
Instituto Juan March · Curso Metodológico

Introduction to R

Christopher Adolph

Department of Political Science

and

Center for Statistics and the Social Sciences

University of Washington, Seattle

Welcome

Goals

This R prefresher is intended to help you get started with R

R is the most widely used statistical language, with likely 1 million users worldwide

In many fields, including statistics, R is the default package

We will focus on using R for graphics

R has very powerful graphics tools

You could port your results from Stata (or another package) just to do graphics in R

But R is well worth learning

Powerful and growing in capabilities

Now the main package we teach in US political science Ph.D. programs

Why R?

Real question: Why programming?

Non-programmers are stuck with package defaults

For your substantive problem, these default settings may be

• inappropriate (not quite the right model, but “close”)

• unintelligible (reams of non-linear coefficients and stars)

Programming allows you to match the methods to the data & question

Get better, more easily explained results.

Why R?

Many side benefits:

1. Never forget what you did: The code can be re-run.

2. Repeating an analysis n times? Write a loop!

3. Programming makes data processing/reshaping easy.

4. Programming makes replication easy.

Why R?

R is

• free

• open source

• growing fast

• widely used

• the future for most fields

But once you learn one language, the others are much easier

Introduction to R

R is a calculator that can store lots of information in memory

R stores information as “objects”

> x <- 2

> print(x)

[1] 2

> y <- "hello"

> print(y)

[1] "hello"

> z <- c(15, -3, 8.2)

> print(z)

[1] 15.0 -3.0 8.2

Introduction to R

> w <- c("gdp", "pop", "income")

> print(w)

[1] "gdp" "pop" "income"

>

Note the assignment operator, <-, not =

An object in memory can be called to make new objects

> a <- x^2

> print(x)

[1] 2

> print(a)

[1] 4

> b <- z + 10

> print(z)

[1] 15.0 -3.0 8.2

> print(b)

[1] 25.0 7.0 18.2

Introduction to R

> c <- c(w,y)

> print(w)

[1] "gdp" "pop" "income"

> print(y)

[1] "hello"

> print(c)

[1] "gdp" "pop" "income" "hello"

Commands (or “functions”) in R are always written command()

The usual way to use a command is:

output <- command(input)

We’ve already seen that c() pastes together variables.

A simple example:

> z <- c(15, -3, 8.2)

> mz <- mean(z)

> print(mz)

[1] 6.733333

Introduction to R

Some commands have multiple inputs. Separate them by commas:

plot(var1,var2) plots var1 against var2

Some commands have optional inputs. If omitted, they have default values.

plot(var1) plots var1 against the sequence {1,2,3,. . . }

Inputs can be identified by their position or by name.

plot(x=var1,y=var2) plots var2 against var1

Entering code

You can enter code by typing at the prompt, by cutting or pasting, or from a file

If you haven’t closed the parenthesis, and hit enter,
R let’s you continue with this prompt +

You can copy and paste multiple commands at once

You can run a text file containing a program using source(),
with the name of the file as the input: source("mycode.R")

I prefer the source() approach. Leads to good habits of retaining code.

Data types

R has three important data types to learn now

Numeric y <- 4.3

Character y <- "hello"

Logical y <- TRUE

We can always check a variable’s type, and sometimes change it:

population <- c("1276", "562", "8903")

print(population)

is.numeric(population)

is.character(population)

Oops! The data have been read in as characters, or “strings.”
R does not know they are numbers.

population <- as.numeric(population)

Some special values

Missing data NA

A “blank” NULL

Infinity Inf

Not a number NaN

Data structures

All R objects have a data type and a data structure

Data structures can contain numeric, character, or logical entries

Important structures:

Vector

Matrix

Dataframe

List (to be covered later)

Vectors in R

Vectors in R are simply 1-dimensional lists of numbers or strings

Let’s make a vector of random numbers:

x <- rnorm(1000)

x contains 1000 random normal variates drawn from a Normal distribution with
mean 0 and standard deviation 1.

What if we wanted the mean of this vector?

mean(x)

What if we wanted the standard deviation?

sd(x)

Vectors in R

What if we wanted just the first element?

x[1]

or the 10th through 20th elements?

x[10:20]

what if we wanted the 10th percentile?

sort(x)[100]

Indexing a vector can be very powerful. Can apply to any vector object.

What if we want a histogram?

hist(x)

Vectors in R

Useful commands for vectors:

seq(from, to, by) generates a sequence
rep(x,times) repeats x

sort() sorts a vector from least to greatest
rev() reverses the order of a vector
rev(sort()) sorts a vector from greatest to least

Matrices in R

Vector are the standard way to store and manipulate variables in R

But usually our datasets have several variables measured on the same observations

Several variables collected together form a matrix
with one row for each observation and one column for each variable

Matrices in R

Many ways to make a matrix in R

a <- matrix(data=NA, nrow, ncol, byrow=FALSE)

This makes a matrix of nrow × ncol, and fills it with missing values.

To fill it with data, substitute a vector of data for NA in the command.
It will fill up the matrix column by column.

We could also paste together vectors, binding them by column or by row:

b <- cbind(var1, var2, var3)

c <- rbind(obs1, obs2)

Matrices in R

Optionally, R can remember names of the rows and columns of a matrix

To assign names, use the commands:

colnames(a) <- c("Var1", "Var2")

rownames(a) <- c("Case1", "Case2")

Substituting the actual names of your variables and observations
(and making sure there is one name for each variable & observation)

Matrices in R

Matrices are indexed by row and column.

We can subset matrices into vectors or smaller matrices

a[1,1] Gets the first element of a
a[1:10,1] Gets the first ten rows of the first column
a[,5] Gets every row of the fifth column
a[4:6,] Gets every column of the 4th through 6th rows

To make a vector into a matrix, use as.matrix()

R defaults to treating one-dimensional arrays as vectors, not matrices

Useful matrix commands:

nrow() Gives the number of rows of the matrix
ncol() Gives the number of columns
t() Transposes the matrix

Dataframes in R

Dataframes are a special kind of matrix used to store datasets

To turn a matrix into a dataframe (note the extra .):

a <- as.data.frame(a)

Dataframes always have columns names, and these are set or retrieved using the
names() command

names(a) <- c("Var1","Var2")

You can access a variable from a dataframe directly using $:

a$Var1

Dataframes can also be “attached,”
which makes each column into a vector with the appropriate name

attach(a)

Loading data

There are many ways to load data to R.

I prefer using comma-separated variable files, which can be loaded with read.csv()

You can also check the foreign library for other data file types

Suppose you load a dataset using

data <- read.csv("mydata.csv")

You can check out the names of the variables using names(data)

And access any variables, such as gdp, using data$gdp

Benefits and dangers of attach()

If your data have variable names, you can also “attach” the dataset like so:

data <- read.csv("mydata.csv")

attach(data)

to access all the variables directly through newly created vectors.

Be careful! attach() is tricky.

1. If you attach a variable data$x in data and then modify x,
the original data$x is unchanged.

2. If you have more than one dataset with the same variable names,
attach() is a bad idea: only one dataset can be attached!

Sometimes attach() is handy, but be careful!

Missing data

When loading a dataset, you can often tell R what symbol that file uses for missing
data using the option na.strings=

So if your dataset codes missings as ., set na.strings="."

If your dataset codes missings as a blank, set na.strings=""

If your dataset codes missings in multiple ways, you could set, e.g.,
na.strings=c(".","","NA")

Missing data

Many R commands will not work properly on vectors, matrices, or dataframes
containing missing data (NAs)

To check if a variables contains missings, use is.na(x)

To create a new variable with missings listwise deleted, use na.omit

If we have a dataset data with NAs at data[15,5] and data[17,3]

dataomitted <- na.omit(data)

will create a new dataset with the 15th and 17th rows left out

Be careful! If you have a variable with lots of NAs you are not using in your analysis,
remove it from the dataset before using na.omit()

Mathematical Operations

R can do all the basic math you need

Binary operators:

+ - * / ^

Binary comparisions:

< <= > >= == !=

Logical operators (and, or, and not; use parentheses!):

&& || !

Math/stat fns:

log exp mean median min max sd var cov cor

Set functions (see help(sets)), Trigonometry (see help(Trig)),

R follows the usual order of operations; if it doubt, use parentheses

Example 1: US Economic growth

Let’s investigate an old question in political economy:

Are there partisan cycles, or tendencies, in economic performance?

Does one party tend to produce higher growth on average?

(Theory: Left cares more about growth vis-a-vis inflation than the Right

If there is partisan control of the economy,
then Left should have higher growth ceteris paribus)

Data from the Penn World Tables (Annual growth rate of GDP in percent)

Two variables:

grgdpch The per capita GDP growth rate
party The party of the president (Dem = -1, Rep = 1)

Example 1: US Economic growth

Load data

data <- read.csv("gdp.csv",na.strings="")

attach(data)

Construct party specific variables

gdp.dem <- grgdpch[party==-1]

gdp.rep <- grgdpch[party==1]

Make the histogram

hist(grgdpch,

breaks=seq(-5,8,1),

main="Histogram of US GDP Growth, 1951--2000",

xlab="GDP Growth")

Histogram of US GDP Growth, 1951−−2000

GDP Growth

F
re

qu
en

cy

−4 −2 0 2 4 6 8

0
2

4
6

8
10

GDP Growth under Democratic Presidents

GDP Growth

F
re

qu
en

cy

−4 −2 0 2 4 6 8

0
1

2
3

4
5

6

GDP Growth under Republican Presidents

GDP Growth

F
re

qu
en

cy

−4 −2 0 2 4 6 8

0
2

4
6

8

Make a box plot

boxplot(grgdpch~as.factor(party),

boxwex=0.3,

range=0.5,

names=c("Democratic\n Presidents",

"Republican\n Presidents"),

ylab="GDP growth",

main="Economic performance of partisan governments")

Note the unusual first input: this is an R formula

y~x1+x2+x3

In this case, grgdpch is being “modeled” as a function of party

boxplot() needs party to be a “factor” or an explicitly categorical variable

Hence we pass boxplot as.factor(party),
which turns the numeric variable into a factor

Box plots: Annual US GDP growth, 1951–2000

Democratic
 President

Republican
 President

−
4

−
2

0
2

4
6

Economic performance of partisan governments

Annual GDP
growth
(percent)

Box plots: Annual US GDP growth, 1951–2000

Democratic
 President

Republican
 President

−
4

−
2

0
2

4
6

Economic performance of partisan governments

Annual GDP
growth
(percent)

mean 3.1

mean 1.7

75th 4.5

25th 2.1
median 2.4

75th 3.2

25th --0.5

median 3.4

std dev 1.7 std dev 3.0

