An Alternate Way to Solve Equilibrium Problems

J. B. Callis
University of Washington

In this essay we describe an alternative to solving equilibrium problems by the 'ICE' method (see e.g. problem 18-2 of your lecture notes). This alternative method is based on the conservation of mass and charge, concepts you have already used in the balancing of chemical equations. While a bit more trouble to use on simple problems, it clearly shows how the constraints of mass conservation enter into the solution.

We start by considering the following equilibrium system:

$$
\begin{equation*}
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})=\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \tag{1}
\end{equation*}
$$

Assume that the initial concentrations are

$$
[\mathrm{CO}]_{0}=\left[\mathrm{H}_{2} \mathrm{O}\right]_{0}=\mathrm{A}_{0} ; \quad\left[\mathrm{CO}_{2}\right]_{0}=\left[\mathrm{H}_{2}\right]_{0}=0
$$

where A_{0} is a constant, e.g. $=2.0 \mathrm{M}$.
Now define the sought for equilibrium concentrations in terms of abstract variables u, v, x and y as follows:

$$
\begin{equation*}
[\mathrm{CO}]=u ;\left[\mathrm{H}_{2} \mathrm{O}\right]=v ;\left[\mathrm{CO}_{2}\right]=x ;\left[\mathrm{H}_{2}\right]=y \tag{2}
\end{equation*}
$$

Then the abstract expression for K becomes:

$$
\begin{equation*}
K=\frac{\left[\mathrm{CO}_{2} \llbracket \mathrm{H}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]}=\frac{x y}{u v} \tag{3}
\end{equation*}
$$

Equation 3 is a non-linear equation in four unknowns. We can obtain three more (linear) equations by considering the conservation of mass in the following manner:

Conservation of carbon: $[\mathrm{CO}]_{0}+\left[\mathrm{CO}_{2}\right]_{0}=\mathrm{u}+\mathrm{x}$

Conservation of hydrogen: $2\left[\mathrm{H}_{2} \mathrm{O}\right]_{0}+2\left[\mathrm{H}_{2}\right]_{0}=2 \mathrm{v}+2 \mathrm{y}$
Conservation of oxygen: $[\mathrm{CO}]_{0}+\left[\mathrm{H}_{2} \mathrm{O}\right]_{0}+2\left[\mathrm{CO}_{2}\right]_{0}=\mathrm{u}+\mathrm{v}+2 \mathrm{x}$

Equations 4-6 can be simplified to:
Conservation of carbon: $\mathrm{A}_{0}=\mathrm{u}+\mathrm{x}$

Conservation of hydrogen: $A_{0}=v+y$

Conservation of oxygen: $2 \mathrm{~A}_{0}=\mathrm{u}+\mathrm{v}+2 \mathrm{x}$

Now we have four equations (3, 7, 8 and 9) in four unknowns (u, v, x and y). We then proceed to solve these equations for the variable x by systematic elimination of the other three variables (y, u and v).

In the first step of the elimination process, we rearrange Equation 7 to $u=A_{0}-x$. Now we can eliminate u from Equations 3 and 9:

Equation 3 becomes: $K=\frac{x y}{\left(A_{0}-x\right) v}$

Equation 8 remains as: $\mathrm{A}_{0}=\mathrm{v}+\mathrm{y}$

Equation 9 becomes: $A_{0}=v+x$
The above are three equations (10,11 and 12) in three unknowns (v, x and y). Next, we eliminate y from equations 10 and 12 by rearranging Equation 11 to $y=A_{0}-v$ and substituting:

Equation 10 becomes: $K=\frac{x\left(A_{0}-v\right)}{\left(A_{0}-x\right) v}$
Equation 12 remains as: $\mathrm{A}_{0}=\mathrm{x}+\mathrm{v}$
This leaves two equations in two unknowns. Now we eliminate v from equation 13 by rearranging Equation 14 to $\mathrm{v}=\mathrm{A}_{0}-\mathrm{x}$ and substituting:

Equation 13 becomes:

$$
\begin{equation*}
K=\frac{x\left(A_{0}-A_{0}+x\right)}{\left(A_{0}-x\right)\left(A_{0}-x\right)} \tag{15}
\end{equation*}
$$

Upon simplification Equation 15 becomes:

$$
\begin{equation*}
K=\frac{x^{2}}{\left(A_{0}-x\right)\left(A_{0}-x\right)}=\frac{x^{2}}{\left(A_{0}-x\right)^{2}} \tag{16}
\end{equation*}
$$

This equation is identical to that of problem 18-2 obtained by the ICE method in Zumdahl.

