x) = 0 otherwise. Then ((p̄i)i∈N , (φ̄S)S∈N )
is feasible, being supported by the joint lottery γ ∈ ∆X . Moreover, since
w̄ ∈ AC(v), w̄(S) ≥ v(S) and thus (φ̄S, 1) is an optimal choice for firm S,
which generates an expected profit of 0.

Reciprocally, if [(w̄i)i∈N , (p̄i)i∈N , (φ̄S)S⊆N , (k̄S)S⊆N ] is a lottery equilib-
rium for E(v), then w̄(S) ≥ v(S), otherwise firm S would make infinite
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profits. Profit maximization also dictates that φ̄S > 0 only if w̄(S) = v(S).
On the other hand, feasibility implies that

∑
S∈Ni

φ̄S > 0 and thus, for every

i ∈ N there exists S ∈ Ni such that φ̄S > 0 and w̄(S) = v(S), which implies
that w̄ is an aspiration. In addition, λS := φS∑

T∈Ni
lT

does not depend on i

and
∑

S∈Ni
λS = 1 for every i ∈ N . This proves that GC(w̄) is balanced and

thus w̄ ∈ AC(v).
An immediate consequence of Theorem 5.3 is that the core of a game

v is non-empty if and only if E(v) has a degenerate lottery equilibrium in
which pNi = 1 for every i ∈ N , lN = 1 and φS = 0 for every S ( N .
Thus, all consumers are employed by one firm and there is no default in
the labor-employment contracts. Each agent receives a wage (and utility)
equal to his/her payoff at a core allocation. This is equivalent to saying that
the grand coalition forms and its worth is split among agents according to
some core vector. Note however that other equilibria might exist as well
and, in particular, more than one firm can form if, for some x ∈ C(N, v),
GC(x) 6= {N}.

If the core of the super-additive TU-game (N, v) is empty, then each player
faces a positive probability of being unemployed and thus, in every realization
of the joint lottery, the labor market is in excess supply. Firms that are active
at a particular realization of the equilibrium lottery correspond to elements
of the generating collection and wages paid are elements of the aspiration
core of the game.

6 Final Remarks

An alternative way of dealing with indivisibilities, extensively used in the lit-
erature, consists in the introduction of a source of extrinsic uncertainty –or
sunspots– and corresponding markets in which agents can trade in sunspot-
contingent contracts (see for example Cass and Shell (1983)). As pointed out
originally by Shell and Wright (1993), there is a close connection between
lottery and sunspot equilibria since, as the authors showed, equilibrium em-
ployment lotteries of Rogerson (1988) can be implemented as sunspot equi-
libria. A similar result is valid in our model, too. The lottery equilibria
presented here can be supported as sunspot equilibria via a standard con-
struction in which the state space is the unit interval [0, 1] with the σ-algebra
of its Borel sets and the Lebesgue measure λ. From every lottery equilibrium
[(w̄i)i∈N , (p̄i)i∈N , (φ̄S)S∈N , (k̄S)S∈N ], if the induced distribution on the space
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of feasible labor contracts is γ, then one can construct a sunspot equilibrium
as follows. Consider a partition of the interval [0, 1] into Borel sets (Sx)x∈X
such that λ(Sx) = γ(x). A sunspot equilibrium that induces the same out-
come as the lottery equilibrium can be defined by letting, for every feasible
labor contract x ∈ X and every state s ∈ Sx, spot market wages, individual
labor supply and firm-by-firm labor demand be defined as follows:

w̃i(s) =

{
w̄i if i ∈ T (x),
0 otherwise.

l̃i(s) =

{
1 if i ∈ T (x),
0 otherwise.

L̃S(s) =

{
1 if xS = 1,
0 otherwise.

Reciprocally, using a line of arguments similar to that of Garratt, Keister,
Qin, and Shell (2002), one can also show that, with a continuum, non-atomic
state space, for every sunspot equilibrium, there exists another one that gen-
erates the same expected utility for consumers and the same total produc-
tion while also having wages that are constant across employment-equivalent
states. In other words, for every sunspot equilibrium, there exists an equiva-
lent one which can be identified with a lottery equilibrium. This shows that
the space of sunspot equilibria is richer than that of lottery equilibria and
only a weaker version of Theorem 5.3 holds for sunspot equilibria. That is,
every element of the aspiration core can be supported as a sunspot equilib-
rium of the associated direct economy, but only those sunspot equilibria with
constant wages across employment-equivalent states can be identified with
aspiration core allocations of the original game.
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