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Exploratory Data Analysis

Exploratory Data Analysis refers to a approach pioneered by statistician John Tukey

Emphasis on

• letting the data speak for itself

• non-parametric models

• tools for exploring high-dimensional datasets

Relatively little used in social science, where we prefer parametric models

Dangers: sometimes parametric models are fragile, and EDA could help show this

Without preliminary EDA, finding the right parametric specification may be harder



Basic Exploratory Data Analysis

We’ve covered some of the basic tools of EDA:

• scatterplot matrices

• conditional plots (lattice/trellis)

• histogram-like plots

Today, the border between EDA & modeling

Next time, (harder) EDA for high dimensional data



Why is this a topic for visualization?

Simple answer: only way to understand some fits is visually

Deeper answer: visual EDA complements and supports better statistical modeling

Henceforth, our goal will be to use VDQIs to improve our statistical modeling and
inference

Complement to your other coursework



The border between EDA and modeling

Models make simplifying assumptions

The precision of model estimates comes from these assumptions

Wanted: Assumptions “pretty close” to the behavior of the data

How do we check? non-parametric & semi-parametric EDA

Approach: partially relax modeling assumptions, and see if data support simplification

E.g., let the line wiggle if it wants; then check for approximate linearity



A framework for probability models of data

Introducing graphical techniques for a wide variety of statistical methods

→ We need a language to refer to diverse probability models

Most models have a stochatic component:

y ∼ fD(µ, α)

and a systematic component
µ = g(X, β)

y is the data vector of interest. X is a matrix of covariates

fD is a probability density function for distribution D

µ is (usually) the expected value. α is a “nuisance” parameter vector

β is a parameter vector associated with the covariates



A framework for probability models of data

y ∼ fD(µ, α)

µ = g(X, β)

nests most (if not all) models you know.

Linear regression: y ∼ fNormal(µ, σ
2)

(continuous data) µ = Xβ

Logit: y ∼ fBernoulli(µ)
(binary data) µ = [1− exp(−Xβ)]−1

Poisson: y ∼ fPoisson(λ)
(count data) λ = exp(Xβ)

and so on.



A framework for probability models of data

Note the parallel to the notation of Generalized Linear Models (GLMs)

For example, we can write logit equivalently

y ∼ fBernoulli(µ) y ∼ fBernoulli(µ)

µ = g(Xβ) g−1(µ) = Xβ

µ = [1− exp(−Xβ)]−1 log[µ/(1− µ)] = Xβ

The framework on the left applies to just about any distribution you will encounter

It is equivalent to the form on the right, which is customary for GLMs.
g(·) is called the link function in the GLM context

GLMs are a class of models for which fD is a member of the exponential family
(which includes the Normal, Binomial, Gamma, and Poisson; see family())



A framework for probability models of data

Nice aspects of the framework:

• Very general. Works for most any model, and most any estimation method
(Maximum likelihood, Bayesian inference, etc.).

• Focuses on the data of interest, y

• Reduces attention to β, which is just a cog in the machine that turns X into y

• For different models, β has different, usually non-obvious interpretations, but

• In each case y, E(y|X), & E(yc−yd|Xc,Xd) have simple, substantively interesting
interpretations

Under this framework, our problem is simply to explain how y, or an intresting
function of y, varies as we change X.

That’s what modeling is for.

That’s what we want to visualize.



Unpacking the framework

Let’s focus on
µ = g(X,β)

Here are some typical specifications of the RHS of this equation in LS models

µ = β0 + β1X1 + β2X2 + . . .

µ = β0 + β1X
2
1 + β2X2 + . . .

µ = β0 + β1X1 + β2 log(X2) + . . .

A general form for these transformations:

µ = η + h1(β1, x1) + h2(β2, x2) . . .



Unpacking the framework

A general form for these transformations:

µ = η + h1(β1, x1) + h2(β2, x2) . . .

which we can write compactly as:

µ = η +

p∑
k=1

hk(βk, xk)

hk(·) could be any arbitrary function.

We could multiply β by the square of xk

We could multiply β by the log of xk

We could multiply β by the average of the nearest t neighboring x’s



Unpacking the framework

µ = η +

p∑
k=1

hk(xk)

What if we don’t even need a βk for some of our hk(· · · )?

E.g., use a running average of y over the last 3 values of x

Then we get a nonparametric specification

Note that nonparametric does not mean choiceless—
we still had to choose 3 rather than 5 values to average

But there is no parameter being estimated



Non-parametric models: smooths

Non-parametric “smooths”, like the moving average, fall on the border between plots
of the data and traditional regression models

Scatterplots leave model “fitting” up to the viewer’s eyes

Regression models, such as this linear regression on polynomials:

yi = β0 + βX1i + β1X
2
1i + εi

or this probit regression on linear terms

Pr(yi) = FNormal(β0 + βX1i, 1)

make assumptions the viewer must take on faith, esp. the specification

Choices about whether terms should enter as linear, cubed, logged, etc are often
arbitrary

Smooths reduce the influence of the model on functional form, in favor of the data



Non-parametric models: smooths

Some commonly used smoothers:

• running averages

• running medians

• loess

• splines

• kernel density (mainly useful for smoothing histograms)

Let’s look at how a variety of smoothers deal with a simple dataset:

Turnout as a function of %Hispanic voters in a Pennsylvania State Senate election
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Least squares fit

Percent Hispanics among Voting Age Population, by precinct
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res.lm <- lm(t~x,na.action="na.omit")

abline(res.lm$coefficients[1],res.lm$coefficients[2],col="blue",lwd=2)
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Quadratic (LS) fit

Percent Hispanics among Voting Age Population, by precinct
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res.q <- lm(t~x+I(x^2),na.action="na.omit")

pred.q <- allx <- seq(0,1,0.01)

for (i in 1:length(allx)) {

pred.q[i] <- res.q$coefficients[1] + res.q$coefficients[2]*allx[i]

+ res.q$coefficients[3]*allx[i]^2

}
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5th order polynomial (LS) fit

Percent Hispanics among Voting Age Population, by precinct
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res.q <- lm(t~x+I(x^2)+I(x^3)+I(x^4)+I(x^5),na.action="na.omit")

etc. Danger of overfitting with any polynomial fit.
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Smoothing splines (Smoothing determined by cross−validation)

Percent Hispanics among Voting Age Population, by precinct
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lines(smooth.spline(y=t,x=x),col="blue",lwd=2)

We can approximate high order polynomial fits with smoothing splines

This function tries to avoid overfitting by selecting the “wiggliness” based on
cross-validation
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Running median (window of 5 observations)

Percent Hispanics among Voting Age Population, by precinct
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This works only if t and x both sorted by x first:

lines(x=x,y=runmed(t,k=5),lwd=2,col="blue")

Maximum robustness. Not very smooth though.
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Running median (window of 11 observations)

Percent Hispanics among Voting Age Population, by precinct
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This works only if t and x both sorted by x first:

lines(x=x,y=runmed(t,k=11),lwd=2,col="blue")

Maximum robustness. A bit smoother, but we’d like another alternative
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Loess fit (bandwidth=0.25, order=1)

Percent Hispanics among Voting Age Population, by precinct
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res.loess25 <- loess(t~x,

surface="direct",

degree=1,

span=0.25)

pred.loess25 <- predict(res.loess25,newdata=allx)

lines(x=allx,y=pred.loess25,col="blue",lwd=2)
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res.loess50 <- loess(t~x,

surface="direct",

degree=1,

span=0.5)

Higher bandwidth → a smoother plot



●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●●●●

●

●

●

●

●

●●●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●
●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

● ●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●
●
●

●
●

●
●
●

●
●

●
●●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

Loess fit (bandwidth=0.95, order=1)

Percent Hispanics among Voting Age Population, by precinct

T
ot

al
 tu

rn
ou

t i
n 

pr
ec

in
ct

res.loess95 <- loess(t~x,

surface="direct",

degree=1,

span=0.95)

This is about as high as we go. Note that we find a kink.



Non-parametric models: smooths

Lots of mathematical details here.

But key issue is how much flexibility to allow

In each model, there is a choice of how flexible the fit should be

• for loess and kernel, the bandwidth;

• for splines, the degree of smoothing and number of knots

• for running averages, the number and period of the averages



Loess

How do we perform this fit? And why is there no β?

ŷ = floess(x)

Interactive version of the following:

demonstrations.wolfram.com/HowLoessWorks

demonstrations.wolfram.com/HowLoessWorks


Loess is locally weighted polynomial regression

To fit n datapoints y given x using loess:

1. Choose a sequence x∗ at which to calculate loess fits y∗
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2. Choose a smoothing parameter α



Loess is locally weighted polynomial regression

To fit n datapoints y given x using loess:

1. Choose a sequence x∗ at which to calculate loess fits y∗

2. Choose a smoothing parameter α

3. Choose a polynomial order λ; usually 1 or 2



Loess is locally weighted polynomial regression

To fit n datapoints y given x using loess:

1. Choose a sequence x∗ at which to calculate loess fits y∗

2. Choose a smoothing parameter α

3. Choose a polynomial order λ; usually 1 or 2

4. For each x∗,

(a) Select the αn/2 nearest neighbors to x∗,



Select the αn/2 nearest neighbors to x∗



Loess is locally weighted polynomial regression

To fit n datapoints y given x using loess:

1. Choose a sequence x∗ at which to calculate loess fits y∗

2. Choose a smoothing parameter α

3. Choose a polynomial order λ; usually 1 or 2

4. For each x∗

(a) Select the αn/2 nearest neighbors to x∗,
(b) Apply weights descending in distance from x∗



Apply weights descending in distance from x∗



Loess is locally weighted polynomial regression

To fit n datapoints y given x using loess:

1. Choose a sequence x∗ at which to calculate loess fits y∗

2. Choose a smoothing parameter α

3. Choose a polynomial order λ; usually 1 or 2

4. For each x∗

(a) Select the αn/2 nearest neighbors to x∗,
(b) Apply weights descending in distance from x∗

(c) Fit by WLS yselected on the λth order polynomial of xselected



WLS of yselected on the λth order polynomial of xselected



Loess is locally weighted polynomial regression

To fit n datapoints y given x using loess:

1. Choose a sequence x∗ at which to calculate loess fits y∗

2. Choose a smoothing parameter α

3. Choose a polynomial order λ; usually 1 or 2

4. For each x∗

(a) Select the αn/2 nearest neighbors to x∗,
(b) Apply weights descending in distance from x∗

(c) Fit by WLS yselected on the λth order polynomial of selected

(d) Record only the WLS prediction of y∗ (discard the rest of the line)



Record only the WLS prediction of y∗



Loess is locally weighted polynomial regression

1. Choose a sequence x∗ at which to calculate loess fits y∗

2. Choose a smoothing parameter α

3. Choose a polynomial order λ; usually 1 or 2

4. For each x∗

(a) Select the αn/2 nearest neighbors to x∗,
(b) Apply weights descending in distance from x∗

(c) Fit by WLS yselected on the λth order polynomial of selected

(d) Record only the WLS prediction of y∗ (discard the rest of the line)

5. Connect the fitted y∗’s with a line.

Key issue here is the bandwidth parameter, α. Lower values make a jerkier line;
higher values a smoother one

If your data seem to curve, use a quadratic fit within loess (λ = 2) to get a better fit



What the heck is a “spline”?

Splines are a concept from carpentry, of all places

Splines let us summarize very complex curves with a few numbers

Basic idea:

• Imagine a flexible piece of wood.

• We pick it up and bend in many places;

• then tack it down (at “knots”) to a board.



The idea behind splines

Photo of draftman’s spline from Carl de Boor
www.cs.wisc.edu/~deboor/draftspline.html



Splines in statistics

Many similar shapes can be approximated by local cubic polynomials, which we will
call cubic splines

(Note: there are many kinds of splines.)

Even more than loess,
Cubic splines rely on simple local structure to create global flexibility

1. Start with a few data points.

2. Connect every point to its nearest neighbor with a (twice differentiable) cubic
polynomial

3. To make a “smoothing” or approximate spline,
take the weighted average of the spline and the least squares fit

4. Choose knots & amt of smoothing subject to a penalized likelihood criterion, e.g.,

max(2× log-likelihood − trade-off × smoothness penalty )



Spline examples

Using demonstration software

http://www.particleincell.com/blog/2012/bezier-splines/

http://www.particleincell.com/blog/2012/bezier-splines/


More complex example: Democracy & Development

The relationship between democracy, dictatorship, and economic development is
well-explored in political science

Key recent work: Przeworksi, Alvarez, Cheibub & Limongi. Democracy and
Development: Political Insitutions and Well-being in the World, 1950–1990

We’ll borrow their data, but run much cruder models

In particular, PACL investigate selection bias and the difference between creation and
sustenance of democracies.

We’ll ignore these issues, and consider covariates of

the degree of civil liberties (CIVLIB: 1-7 scale)

the presence of democracy (REG: 0-1 binary)



More complex example: Democracy & Development

Our candidate covariates

GDPW GDP per capita in real international prices
EDT average years of education
ELF60 ethnolinguistic fractionalization
MOSLEM percentage of Muslims in country
OIL whether oil accounts for 50+% of exports
STRA count of recent regime transitions
NEWC whether county was created after 1945
BRITCOL whether country was a British colony

Let’s start with the simplest model we can run.

Is there a relationship between civil liberties and economic development?

Let’s pretend linear models are appropriate for this categorical variable
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Leaving aside the categorical nature of the data,
does this fit look “right”?
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Loess reveals “thresholds”.

A problem: We haven’t controlled for anything

Smoothers won’t be much use if we’re restricted to bivariate models

Fortunately, there is a generalization to the multivariate case. . .



Generalized Additive Models (GAMs)

Generalized Additive Models are a generalization of GLMs

incorporate smooths into multiple regression, and into logit, probit, etc.

GAMs take the following form:

g−1(µ) = α+

p∑
j=1

βjXj +

q∑
k=1

fk(Zk)

where y is a response, Xj and Zk are covariates, and fk is a smoothing function

Note we can estimate parametric relations for some covariates, and non-parametric
for others

fk are often splines or loess fits



GAM for Democracy

Let’s control for the rest of our variables while letting the degree of political liberties
remain a smooth function of the level of development

Sample code:

library(mgcv)

res.gam1 <- gam(POLLIB~s(GDPW)+EDT+NEWC+BRITCOL+STRA+ELF60+OIL

+MOSLEM)

summary(res.gam1)

Notes:

• This is the gam function in mgcv.
There is another gam in library gam; slightly different

• Without specifying a distribution family,
gam defaults to a linear Normal model

• We could specify more details of the smooth;
this code just let’s R find the best smoothing spline by cross-validation



Output of summary(res.gam1)
Family: gaussian

Link function: identity

Formula:

POLLIB ~ s(GDPW) + EDT + NEWC + BRITCOL + STRA + ELF60 + OIL +

MOSLEM

Parametric coefficients:

Estimate std. err. t ratio Pr(>|t|)

(Intercept) 3.8475 0.1552 24.8 < 2.22e-16

EDT 0.11236 0.02354 4.773 1.9840e-06

NEWC -0.79545 0.1125 -7.07 2.3322e-12

BRITCOL 1.1263 0.09354 12.04 < 2.22e-16

STRA -0.16153 0.04582 -3.525 0.00043583

ELF60 -0.2774 0.1521 -1.824 0.068387

OIL -0.45368 0.1214 -3.737 0.00019278

MOSLEM -0.0024823 0.001295 -1.917 0.055408

Approximate significance of smooth terms:

edf chi.sq p-value

s(GDPW) 7.666 328.44 < 2.22e-16



R-sq.(adj) = 0.638 Deviance explained = 64.1%

GCV score = 1.8114 Scale est. = 1.7934 n = 1580



mgcv’s gam has preset graphics
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Above made with: plot(res.gam1,pages=1,all.terms=T)

plus editing in Illustrator



We can smooth over two dimensions
Suppose we wanted to smooth over both development & education:

One way is to let each smooth be additive to the response:

library(mgcv)

res.gam2 <- gam(POLLIB~s(GDPW)+s(EDT)+NEWC+BRITCOL+STRA+ELF60+OIL

+MOSLEM)

summary(res.gam2)

which lets more of the above plots be smooths

Another way is to let the smooths “interact.” Sample code:

library(mgcv)

res.gam2 <- gam(POLLIB~s(GDPW,EDT)+NEWC+BRITCOL+STRA+ELF60+OIL+MOSLEM)

summary(res.gam2)

Now there is a smooth surface relating the joint levels of GDPW & EDT to POLLIB

We can visualize this with

vis.gam(res.gam2, view=c("GDPW","EDT"), type="response",

ticktype="detailed", theta=0, phi=20)



A smooth over two covariates together
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Interpretation is challenging, but this may be occassionally enlightening



A logit example using GAM
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We can use GAM to fit GLM type models. What are the correlates of Democracy?



A logit example using GAM
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res.gam4 <- gam(REG~s(GDPW)+EDT+NEWC+BRITCOL+STRA+ELF60+OIL

+MOSLEM, family=binomial())

summary(res.gam4)

plot(res.gam4, pages=1, all.terms=TRUE)



A logit example using GAM
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When the GAM is a nonlinear model (e.g., logit), the scale is difficult to interpret

It would be better if the y-axes were in the units of Pr(REG)



One last smooth: kernel density estimation
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(Source for KDE diagrams: Stefanie Scheid - Introduction to Kernel Smoothing)

Another popular smoother is kernel density estimation (KDE)

KDE treats each data point as the center of a “kernel”, and adds those kernels up

This let’s the effect of each datapoint “smooth out”.
Shape of smoothing out is the kernel; degree of smoothing is the bandwidth



Choices of kernels to place around datapoints
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Epanechnikov minimizes error. But not usually important which you choose.



Smoothing a histogram

From over- to undersmoothing
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Bandwith is an important choice, as with any smoother.



Smoothing a histogram

From over- to undersmoothing

KDE with b=0.05
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Bandwith is an important choice, as with any smoother.



Smoothing a histogram

From over- to undersmoothing

KDE with b=0.02
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Bandwith is an important choice, as with any smoother.



Smoothing a histogram

From over- to undersmoothing

KDE with b=0.005
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Bandwith is an important choice, as with any smoother.



Uses of KDE

KDE is very useful for smoothing histograms of all kinds

If you draw from the predictive or posterior distribution of a model,
you can smooth with KDE

This works even in two dimensions
(e.g., you want the joint confidence region of two parameters)

Generally, if you have a 2D histogram, and you want contours, consider KDE

In R, see the density() command for one dimensional KDE

See kde2d in the MASS library for 2D version



The curse of dimensionality

The biggest problem in visual display is that humans can only perceive 3 dimensions

Most data, esp in social sciences, have many variables; potentially many dimensions

Paper & computer screens are even more limiting: 2D

Three approachs to fighting the curse of dimensionality:

• Cleverly display all the data.

• Use models to reduce the number of dimensions

• Use time & motion



Clever display of the whole dataset

This is what we’ve done all quarter:

1. Small multiples

2. Glyphs

3. Layer pre-attentive elements

We’ve seen lots of examples.

Here is a final example that pushes the envelope



temp pressure wind precip frost

Figure 13: Nonphotorealistic visualization of weather conditions over the eastern United States: (top row) perceptual color ramps (dark blue for low to bright
pink for high) of mean temperature, pressure, windspeed, precipitation, and frost frequency in isolation; (bottom row) combined visualization of temperature
(dark blue to bright pink for cold to hot), pressure (low to to high energy for low to high), windspeed (low to high coverage for weak to strong), precipitation
(upright to flat for light to heavy), and frost frequency (regular to irregular for low to high)

42



temp pressure wind precip frost

Figure 13: Nonphotorealistic visualization of weather conditions over the eastern United States: (top row) perceptual color ramps (dark blue for low to bright
pink for high) of mean temperature, pressure, windspeed, precipitation, and frost frequency in isolation; (bottom row) combined visualization of temperature
(dark blue to bright pink for cold to hot), pressure (low to to high energy for low to high), windspeed (low to high coverage for weak to strong), precipitation
(upright to flat for light to heavy), and frost frequency (regular to irregular for low to high)

42

Source: Christopher G. Healey, “Combining Perception and Impressionist Techniques
for Nonphotorealistic Visualization of Multidimensional Data”, SIGGRAPH 2001
Course 32: Nonphotorealistic Rendering in Scientific Visualization 2001,
http://www.csc.ncsu.edu/faculty/healey/download/sig-course.01.pdf

Does the 5-dimensional version work “better” than the small multiples?

For look-up, no. But for gestalt impressions, perhaps worth looking at both.

I’ve experimented with the same 5 dimensions independently. Probably near the limit
for a single diagram. Challenging to process.

So let’s try to reduce dimensions while keeping most of the data



Principal Components Analysis (PCA)

PCA is related to factor analysis and multidimensional scaling

Details involve a lot of linear algebra; what follows is a conceptual summary

Imagine a dataset with k variables plotted in k-space



A candidate for PCA

(Source: Michael Palmer, ordination.okstate.edu/PCA.htm)

For example, k = 3. Note the different scales.

It will help to normalize these variables to have mean 0 and unit variance.



The revised data

We’re going to come up with a new set of dimensions, ≤ k, that best explain and
separate the variance in these data

We search for new axes (components) sequentially



The principal components

The first principal component PC1 is the axis that minimizes remaining variation in
the data

The second pc is the axis, orthogonal to PC1, that explains the greatest part of the
remaining variation

etc



The principal components

Two principal components are often (but not always) a nearly complete replacement
for the k original dimensions

Each principal component can be seen as a linear combination of the original k axes



From PCA to biplots

Next we switch to the PC space, and plot in that space the locations of both the
data and the original dimensions

This simultaneous plot of dimensions and data is called the biplot

Let’s use some US state budget data as an example.



1992 state spending in 6 policy areas

Source: William G. Jacoby, Statistical Graphics for Visualizing Multivariate Data,
Sage Paper 07-120.



Reading biplots

Reading biplots takes practice. Some tips:

Start with the dimensions.

If two dimensions are overlapping, they are perfectly positively correlated

If 2 d’s form a 180 degree line, they are perfectly inversely correlated

If 2 d’s form an acute angle, they are somewhat positively correlated

If 2 d’s form an obtuse angle, they are somewhat negatively correlated

If 2 d’s form a 90 degree angle, they are orthogonal

The dimensions meet at the origin (0,0). (Why?)

Data far from the origin are outliers

Distances between points are Mahalanobis distances
(b/c we standardized the variables to have unit variances)



Democracy & Development Redux

Let’s apply the biplot to our Democracy & Development data

It will help to start small. Let’s look at just a few continuous variables:

• Development

• Political liberties

• Average educational attainment

In R, we use the following code:

pca<-princomp(~POLLIB+GDPW+EDT)

biplot(pca)
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biplot(pca,xlim=c(-0.075,0.03),cex=c(0.5,1.2))

biplot() has several options, but is surprisingly inflexible.

I had a hard time producing remotely readable graphics
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The fans of points up and down from the data axes look like outliers

We can look up these points.

Jamaica features prominently in the top fan and Iran in the bottom fan



Where do these tools fit in?

Three questions:

• What do the data look like?

• Does my model look like the data?

• What does my model look like?

Note a key difference between:

Partial effects Unconditioned relationship

regression correlation matrices
GAMs PCA/biplots
Coplots scatterplot matrices

Because of concerns with confounders, the left column is preferred in social science

But the right column is still useful as for exploration/model building



Interactive plotting

R doesn’t do interaction or motion well.

For that matter, neither do journals printed on dead trees

A better model for science may be interactive graphic applets embedded in hypertext
articles.

(Playing with your interactive graphic, your reader might find something you missed.
A bit scary, no?)

My guess: this is coming.

For now, we need to use specialized packages for interactivity.

There are several options; I recommend Ggobi.



Ggobi

Like R, Ggobi has an unimpressive start-up “screen”.

Contains many tools that are most powerful when used together

• Scatterplot matrices

• Parallel coordinate plots

• Brushing

• Grand tours
(Roughly, random rotation of the biplot)

• Guided tours
(Roughly, user-guided search through the biplot)

Let’s explore. . .
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