LaTeX offers a powerful set of scientific typesetting tools but tends to lock users into a single set of functional-but-aesthetically limited fonts. Changing fonts in LaTeX is so cumbersome that few users ever make the effort — and few such efforts are rewarded. XeTeX is a powerful new engine for compiling LaTeX code which lets users select more readable or beautiful fonts. But even in XeTeX selecting and optimizing a set of replacement fonts is a time-consuming and potentially expensive task.

This document explains how to install the XeTeX stylesheet caxetexFree and associated freely available opentype fonts. Using this stylesheet, users can quickly upgrade to a more readable format for scientific papers, presentations, and curricula vitae without spending money on new fonts or time writing new code. Simply install the stylesheet and fonts as directed below, add \usepackage{caxetexFree} to the preamble of your LaTeX documents, and compile your documents with pdfxe- tex instead of pdflatex.
However, caxetexFree also loads a complete suite of packages and settings for beautiful book and paper design – if \LaTeX{} is the Swiss Army sledgehammer of typography (as John Regehr put it), this sort of style sheet is an effort to jam a few more tools on, then wrap the whole monstrosity in velvet. Out of the many things caxetexFree was built to do, a few features are documented below, along with suggestions for layout of tables and figures, and thoughts on customizing the package for use with other fonts. Users seeking more ideas for use of this package might look at the book I typeset using its big brother, caxetexBook, which differs mainly in using commercial fonts.1

Installation

caxetexFree uses five free Opentype typefaces. While these typefaces can be freely downloaded from their original creators, they cannot be freely redistributed, so you will need to download them directly from the following websites:

- **Linux Libertine** www.linuxlibertine.org
- **Adobe Source Sans** sourceforge.net/adobe/sourcesans/wiki/Home
- **Inconsolata** www.levien.com/type/myfonts/inconsolata.html
- **Museo Slab 500** www.myfonts.com/fonts/exljbris/museo-slab

In each case, you will likely end up with a .zip files containing a number of files. The key files to collect from these archives are those with the extension .otf. Specifically, you need the following font files:

- LinLibertine_R.otf
- LinLibertine_RI.otf
- LinLibertine_RZ.otf
- LinLibertine_RZI.otf
- SourceSansPro-Regular.otf
- SourceSansPro-It.otf
- SourceSansPro-Bold.otf
- SourceSansPro-BoldIt.otf

If you use a Mac, you should place the above files in the /Library/Fonts folder in root; doing so will install these fonts for your immediate use.

Windows users can install these fonts from the Start menu. Select Control Panel, then Fonts, then Install New Font, and select the files listed above. Unsurprisingly, you may need to restart Windows to complete the installation.

After installing the required fonts, users have two options for installing caxetexFree.sty itself. A simple solution is to place this file in the same directory as the tex file to be compiled. A more permanent solution is to place caxetexFree.sty in the local path of your Latex installation, and then update the Latex package database by running mktexlsr at the command prompt.

Usage

Compiling XeTeX documents is fundamentally similar to compiling LaTeX documents, and your LaTeX installation may already include a XeTeX engine.

For Mac users of MacTeX, this is almost certainly the case unless your installation is venerable. Moreover, if you use Aquamacs to compile your LaTeX documents, you need take only one step: with your document open and ready to compile, go to the Command menu, choose TeXing Options, and select XeTeX engine, and check to make sure that Generate PDF is also selected. Now when you choose LaTeX from the Command menu, your file will compile with pdfxetex.

For Windows users... to add
Support for Numbers

Most fonts contain two kinds of numbers: oldstyle or "lowercase" numerals (1234567890), which are often easier to read when mixed with text or arrayed in tables, and lining or "uppercase" numerals (1234567890), which look more modern and tend to look better in mathematical formulas, where numbers should stand out from variables. The stylesheet tries to use the appropriate number in any given situation, but it is possible to override the defaults.

In text mode, the default is oldstyle numbers (1234567890). If you want a number like 15 to show up as lining, use \text{15}. As recommended by most typographers, numbers inside of math mode (that is, inside $$ or an equation environment) will always be lining. For example, using the usual Latex math notation, we might have

$$
Pr(\gamma_j = j|\tau, \beta, x_i) = \int_{\tau_{j-1}}^{\tau_j} \mathcal{N}(x_i \beta, 1) \, dx_i \beta.
$$

(See the Appendix for underlying code.) If you want oldstyle numbers in an equation, wrap each number in \text{}.

By default, numbers in a tabular environment will be oldstyle. Control of numbers inside a tabular environment can be tricky, especially if you also want to center a numeric column on the decimal, as is usually desired. To create a column of decimal-centered numeric data set in oldstyle numbers, use column type S. This is usually the most elegant option (see Table 1 below). However, if you want a column of numeric data to be decimal-centered lining numerals, use column type :. In general, to make a specific number in a table to be lining, wrap the number in \text{1}. This is necessary for most numbers embedded in \multicolumn{} commands, should lining numbers be desired.

\[\text{2} \] XeTeX compiles directly to PDF without passing through a .dvi or postscript stage. While this is mostly convenient, it means you won't be able to use the graphics package \texttt{pstricks} in XeTeX.
Expanded Text Options

Properly installed, the stylesheet includes numerous options for text beyond the usual Roman typeface. In addition to *italics*, **bold**, *bold italics*, and their *sans serif* variants — all of which rely on the usual LaTeX commands — the stylesheet offers support for nicely *letter-spaced small caps* and a *slab serif* font, also available in *italics*.

These are *letter-spaced small caps*, which are made using:

```
\textsc{\L{a}t{e}x\textsc{\caps{your text here in lowercase}}}
```

As an alternative, these are *tightly-spaced small caps*, which are made using:

```
\textsc{your text here in lowercase}
```

If you want to put text in a *slab serif font* — trendy and nice for emphasis or display — wrap the text in `\textsb{your text here}`.³

Recommended Caption Styles for Tables and Figures

To ensure XeTeX uses your typeface for numbers in tables, and not the default LaTeX font, it is often best to use the *siunitx* package to enable the powerful *S* column for tabular environments.⁴ For an example, see Table 1 and the relevant code in the Appendix. Table 1 and Figure 1 (*to add*) also demonstrate recommended caption styles for *caxetexFree* users.

Using *caxetexFree* as a Template

For those interested in exploring the use of new fonts in their XeTeX documents, modifying and building on *caxetexFree* may be a relatively easy way to get started, but users should be warned: while XeTeX and OpenType fonts make it easier to use your desired fonts, but if you want to produce professional-quality documents, there’s more to do than just loading up the new fonts. Put bluntly, unless you truly love type and typesetting, it makes sense to find a system that works for you, get on with the

³ `\textsb` is a special command for my style sheet — it doesn’t work unless you load some version of *caxetex*.

⁴ For complex tables, it may also be necessary to revise the options for tabular environments set by `\sisetup`.
Table 1. Main caption of a regression table.

<table>
<thead>
<tr>
<th>Covariates</th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A covariate</td>
<td>1.0</td>
<td>−2.0</td>
</tr>
<tr>
<td></td>
<td>(0.2)</td>
<td>(0.1)</td>
</tr>
<tr>
<td>Another covariate</td>
<td>1.1</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>(0.4)</td>
<td>(1.2)</td>
</tr>
<tr>
<td>(N)</td>
<td>123</td>
<td>99</td>
</tr>
<tr>
<td>(\text{s.e.r.})</td>
<td>0.05</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Note that Model 1’s results are in Oldstyle numerals (column type \(\text{S}\) and Model 2’s results are in Lining numerals (column type \(\text{L}\)). To place an individual number in lining numeral, wrap them in \(\text{lnt}\).
Table 2. A guide to harmonious type combinations.

<table>
<thead>
<tr>
<th>Cells are exemplary typefaces</th>
<th>Style</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>“Dynamic”</td>
<td>“Static”</td>
<td>“Geometrical”</td>
</tr>
<tr>
<td>Humanist</td>
<td>(walker)</td>
<td>(soldier)</td>
<td>(robot)</td>
</tr>
<tr>
<td>Sans serif</td>
<td>Gill Sans</td>
<td>Helvetica</td>
<td>Futura</td>
</tr>
<tr>
<td>Slab serif</td>
<td>Caecillia</td>
<td>Glyph</td>
<td>Rockwell</td>
</tr>
</tbody>
</table>

To mesh type across forms (rows), choose a single style (column) and select typefaces like those in that column. The columns are ideal types, and intermediate mixtures are also possible – this document is typeset using “transitional” typefaces that lie somewhere between humanist and neoclassical styles.

Load the .otf files, being sure to use exactly the right font family name. Then after getting a document to compile using the new fonts, you should check for typographical errors or awkwardness and revise the adjustable parameters of `caxetexFree` as needed. It is typically necessary to adjust:

1. the *x*-height of various fonts to achieve a good match;
2. the leading, which is set separately for the main text (through the `\linespread` argument), the captions (through the options to `\usepackage{caption}`), and the footnotes (through `\footnotesep`);
3. the paragraph indent length;
4. the size of titles, chapter titles, and section heads;

6 This is the last argument to `fontspec`; for example, the font family name of Linux Libertine is `Linux Libertine O`. One easy way to check font family names is to select the font in OpenOffice, which identifies fonts by this name.
7 The automatic `MatchLowercase` option doesn’t always work.
(5) various tolerances; and

(6) the point size of the document, normally set in the first line of the .tex file.

If you do embark on changing the fonts in caxetex, you might test your new stylesheet by compiling this document, which embeds the typographical elements most likely to go wrong without stylesheet tweaking. Good luck!
Appendix: Code for Examples

Code for Equation 1

\begin{equation}
\mathbb{P}(y_i = j | \tau, \beta, x_i) = \int_{\tau_{j-1}}^{\tau_j} \mathcal{N}(x_i \beta, 1) \, dx_i \beta.
\end{equation}

Code for Table 1

\begin{table}[tbph]
\centering
\parbox{2.825in}{\caption{Main caption.}\label{tab:thistable}}\vspace{-0.8em}
\begin{tabular}{lSS}
\toprule
Covariates & \multicolumn{1}{c}{Model 1} & \multicolumn{1}{c}{Model 2} \\
\midrule
A covariate & 1.0 & -2.0 \\
& \(0.2\) & \(0.1\) \\
Another covariate & 1.1 & 3.0 \\
& \(0.4\) & \(1.2\) \\
\midrule
N & \multicolumn{1}{c}{123} & \multicolumn{1}{c}{99} \\
s.e.r. & 0.05 & 0.10 \\
\bottomrule
\addlinespace[0.15em]
\multicolumn{3}{p{2.7in}}{Additional details. This portion may wrap around to multiple lines.}
\end{tabular}
\end{table}

Revised January 21, 2013
\end{table}