CSSS 569 · Visualizing Data

GALLERY 6: HEATMAPS FOR VISUALIZING CONTINUOUS DYADIC DATA

Christopher Adolph

Department of Political Science

and

Center for Statistics and the Social Sciences

University of Washington, Seattle

Exploring Networks Without a Map

Patterns of trade among dyads often visualized using maps

Map based displays usually constrain amount of data we can plot & absorb

And hard to show direction of trade

Or make comparisons across years or transaction types

Alternative: move away from physical space

Plot a grid showing every country's trade with every other country

This type of plot is known as an image plot

Questions raised by image plots of trade data

How do we select the countries to plot?

How do we order the countries in rows and columns?

What data are we plotting exactly?

How do we turn those data into color (selecting bins)?

How do we select the countries to plot?

Lots of options

Need not choose the same countries for rows and columns

Examples here: N largest importers and M largest exporters

Exporter

Region color codes

East Asia
India Subcontinent
Middle East
Oceania

Europe
Latin America
North America
Southeast Asia

0.00218

0.00218	0.00563	0.00988	0.0135
to	to	to	to
0.00563	0.00988	0.0135	0.0189

0.000348

0.0189

to

0.173

How do we order the countries?

Perhaps the key step

Alpha or random order will tend to hide interesting patterns

Solution: Plot "similar" rows and columns close to each other

Reveals clusters of traders and outliers from prevailing patterns of trade

We use cluster analysis to find which rows and columns cluster together

Heatmap: An image plot with rows & columns ordered by cluster analysis

What data are we plotting exactly?

How do we measure trading relationships?

Total dollars of trade between two countries?

Two problems with this:

- 1. Trade data is directional US imports from China \neq US exports to China
- 2. Big countries have much higher absolute levels of trade
 - → Graphs will tend to highlight well-known relationships only

What data are we plotting exactly?

Option 1:

Measure trade from country i to j as a % of world trade

Global Intensity of
$$Trade_{i \to j} = Imports_{i \to j} / Imports_{\bullet \to \bullet}$$

This gives us two complementary measures for any pair of countries

Solves problem 1 (directionality), not problem 2 (big countries dominate)

What data are we plotting exactly?

Option 2:

Measure trade as a % of imports (by the importer) and exports (by the exporter)

Gives greater weight as dyads become more "exclusive"

Dyadic Intensity of
$$\operatorname{Trade}_{i \to j} = (\operatorname{Imports}_{i \to j} / \operatorname{Imports}_{\bullet \to j}) \times (\operatorname{Imports}_{i \to j} / \operatorname{Imports}_{i \to \bullet})$$

Solves problem 1; partially solves problem 2 (bigger countries have more "partners")

World Trade $^{\prime\prime}=\$1000$ million $^{\prime\prime}$	Amount	Global Intensity	Total	Receiver's Total	Dyadic Intensity
	of Trade	of Trade	Exports	Imports	of Trade
Mexico o US	\$100 m	0.1			
$Sweden \to Finland$	\$1 m	0.001			
China $ o$ Italy	\$1 m	0.001			

World Trade		Global	Sender's	Receiver's	Dyadic
$^{\prime\prime}=$ \$1000 million"	Amount	Intensity	Total	Total	Intensity
	of Trade	of Trade	Exports	Imports	of Trade
$Mexico \to US$	\$100 m	0.1	\$110 m	\$200 m	0.455
$Sweden \to Finland$	\$1 m	0.001			
China $ o$ Italy	\$1 m	0.001			

World Trade	^ +	Global		Receiver's	Dyadic
$^{\prime\prime}=$ \$1000 million $^{\prime\prime}$	Amount of Trade	Intensity of Trade	Total Exports	Total Imports	Intensity of Trade
$Mexico \to US$	\$100 m	0.1	\$110 m	\$200 m	0.455
$Sweden \to Finland$	\$1 m	0.001	\$2 m	\$1.5 m	0.333
$China \to Italy$	\$1 m	0.001			

World Trade		Global	Sender's	Receiver's	Dyadic
$^{\prime\prime}=$ \$1000 million $^{\prime\prime}$	Amount	Intensity	Total	Total	Intensity
	of Trade	of Trade	Exports	Imports	of Trade
$Mexico \to US$	\$100 m	0.1	\$110 m	\$200 m	0.455
$Sweden \to Finland$	\$1 m	0.001	\$2 m	\$1.5 m	0.333
$China \to Italy$	\$1 m	0.001	\$100 m	\$10 m	0.001

How do we turn those data into colors?

We have our transformed trade data by dyad.

To plot it on a heatmap, we need to discretize it, or place it in "bins"

Choosing the cutpoints between bins affects what patterns will emerge from the data

Our dyadic trade data is strongly skewed:

Distribution of Dyadic Trade Intensity, 2001

Dyadic Trade Intensity

Distribution of Dyadic Trade Intensity, 2001

How do we turn those data into colors?

Choosing equally spaced bins will thus submerge most of the variation, and highlight the small handful of strong relationships

Alternatively, we could choose bins based on quantiles, e.g.,

```
Bin 1 50th percentile and below
```

Bin 2 75th percentile down to 50th

Bin 3 85th percentile down to 75th

Bin 4 90th percentile down to 85th

Bin 5 95th percentile down to 90th

Bin 6 97.5th percentile down to 95th

Bin 7 100th percentile down to 97.5th

which is what we've been using for all our previous plots. . .

More advanced features for heatmaps

Color coded nodes:

I've used region here, but could be any variable, categorical or continuous

Change the axes:

To explore the evolution of a single exporter's trading partners, replace the exporter dimension with time, or with different categories of trade

Parquet plots:

Split the square to show change over time, or differences across traded goods

