clg clear echo on clc %--------------------------- Huygens.m ----------------------- % % Propagation and Interference of Waves - Part 2 % % % Lecture 5 % Chemistry 455 % Summer Quarter 1995 % James B. Callis, Instructor % % % Press any key to continue pause clc % A Point Radiator a la Huygens. % % Let us start by considering a point source of radiation % as it sends out waves in two spatial dimensions. For this % system, the amplitude at a fixed instant of time, t = 0, % varies in two spatial dimensions as follows: % % A(x, y ) = A1*sin(2pi*sqrt((x-xo)^2 + (y-yo)^2)/lam) % % Where xo and yo are the position coordinates of the radiator. % Let us plot such a point source radiator for a wavelength of % 500 nm over the spatial region from 0 to 2500 nm in steps of % 50 nm. Let us place the radiator at 0 in the x direction and % 1250 nm in the y direction. % % Press any key to continue pause clc % Here are the constants: xo = 0; % x coordinate of Huygen's source yo = 1250e-9; % y coordinate of Huygen's source lam = 500e-9;% Wavelength of light, m Dx = 100e-9; % Spatial Increment, m Lx = 2500e-9; % max spatial dimension in x dimension, m Ly = 2500e-9; % max spatial dimension in y dimension, m % % Now make up the space vectors along x and y: x = 0:Dx:Lx; % look over 2500 nm in x y = 0:Dx:Ly; % look over 2500 nm in y % Press any key to continue pause clc % Now calculate the mesh grid [X,Y] = meshgrid(x,y); % Now calculate all of the x,y points amp = sin(2*pi*sqrt((X-xo).^2 + (Y-yo).^2)/lam); % Note dot % Calculation is finished, press any key to see plot pause contour(x,y,amp) axis('square') title('Huygens Point Radiator') xlabel('Distance Along X Dimension, m') ylabel('Distance Along Y Dimension, m') pause clc % Diffraction as the Superposition of Amplitudes. % % Let us now consider two point sources of radiation placed at % two different positions along the y axis. For this system, % the Amplitude at a fixed instant of time, t = 0, varies in % two spatial dimensions as follows: % % A(x, y ) = sin(2*pi*sqrt(x^2 + (y-y1)^2)/lam) % +sin(2pi*sqrt(x^2 + (y-y2)^2)/lam) % % Where y1 = 750 nm and y2 = 1750 nm are the y position % coordinates of the radiators. Let us plot these point source % radiators for a wavelength of 500 nm over the spatial region % from 0 to 3000 nm in steps of 100 nm. % Press any key to continue pause clc clear % Here are the constants: y1 = 750e-9; % x coordinate of Huygen's source y2 = 1750e-9; % y coordinate of Huygen's source lam = 500e-9;% Wavelength of light, m Dx = 100e-9; % Spatial Increment, m Lx = 3000e-9; % max spatial dimension in x dimension, m Ly = 3000e-9; % max spatial dimension in y dimension, m % % Now make up the space vectors along x and y: x = 0:Dx:Lx; % look over 2500 nm in x y = 0:Dx:Ly; % look over 2500 nm in y % Press any key to continue pause clc % Now calculate the mesh grid [X,Y] = meshgrid(x,y); % Now calculate all of the x,y points amp = sin(2*pi*sqrt(X.^2 + (Y-y1).^2)/lam) + ... % continued sin(2*pi*sqrt(X.^2 + (Y-y2).^2)/lam); % Calculation is finished, press any key to see plot pause contour(x,y,amp) axis('square') title('Two Huygens Point Radiators') xlabel('Distance Along X Dimension, m') ylabel('Distance Along Y Dimension, m') pause