Solving the Quadratic Equation with a Calculator

James B. Callis

The quadratic equation appears frequently in the solution to equilibrium problems. It is written as:

$$
a x^{2}+b x+c=0
$$

When the coefficients, a, b and c are real, the solution is usually expressed as:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Unfortunately, this solution runs into difficulty when either a or c or both are small. Then one of the roots will involve subtraction of b from a very nearly equal quantity (discriminant). This will be obtained inaccurately. A more robust way to compute the roots is from the quantity q , defined as follows:

$$
q \equiv-\frac{1}{2}\left[b+\operatorname{sgn}(b) \sqrt{b^{2}-4 a c}\right]
$$

The two roots are now:
$x_{1}=\frac{q}{a} \quad$ and $\quad x_{2}=\frac{c}{q}$
We can find the roots according to this prescription with the following calculator program:

PROGRAM: QUADROOT
:Prompt A,B,C
: if $\mathrm{B} \leq 0$
$:-(1 / 2)^{*}\left(B-\sqrt{\left.\left.B^{\wedge} 2-4^{*} A^{*} C\right)\right)} \rightarrow Q\right.$
$:-(1 / 2)^{*}\left(B+\sqrt{\left.\left.B^{\wedge} 2-4^{*} A^{*} C\right)\right)} \rightarrow Q\right.$
: Disp "ROOT 1",
,Q/A
: Disp "ROOT 2"
,C/Q
:STOP

