
CSSS 569: Visualizing Data

Graphical Programming:
R Graphics from the Ground Up

Christopher Adolph

Department of Political Science

and

Center for Statistics and the Social Sciences

University of Washington, Seattle

R from the Ground Up: Outline

Coordinate systems

Line & color

The grid graphics system

Using lattice

Approach

What I’m giving you today:

More readings from the dictionary. . .

Lots of sample code

Random bits of advice I wish someone had told me

Knowledge I consider most useful for graphical programming

I may gloss over something important

Stop me with questions

Initial minimalism

Always start with a blank screen.

filename <- "example.pdf" # Name of output file

width <- 4 # width of output

height <- 4.5 # height of output

pdf(filename=filename,

width=width,

height=height

)

Other pdf options to consider:

family, fontsize, bg, fg

plot.new() # Start the plot

Do some graphics

dev.off() # Save the plot to disk and end

Initial minimalism

A good motto is to add nothing without thinking about why it needs to be added

This approach

• eliminates chartjunk

• casts aside convention for creativity

• gives you complete control

Before we ask

What to put on that screen?

we should ask:

Where to put it?

Coordinate systems

Computer graphics can always be though of as occurring on a 2D plane.

Convenient to treat the bottom left of screen as 0,0 and the top-right as 1,1.

Let’s us put objects on screen w/ easy reference to relative position.

Note this is not an “axis system”.

We have drawn no axes.

If we wanted to draw axes denoting this coordinate space, they would lie off the
screen by definition, because the coordinate system is the screen

This coordinate system complete not just for 2D images, but for representing “3D”
images (ie 2D with false perspective), or for showing movies, or for interactive
displays.

Coordinate systems

Main title

Y
−

ax
is

 la
be

l

X−axis label
0 0.5 2

20

40

60

80

100

2 4 5 6

Are the axes controlling the plot? Or just added ornamentation?

Coordinate systems

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Main title

Y
−

ax
is

 la
be

l

X−axis label
0 0.5 2

20

40

60

80

100

2 4 5 6

Axes don’t control anything. Like everything else, axes are drawn on the canvas

Everything is line and color

What can we to plot? Last time we saw dozens of options

But really, there are just two: line and color

We can build anything from these elements

• Drawing lines:

lines(x,y,...)

Note ... can include col, lty, lwd, etc.

Can even alter the style of the line endings

Everything is line and color

• Drawing filled shapes: polygon(x,y,col="red",border=NA,...)

This draws a red polygon with vertices at (x, y).

Need to set the col and border as above to get a plain shape

If we were hardcore, that would be enough. we could draw anything, even letters
and glyphs from lines() and polygon()

But that would be a real pain.

Add two more primitive commands

• Drawing glyphs:

points(x,y,...)

Note that ... can include col, pch, etc.

• Drawing text: text(x,y,labels,...)

Note ... can include col, xpd, srt, etc.

Useful: offset moves the label a set amount (to position under a glyph)

Programming tips

The best programs are:

• stand-alone functions

• use clear, consistent variable names

• generalized. variables should be allowed to vary

Justify to yourself any numerical constants or strings hard-coded.

Programming tips

#Don’t do this:

example <- function(x,

y) {

points(x=x,

y=y,

col="blue"

)

}

#Do this:

example <- function(x,

y,

col="blue") {

points(x=x,

y=y,

col=col

)

}

Programming tips

More advice:

• Comment on blocks or lines of code

• Think about making your code extensible (hard)

• Think about how your code will interact with other code (hard)

• Be realistic:
do just enough programming to make yourself most efficient as a scientist

The base system: Example

Building traditional R graphics from primitives

x11() # Opens a graphics window (technically, a device)

plot.new() # Clears the graphics screen

Let’s draw a line

lines(x=c(0,0.25), y=c(0,0.5))

We connected the points (0,0) and (0.25,0.5)

The plot so far

The base system: Example

Okay, now let’s draw a kinky line

lines(x=c(0,0.25,0.6), y=c(0,0.5,0.3))

The plot so far

We connected the points (0,0), (0.25,0.5), and (0.6,0.3)
Using lines() we can draw any shape

The base system: Example

What if we want a point?

points(x=0.5, y =0.5)

The plot so far

●

The base system: Example

Or a lot of points?

points(x = runif(100), y = runif(100))

The plot so far

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

The base system: Example

Or a polygon?

xpoly <- c(0.2,0.4,0.4,0.3)

ypoly <- c(0.2,0.2,0.5,0.5)

polygon(x=xpoly,

y=ypoly,

col="green",

border=NA

)

The plot so far

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Notice that it covers everything else. R is ”Painter-style”
Plot polygons first. May use alpha transparency (pdf only)

The base system: Example

We can draw the axes at any time

axis(side=1, # 1 = x. Lovely

at=c(0,0.3,0.8,1), # Where the ticks are

labels=c(0,0.3,0.8,"One") # What the ticks say

)

axis(side=2, # 2 = y. Obviously

at=c(0,0.5,1),

labels=c(0,0.3,"One"),

las=1 # rotate labels

)

title(main = "A scatterplot made from scratch",

xlab = "X-axis label",

ylab = "Y-axis label"

)

box()

The final plot

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

0 0.3 0.8 One

0

0.3

One

A scatterplot made from scratch

X−axis label

Y
−

ax
is

 la
be

l

The grid system

“Traditional” R Graphics are fairly powerful

. . . As long as you only want to make one graphic, with a single coordinate system

Plotting multiple graphs, or plotting “in the margin” is difficult

Workarounds exist, but a package with powerful low level control of multiple plotting
regions would be better

If you are planning to develop new graphical software in R, I recommend using grid

as your toolkit

The grid system

3 things to remember:

• You can create a “plotting region” (with implicit coordinates & axes) anywhere on
the canvas

• You can nest these plotting regions, producing a hierarchical graphical object

• You can reference (and plot to) points with respect to any plotting region using
any system of measurement

Viewports

A grid plotting region is called a viewport

Some key commands:

pushViewport(), upViewport(), downViewport

What can you do with viewports?

• Create separate plotting regions: Grids of plots

• Fine control of margins

• Plots inside plots

• Even plots inside of plotting symbols

Units in the grid system

grid needs to be told the unit of things it plots

Instead of points(x = 0.5, y = 0.25) use

grid.points(x = unit(0.5, "native"), y = unit(0.25, "native"))

Some units available:

native Based on the current x, y scales (e.g., your data)
npc Treats the current viewport as (0,0) to (1,1)
inches This and other physical unit available, given device
strwidth Multiples of the width of a given string
strheight Multiples of the height of a given string
null In layouts, any remaining space is divided among nulls

The last three are very powerful

unit(1, "strwidth", "this string") creates a unit as wide as the text
”this string”

Can’t c() on unit() terms. Use unit.c() instead

Primitives in the grid system

Plot as usual.

Except you need to use the grid packages commands.

Traditional graphics commands don’t work in grid!

Use instead

grid.lines()

grid.polygon()

grid.points()

grid.text()

etc

Primitives in the grid system

Let’s look at an example and an alternative:

grid.points(x, y,

pch = 1,

size = unit(1, "char"),

default.units = "native",

name = NULL,

gp=gpar(),

draw = TRUE,

vp = NULL)

x <- pointsGrob(x, y,

pch = 1,

size = unit(1, "char"),

default.units = "native",

name = NULL,

gp=gpar(),

vp = NULL)

grid graphics parameters

Grid replaces par with gpar

Near complete list (from help(gpar)):

col Colour for lines and borders.
fill Colour for filling rectangles, polygons, ...
alpha Alpha channel for transparency
lty Line type
lwd Line width
cex Multiplier applied to fontsize

lineend Line end style (round, butt, square)
linejoin Line join style (round, mitre, bevel)
linemitre Line mitre limit (number greater than 1)

fontsize The size of text (in points)
fontfamily The font family
fontface The font face (bold, italic, ...)
lineheight The height of a line as a multiple of the size of text

Other important grid commands

layout Makes a layout of viewports
editGrob Edits an existing graphical object
unit.length Returns the length of a unit

A longer grid example

Let’s plot a regression line and shaded confidence envelope

Grid makes most sense if you’re planning to:

• Design an unusual graphic

• Write a function for generic use

This example really isn’t either; so we’ll use lot of code for a little result

An example grid session

Start by loading some data:

rm(list=ls())

file <- "iver.csv";

data <- read.csv(file,header=TRUE);

attach(data)

y <- povred

x <- lnenp

An example grid session

. . . and some helper functions

Here’s an effort at a color lightener that could use work

lighten <- function(col,

pct=0.75,

alpha=1){

if (abs(pct)>1) {

print("Warning: Error in lighten; invalid pct")

pcol <- col2rgb(col)/255

} else {

col <- col2rgb(col)/255

if (pct>0) {

pcol <- col + pct*(1-col)

} else {

pcol <- col*pct

}

}

pcol <- rgb(pcol[1],pcol[2],pcol[3],alpha)

pcol

}

An example grid session

. . . and some more helper functions

Sort a matrix on multiple columns

sortmc <- function(Mat, Sort, decreasing=FALSE)

{

if (decreasing) direction <- -1 else direction <- 1

m <- do.call("order",

as.data.frame(direction*Mat[, Sort,drop=FALSE])

)

Mat[m, ,drop=FALSE]

}

An example grid session

MM-estimator fitting

mmest.fit <- function(y,x,ci=0.95) {

require(MASS)

dat <- sortmc(cbind(y,x),2,decreasing=FALSE)

x <- dat[,2]

y <- dat[,1]

result <- rlm(y~x,method="MM")

print(result)

fit <- list(x=x)

fit$y <- result$fitted.values

fit$lower <- fit$upper <- NULL

if (length(na.omit(ci))>0)

for (i in 1:length(ci)) {

pred <- predict(result,interval="confidence",level=ci[i])

fit$lower <- cbind(fit$lower,pred[,2])

fit$upper <- cbind(fit$upper,pred[,3])

}

fit

}

An example grid session

. . . Now we initialize the plotting area

library(grid)

usr <- c(1,8,20,100)

pdf("testgrid.pdf",width=5,height=5)

Set up the layout

This is optional: we could instead put viewports

anywhere we want

overlay <- grid.layout(nrow=3,

ncol=2,

widths=c(1,5),

heights=c(1,5,1),

respect=TRUE)

Push the initial viewport, which includes a tree of

viewports according to layout

pushViewport(viewport(layout=overlay)

)

The layout we made

(1, 1)1null

1null

(1, 2) 1null

5null

(2, 1)5null (2, 2) 5null

(3, 1)1null

1null

(3, 2)

5null

1null

To make this display: grid.show.layout(overlay) if our grid.layout is overlay

Don’t confuse the grid command grid.layout() with the base command layout()

The layout we made

(1, 1)1null

1null

(1, 2) 1null

5null

(2, 1)5null (2, 2) 5null

(3, 1)1null

1null

(3, 2)

5null

1null

Note the null units. The graphic is 6 nulls high and 5 nulls wide

Null is calculated (e.g., in inches) given any fixed layout widths and the device
dimensions

A different layout

(1, 1)1null

5strheight

(1, 2) 1null

5null

(2, 1)5null (2, 2) 5null

(3, 1)1null

5strheight

(3, 2)

5null

1null

Suppose we set the rightmost column to be the 5× the height of the string “Y axis
label”

With a 5 inch wide pdf device, this is the resulting layout

A different layout

(1, 1)1null
5strheight

(1, 2) 1null
5null

(2, 1)5null (2, 2) 5null

(3, 1)1null
5strheight

(3, 2)
5null

1null

But if we narrow the device to 2 inches, look what happens to the nulls

They shrink to fit!

A different layout

(1, 1)1null

5strheight

(1, 2) 1null

5null

(2, 1)5null (2, 2) 5null

(3, 1)1null

5strheight

(3, 2)

5null

1null

Give the device more space—say, 10 inches—they expand

The nulls have been bound to the same size vertically & horiztonally because we set
respect=TRUE in layout()

A different layout

(1, 1)1null

5strheight

(1, 2) 1null

5null

(2, 1)5null (2, 2) 5null

(3, 1)1null

5strheight

(3, 2)

5null

1null

Setting respect=FALSE allows the nulls to fill the whole device

The layout we made

(1, 1)1null

1null

(1, 2) 1null

5null

(2, 1)5null (2, 2) 5null

(3, 1)1null

1null

(3, 2)

5null

1null

Okay, back to the original layout for now

An example grid session

Push the main title viewport

pushViewport(viewport(layout.pos.col=2,

layout.pos.row=1,

xscale=c(0,1),

yscale=c(0,1),

gp=gpar(fontsize=12),

name="maintitle",

clip="on"

)

)

Note the use of a grid primitive

grid.text("Main title",

x=unit(0.5,"npc"), # Why NPC?

y=unit(0.5,"npc"),

gp=gpar(fontface="bold")

)

Go back up to the top level Viewport

upViewport(1)

The plot so far

Main title

An example grid session

Go to the y-axis title viewport

pushViewport(viewport(layout.pos.col=1,

layout.pos.row=2,

xscale=c(0,1),

yscale=c(0,1),

gp=gpar(fontsize=12),

name="ytitle",

clip="on"

)

)

grid.text("Y-axis label",

x=unit(0.15,"npc"),

y=unit(0.5,"npc"),

rot=90

)

upViewport(1)

The plot so far

Main title

Y
−

ax
is

 la
be

l

An example grid session

Go to the x-axis title viewport

pushViewport(viewport(layout.pos.col=2,

layout.pos.row=3,

xscale=c(0,1),

yscale=c(0,1),

gp=gpar(fontsize=12),

name="xtitle",

clip="on"

)

)

grid.text("X-axis label",

x=unit(0.5,"npc"),

y=unit(0.25,"npc")

)

upViewport(1)

The plot so far

Main title

Y
−

ax
is

 la
be

l

X−axis label

An example grid session

Push the main plot Viewport. Note the scales

pushViewport(viewport(layout.pos.col=2,

layout.pos.row=2,

xscale=c(usr[1],usr[2]),

yscale=c(usr[3],usr[4]),

gp=gpar(fontsize=12),

name="mainplot",

clip="on"

)

)

get the fit from the data

fit <- mmest.fit(y,x,ci=0.95)

Make the x-coord of a confidence envelope polygon

xpoly <- c(fit$x,

rev(fit$x),

fit$x[1])

An example grid session

Make the y-coord of a confidence envelope polygon

ypoly <- c(fit$lower,

rev(fit$upper),

fit$lower[1])

Choose the color of the polygon

pcol <- lighten("blue")

Plot the polygon first

grid.polygon(x=xpoly,

y=ypoly,

gp=gpar(col=pcol,

border=FALSE,

fill=pcol

),

default.units="native")

The plot so far

Main title

Y
−

ax
is

 la
be

l

X−axis label

An example grid session

Then plot the line

grid.lines(x=fit$x,

y=fit$y,

gp=gpar(lty="solid",

col="blue"),

default.units="native")

Finally add a box around the plot

grid.rect(gp=gpar(linejoin="round"))

upViewport(1)

The plot so far

Main title

Y
−

ax
is

 la
be

l

X−axis label

An example grid session

Wait! We haven’t made axes!

Axes plot facing out of the Viewport

pushViewport(viewport(layout.pos.col=2,

layout.pos.row=2,

xscale=c(usr[1],usr[2]),

yscale=c(usr[3],usr[4]),

gp=gpar(fontsize=12),

name="mainplot",

clip="off" # Needed for ticks to show

)

)

let’s make the axis, but not draw it yet

yaxis <- yaxisGrob(at = c(20,40,60,80,100), # Where to put ticks

label = TRUE, # Argh! Only takes logical values

main = TRUE # Left axis (TRUE) or right axis (FALSE)

#gp = gpar(), # Any gpars to change

)

An example grid session

Now we draw

grid.draw(yaxis)

x-axis is tricky. Log scaling

xaxis <- xaxisGrob(at = log(c(2,4,5,6)), # Where to put ticks

label = TRUE, # Argh! Only takes logical values

main = TRUE # Bottom axis (TRUE) or top axis (FALSE)

#gp = gpar(), # Any gpars to change

)

Edit the (undrawn) axis grob to have right ticks

xaxis <- editGrob(xaxis,

gPath("labels"),

label=c(2,4,5,6)

)

Now draw it

grid.draw(xaxis)

upViewport(1)

An example grid session

Done! Whew

dev.off()

The final product

Main title

Y
−

ax
is

 la
be

l

X−axis label
0 0.5 2

20

40

60

80

100

2 4 5 6

Who uses grid?

Two packages written in grid:

Lattice

Tile

It’s a shame grid wasn’t original to R

Clearly superior to base graphics, but a bit steeper learning curve

Multiple plots

Most social science graphics should be small multiples

We have multidimensional data; usually we make many comparisons

Our graphics package should make small multiples easy

R does not.

It’s possible to make multiplot layout in the base package

Use the mfrow mfcol, or mfg options in par

Use the layout command

But these methods require lots of work from the user to look good

One answer: lattice

The lattice package implements a set of techniques pioneered by Bell Labs/Bill
Cleveland.

Basic idea: small multiples that show relations between x and y conditioning on z,
and perhaps w, etc.

Lattice plots consist of multiple panels of plotted data

The panels are linked to strips which identify a conditioning variable

We saw several examples above. This histogram:

Lattice in action

Height (inches)

D
en

si
ty

60 65 70 75

0.00

0.05

0.10

0.15

0.20

Bass 2 Bass 1

60 65 70 75

Tenor 2

Tenor 1 Alto 2

0.00

0.05

0.10

0.15

0.20

Alto 1
0.00

0.05

0.10

0.15

0.20

Soprano 2

60 65 70 75

Soprano 1

Key lattice options

histogram(~ height | voice.part, data = singer,

xlab = "Height (inches)", type = "density",

panel = function(x, ...) {

panel.histogram(x, ...)

panel.mathdensity(dmath = dnorm, col = "black",

args = list(mean=mean(x),sd=sd(x))

)

}

)

dev.off()

Notice two trademark elements of lattice:

• the use of a formula to input the data

• the presence of a customizable panel function

Lattice

Key parameters for lattice plots often hide in panel.XXX() where XXX() is the
function of interest

Example: the key parameter for 3D plots (how to spin them) is screen, which is
documented in panel.cloud() only

par() doesn’t work for lattice.

Use trellis.par.get() and trellis.par.set() to modify lattice parameters

What are the lattice parameters? Mostly undocumented!

print(trellis.par.get()) gives a list of them, for what it’s worth

We’ll talk more about lattice next week

Another example, this time from base

●

●
●

68
70

72

●

●

●
●

●
●●

●●

3000 4500 6000

●
●

●
●●

●

● ● ●
●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

68
70

72

●

●

●●

●

●

●

● ●

●

●
●

68
70

72

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

3000 4500 6000

●

●
●●

●

●

●

●

●

●

●

●

●

●

3000 4500 6000

68
70

72

Income

Li
fe

.E
xp

0.5 1.0 1.5 2.0 2.5

Given : Illiteracy

N
or

th
ea

st
S

ou
th

N
or

th
 C

en
tr

al
W

es
t

G
iv

en
 :

st
at

e.
re

gi
on

Lattice-like graphics in base

attach(data.frame(state.x77))

coplot(Life.Exp ~ Income | Illiteracy * state.region,

number = 3, # of conditioning intervals

panel = function(x, y, ...)

panel.smooth(x, y, span = 0.8, ...)

)

Notice the use of two conditioning variables

Notice the smoother added by panel

