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In this essay we describe an alternative to solving equilibrium problems by the ‘ICE’ 
method (see e.g. problem 18-2 of your lecture notes). This alternative method is based on 
the conservation of mass and charge, concepts you have already used in the balancing of 
chemical equations. While a bit more trouble to use on simple problems, it clearly shows 
how the constraints of mass conservation enter into the solution.  
 
We start by considering the following equilibrium system: 
 

)()()()( 222 gHgCOgOHgCO +=+      (1) 
 
Assume that the initial concentrations are 
 
 [ ] [ ] [ ] [ ]2 0 2 20 0 0 0

 ;     0;= = = =CO H O A CO H   
 
where A0 is a constant, e.g. = 2.0 M.  
 
Now define the sought for equilibrium concentrations in terms of abstract variables u, v, x 
and y as follows: 
 

[ ] [ ] [ ] [ ] yHxCOvOHu ==== 222  ; ; ;CO      (2) 
 
Then the abstract expression for K becomes: 
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Equation 3 is a non-linear equation in four unknowns. We can obtain three more (linear) 
equations by considering the conservation of mass in the following manner: 
 

Conservation of carbon: [ ] [ ]20 0
CO CO u x+ = +     (4) 

 
Conservation of hydrogen: [ ] [ ]2 20 0

2 H O 2 H 2v 2y+ = +    (5) 
 

Conservation of oxygen: [ ] [ ] [ ]2 20 0 0
CO H O 2 CO u v 2x+ + = + +   (6)
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Equations 4-6 can be simplified to: 
 

Conservation of carbon: 0A u x= +      (7) 
 

Conservation of hydrogen: 0A v y= +     (8) 
 

Conservation of oxygen: 02A u v 2x= + +     (9) 
 
Now we have four equations (3, 7, 8 and 9) in four unknowns (u, v, x and y). We then 
proceed to solve these equations for the variable x by systematic elimination of the other 
three variables (y, u and v).  
 
In the first step of the elimination process, we rearrange Equation 7 to . 0u A x= −
Now we can eliminate u from Equations 3 and 9: 
 

Equation 3 becomes: 
( )0

xyK
A x v

=
−

     (10) 

 
Equation 8 remains as: 0A v y= +      (11) 

 
Equation 9 becomes: 0A v x= +      (12) 

 
The above are three equations (10, 11 and 12) in three unknowns (v, x and y). Next, we 
eliminate y from equations 10 and 12 by rearranging Equation 11 to  and 
substituting: 

0y A v= −

 

Equation 10 becomes: ( )
( )

0

0

x A v
K

A x v
−

=
−

    (13) 

 
Equation 12 remains as: 0A x v= +      (14) 

 
This leaves two equations in two unknowns. Now we eliminate v from equation 13 by 
rearranging Equation 14 to and substituting: 0v A x= −
 

Equation 13 becomes:  
 

( )
( )( )

0 0

0 0

x A A x
K

A x A x
− +

=
− −

      (15) 

 
Upon simplification Equation 15 becomes: 
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( )( ) ( )
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2
0 0 0

xK
A x A x A x

= =
− − −

x      (16) 

 
This equation is identical to that of problem 18-2 obtained by the ICE method in 
Zumdahl.  
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