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Consider this panel model:

yit = φyi,t−1 + xitβ + αi + εit

Remove the fixed effects αi by differencing (the within estimator)

yit − ȳi = φ(yi,t−1 − ȳi) + (xit − x̄i)β + (εit − ε̄i)

What happens if we estimate this with LS?

Notice estimates of ȳi must be correlated with the error term εit − ε̄i

Why? Consider the unit-average version of the model:

ȳi = φȳi + x̄iβ + ε̄i

ȳi − φȳi = x̄iβ + ε̄i

ȳi =
x̄iβ + ε̄i

1− φ



Bias in AR(1) Panels with fixed effects & small T

yit − ȳi = φ(yi,t−1 − ȳi) + (xit − x̄i)β + (εit − ε̄i)

When a regressor and the error are correlated, estimates are biased and inconsistent

In this case estimates are inconsistent in N : φ̂− φ 6→ 0 as N →∞

However, estimates are still consistent in T : φ̂− φ→ 0 as T →∞

The degree of bias is of order 1/T , so for small T , this is a big problem

Just how much bias in φ̂? in β̂? in long run effects?



Bias in AR(1) Panels with fixed effects & small T

Nickell (1981) characterizes the degree of bias in φ̂:

φ̂− φ→

−(1 + φ)

T − 1
×
[
1− 1

T
× 1− φT

1− φ

]
1− 2φ

(1− φ)(T − 1)
×
[
1− 1

T
× 1− φT

1− φ

] as N →∞

As noted, the bias in φ̂ is O(1/T ), and for “reasonably large T” is

φ̂− φ ≈ −(1 + φ)

T − 1
as N →∞

Upshot: φ̂ will always be underestimated in dynamic fixed effects models,
but this bias vanishes as T increases

A picture of some example cases helps clarify where the dangers lie

But to understand the practical implications of Nickell bias we need Monte Carlo
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Bias in φ̂ can be substantial, especially for small T or large φ

What about models with covariates? Bias in β̂? Bias in long run effects, β̂/(1− φ̂)?

These are the real quantities of interest, not φ!



Some Monte Carlo evidence

When does the FE estimator significantly bias the actual quantities of interest:
the estimates of short- and long-run effects of covariates?

I conducted a Monte Carlo experiment with the following true model,
burned in 100 periods:

yit = φyi,t−1 + βxit + αi + εit εit ∼ N (0, σ2
ε)

xit = γxi,t−1 + ξit ξit ∼ N (0, σ2
ξ)

where γ = 0.5, σ2
ε = 1, and σ2

ξ = 2, similar to Judson and Owen (1999)

I consider 100 to 1000 replications of every combination of the following:

β ∈ {0.2, 1.0} weaker effects should increase bias

φ ∈ {0.2, 0.5, 0.8, 0.95} stronger correlation should increase bias

N ∈ {30, 1000} makes no difference

T ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, 30, 40, 50, 75, 100, 150, 200}
fewer periods analyzed should increase bias
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Bias in φ̂ for models with N = 1000, β = 1, and all values of φ and T

Less bias than asymptotic results from Nickell (1981) with no covariate
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Weaker exogenous covariates increase bias in in φ̂

Intuition: x has weaker signal-noise ratio, leading to poorer estimates
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Nickell bias in estimates of β, the short run effect of x, is much smaller

Often seems negligible, unless T is very small and y is very serially correlated
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Now consider a weaker short-run relationship between x and y (true β = 0.2)

At first, you might think bias in β̂ goes down when the true value of β is small. . .
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At first, you might think bias in β̂ goes down when the true value of β is small. . .

But as a percentage of the true short-run effect, bias increases substantially
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Recall that for an AR(1) process, the long-run effect of x on y is β/(1− φ)

Because Nickell bias is more severe for φ̂ than β̂,
it has a bigger effect on estimates of long-run relationships than short-run ones
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This gets worse when the true relationship between x and y is weaker
and/or serial correlation in y is strong

Harder in these cases to disentangle dynamic relationships, especially with small T



2 3 4 5 7 10 15 20 30 50 100 200

−100

−80

−60

−40

−20

0

Periods modeled (T)

%
 B

ia
s 

in
 lo

ng
−

ru
n 

ef
fe

ct
 (

be
ta

/(
1−

ph
i))

phi=0.2

phi=0.5

phi=0.8

phi=0.95

% Bias in fixed effects estimator

with a lagged outcome

and an exogenous covariate

beta=0.2    N=1000

beta=1.0    N=1000

In panels with small T and/or high φ, we tend to distrust long-run estimates anyway

But because we need φ̂ to estimate relationships iterated over two or more periods,
this is still a worry for careful applied work with small T and/or large φ



Bias in Panels with small T : Summarizing the evidence

Results for small N = 30 were identical – issue in Nickell bias is T , not N

In terms of bias, clear that small T dynamic panels are problematic for fixed effects
models

Similar results for efficiency (not shown)

Monte Carlo results are sensitive to conditions; you could run your own

Code is on the course site and highly customizable

Not considered: multiple covariates, period effects, more complex patterns of
correlation across time or units, heteroskedasticity, etc.

A huge literature in econometrics considers this topic



Bias in Panels with small T : Solutions?

Things that don’t help:

• More units N

• Purging serial correlation in ε

• Getting the specification of x right

What would help:

One way to deal with correlated covariates & errors is with instrumental variables

If xit and εit are correlated, find some zit which is correlated with xit but not εit

zit is then an instrument for xit



What is an instrument?

In words, an instrument zit

• explains part of xit,

• but does not otherwise explain yit,

• so it does not belong in our model,

• but can be used to distinguish the part of xit that influences yit
from the part that influences εit



Background: IV estimation

Consider a bivariate regression

yi = βxi + εi

We condition on xi and take expectations,
assuming no correlation of the error with xi,

E(yi|xi) = E(βxi|xi) + E(εi|xi)
E(yi|xi) = βxi + 0

E(yi|xi) = βxi



Background: IV estimation

What if xi and εi are correlated?

β̂LS =

∑
i xiyi∑
i x

2
i

=

∑
i xi(βxi + εi)∑

i x
2
i

=

∑
i x

2
iβ +

∑
i xiεi∑

i x
2
i

=

∑
i x

2
iβ∑

i x
2
i

+

∑
i xiεi∑
i x

2
i

= β +

∑
i xiεi∑
i x

2
i

LS is biased



Background: IV estimation

Now try an instrument zi for xi

Condition on zi and take expectations:

E(yi|zi) = E(βxi|zi) + E(εi|zi)

We assumed that E(εi|zi) = 0, so we can write

E(yi|zi) = E(βxi|zi)
E(yi|zi) = βE(xi|zi)

β =
E(yi|zi)
E(xi|zi)

Solving for β will give us the IV estimator, β̂IV



Background: IV estimation

This way of finding the IV estimator is known as the method of moments

So called because we are working just in the expectations of our variables,
not with their complete probability distributions

An alternative to maximum likelihood estimation



Background: IV estimation

The IV estimator is consistent if zi is an instrument:

β =
E(yi|zi)
E(xi|zi)

β̂IV =

∑
i ziyi∑
i zixi

=

∑
i zi(βxi + εi)∑

i zixi

=

∑
i zixiβ +

∑
i ziεi∑

i zixi

=

∑
i zixiβ∑
i zixi

+

∑
i ziεi∑
i zixi

= β +

∑
i ziεi∑
i zixi

= β

(Still biased in small samples if z is correlated with y conditional on x)



IV estimation for Panel

Return to our panel model,

yit − ȳi = φ(yi,t−1 − ȳi) + (xit − x̄i)β + (εit − ε̄i)

Now take first differences of all variables to obtain

∆yit = φ∆yi,t−1 + ∆xitβ + ∆εit

Note that ∆εit is now MA(1)

This is an alternative way to sweep out fixed effects

Less biased estimates of fixed effects than the within estimator in small T panels

But like other fixed effects estimators with lagged DV,
this is biased when T is small



IV estimation for Panel

∆yit = φ∆yi,t−1 + ∆xitβ + ∆εit

But like other fixed effects estimators with lagged DV,
this is biased when T is small

If we had instruments for ∆yi,t−1,
we could correct the bias in estimation of φ and thus potentially β

We do have some weak instruments for ∆yi,t−1:
older lagged levels (like yi,t−2) and lagged differences (like ∆yi,t−2)

That is, ∆yi,t−2 and yi,t−2 help predict ∆yi,t−1, but not ∆εi,t−1

Only weak instruments, though

Using these lags in IV estimation: Anderson-Hsiao estimator



Why are lagged levels and changes in y instruments?

Fixed Effects Differenced Fixed Effects

Most lag of lag of
Dependent recent Error Dependent Dep Error Dep

Variable error Term Variable Var Term Var

yi,t−3 − ȳi εi,t−3 εi,t−3 − ε̄i
yi,t−2 − ȳi εi,t−2 εi,t−2 − ε̄i yi,t−3 − ȳi ∆yi,t−2 εi,t−2 − εi,t−3

yi,t−1 − ȳi εi,t−1 εi,t−1 − ε̄i yi,t−2 − ȳi ∆yi,t−1 εi,t−1 − εi,t−2 ∆yi,t−2

yit − ȳi εit εit − ε̄i yi,t−1 − ȳi ∆yit εit − εi,t−1 ∆yi,t−1

To see which lags of the differences and levels of yit − ȳi

are instruments for the first lag of the difference, ∆yi,t−1,

we need to see which lags are correlated with ∆yi,t−1 but not ∆yit



Why are lagged levels and changes in y instruments?

Fixed Effects Differenced Fixed Effects

Most lag of lag of
Dependent recent Error Dependent Dep Error Dep

Variable error Term Variable Var Term Var

yi,t−3 − ȳi εi,t−3 εi,t−3 − ε̄i
yi,t−2 − ȳi εi,t−2 εi,t−2 − ε̄i yi,t−3 − ȳi ∆yi,t−2 εi,t−2 − εi,t−3

yi,t−1 − ȳi εi,t−1 εi,t−1 − ε̄i yi,t−2 − ȳi ∆yi,t−1 εi,t−1 − εi,t−2 ∆yi,t−2

yit − ȳi εit εit − ε̄i yi,t−1 − ȳi ∆yit εit − εi,t−1 ∆yi,t−1

Which error terms are incorporated in ∆yit?



Why are lagged levels and changes in y instruments?

Fixed Effects Differenced Fixed Effects

Most lag of lag of
Dependent recent Error Dependent Dep Error Dep

Variable error Term Variable Var Term Var

yi,t−3 − ȳi εi,t−3 εi,t−3 − ε̄i
yi,t−2 − ȳi εi,t−2 εi,t−2 − ε̄i yi,t−3 − ȳi ∆yi,t−2 εi,t−2 − εi,t−3

yi,t−1 − ȳi εi,t−1 εi,t−1 − ε̄i yi,t−2 − ȳi ∆yi,t−1 εi,t−1 − εi,t−2 ∆yi,t−2

yit − ȳi εit εit − ε̄i yi,t−1 − ȳi ∆yit εit − εi,t−1 ∆yi,t−1

Which error terms are incorporated in ∆yit?

The terms in yellow are differenced to make ∆yit,



Why are lagged levels and changes in y instruments?

Fixed Effects Differenced Fixed Effects

Most lag of lag of
Dependent recent Error Dependent Dep Error Dep

Variable error Term Variable Var Term Var

yi,t−3 − ȳi εi,t−3 εi,t−3 − ε̄i
yi,t−2 − ȳi εi,t−2 εi,t−2 − ε̄i yi,t−3 − ȳi ∆yi,t−2 εi,t−2 − εi,t−3

yi,t−1 − ȳi εi,t−1 εi,t−1 − ε̄i yi,t−2 − ȳi ∆yi,t−1 εi,t−1 − εi,t−2 ∆yi,t−2

yit − ȳi εit εit − ε̄i yi,t−1 − ȳi ∆yit εit − εi,t−1 ∆yi,t−1

Which error terms are incorporated in ∆yit?

The terms in yellow are differenced to make ∆yit,

and so ∆yit includes only the difference of errors also in yellow



Why are lagged levels and changes in y instruments?

Fixed Effects Differenced Fixed Effects

Most lag of lag of
Dependent recent Error Dependent Dep Error Dep

Variable error Term Variable Var Term Var

yi,t−3 − ȳi εi,t−3 εi,t−3 − ε̄i
yi,t−2 − ȳi εi,t−2 εi,t−2 − ε̄i yi,t−3 − ȳi ∆yi,t−2 εi,t−2 − εi,t−3

yi,t−1 − ȳi εi,t−1 εi,t−1 − ε̄i yi,t−2 − ȳi ∆yi,t−1 εi,t−1 − εi,t−2 ∆yi,t−2

yit − ȳi εit εit − ε̄i yi,t−1 − ȳi ∆yit εit − εi,t−1 ∆yi,t−1

Is the term in red, ∆yi,t−2, an instrument?



Why are lagged levels and changes in y instruments?

Fixed Effects Differenced Fixed Effects

Most lag of lag of
Dependent recent Error Dependent Dep Error Dep

Variable error Term Variable Var Term Var

yi,t−3 − ȳi εi,t−3 εi,t−3 − ε̄i
yi,t−2 − ȳi εi,t−2 εi,t−2 − ε̄i yi,t−3 − ȳi ∆yi,t−2 εi,t−2 − εi,t−3

yi,t−1 − ȳi εi,t−1 εi,t−1 − ε̄i yi,t−2 − ȳi ∆yi,t−1 εi,t−1 − εi,t−2 ∆yi,t−2

yit − ȳi εit εit − ε̄i yi,t−1 − ȳi ∆yit εit − εi,t−1 ∆yi,t−1

Is the term in red, ∆yi,t−2, an instrument?

The terms in red are differenced to make ∆yi,t−2,



Why are lagged levels and changes in y instruments?

Fixed Effects Differenced Fixed Effects

Most lag of lag of
Dependent recent Error Dependent Dep Error Dep

Variable error Term Variable Var Term Var

yi,t−3 − ȳi εi,t−3 εi,t−3 − ε̄i
yi,t−2 − ȳi εi,t−2 εi,t−2 − ε̄i yi,t−3 − ȳi ∆yi,t−2 εi,t−2 − εi,t−3

yi,t−1 − ȳi εi,t−1 εi,t−1 − ε̄i yi,t−2 − ȳi ∆yi,t−1 εi,t−1 − εi,t−2 ∆yi,t−2

yit − ȳi εit εit − ε̄i yi,t−1 − ȳi ∆yit εit − εi,t−1 ∆yi,t−1

Is the term in red, ∆yi,t−2, an instrument?

The terms in red are differenced to make ∆yi,t−2,

and so ∆yi,t−2 includes only the difference of errors in red

And there is no correlation between εi,t−2 − εi,t−3 and εit − εi,t−1

So ∆yi,t−2 is an instrument for ∆yi,t−1 in a model of ∆yit



Why are lagged levels and changes in y instruments?

Fixed Effects Differenced Fixed Effects

Most lag of lag of
Dependent recent Error Dependent Dep Error Dep

Variable error Term Variable Var Term Var

yi,t−3 − ȳi εi,t−3 εi,t−3 − ε̄i
yi,t−2 − ȳi εi,t−2 εi,t−2 − ε̄i yi,t−3 − ȳi ∆yi,t−2 εi,t−2 − εi,t−3

yi,t−1 − ȳi εi,t−1 εi,t−1 − ε̄i yi,t−2 − ȳi ∆yi,t−1 εi,t−1 − εi,t−2 ∆yi,t−2

yit − ȳi εit εit − ε̄i yi,t−1 − ȳi ∆yit εit − εi,t−1 ∆yi,t−1

By the same logic, yi,t−2 − ȳi and yi,t−3 − ȳi are also instruments for ∆yi,t−1

If we only can use one set of instruments,
Arellano (1989) suggests these lagged levels are a better choice



IV estimation for Panel

Arellano & Bond noticed that within a dataset with N units and T periods,
later observations have more lags available as instruments

In terms of differences as instruments:

For T = 3 differenced periods, there are no instruments

For T = 4 differenced periods, can create: ∆yi,t−2

For T = 5 differenced periods, can create: ∆yi,t−2, ∆yi,t−3

For T = 6 differenced periods, can create: ∆yi,t−2, ∆yi,t−3, ∆yi,t−4

So if we were to use lagged differences as instruments, we would be limited to panels
of T = 4 or longer

But levels work better, so. . .



IV estimation for Panel

In terms of levels as instruments:

For T = 2 differenced periods, there are no instruments

For T = 3 differenced periods, can create: yi,t−2

For T = 4 differenced periods, can create: yi,t−2, yi,t−3

For T = 5 differenced periods, can create: yi,t−2, yi,t−3, yi,t−4

So we need to have at least 3 periods to use Arellano & Bond’s estimator

Estimation is by Generalized Method of Moments (GMM),
because the usual IV regression can’t handle the varying number of instruments

Basic idea of GMM for small T panel data: find, by iterative search,
the β’s and φ’s that minimize the distance between ∆dyit and E(∆dyit),
instrumenting for ∆yi,t−1

GMM models allow a separate equation for each period,
so each could potentially have different numbers of instruments



IV estimation for Panel

But we have some left over instruments (the lagged differences). . .

For T = 4 differenced periods, can create: ∆yi,t−2

For T = 5 differenced periods, can create: ∆yi,t−2, ∆yi,t−3

For T = 6 differenced periods, can create: ∆yi,t−2, ∆yi,t−3, ∆yi,t−4

Can we use these to make the estimator better, assuming we have at least T = 4?



IV estimation for Panel

Two main options for panel GMM:

Arellano-Bond’s difference GMM estimator uses ∆yit as the outcome
and all available lagged levels as instruments in each period

Requires at least T = 3 or more, better as T grows
(but panel GMM isn’t necessary at all for large T )

Arellano-Blover/Blundell-Bond’s system GMM estimator adds in available the
lagged difference ∆yi,t−2, etc., as additional instruments in a dual set of
observations using the outcome yit

As a result, system GMM models the levels (and differences) of y;
fixed effects are swept out of the instruments

(Assumption to do this: changes in instruments are uncorrelated with fixed effects)

System GMM is better for small T but requires at least T = 4

Both methods are sensitive to small changes in assumptions,
including the inclusion of too many weak instruments



IV estimation for Panel

Note that for either system or difference GMM,
we need to be careful with any AR(p) processes left after differencing

That is, if we have an ARIMA(p,1,0), p > 0,
very recent lags of y or ∆y will not be instruments:

If ∆yi,t is AR(1), will need to start one period earlier on instruments

I.e., if ∆yi,t is AR(1), then first available instrument is yi,t−3

if ∆yi,t is AR(2), then first available instrument is yi,t−4

etc.

In R, these estimators are available using pgmm() in the plm library

Note that pgmm() requires a special kind of data frame, created with
pdata.frame(), so that it knows what the units and periods are



Dynamic Panel Example: Cigarette Taxes

Common application for DPD models a la Arellano-Bond: policy “experiments”

Idea: major public policies are usually not randomly assigned

But maybe most confounders are either unit-characteristics or period shocks

Cigarette taxes vary by state in the US:
Taxes discourage unhealthy behavior/raise revenue

But states vary in public attitudes towards state intervention and taxes

And over time, social acceptance of smoking is waning as (public) health
consequences become better known



Dynamic Panel Example: Cigarette Taxes

Conditioning on state and year effects, and perhaps a few time-varying controls,
maybe tax rates are exogenous to smoking behavior

(A big assumption, but hard to do better with observational data)

So a panel data model with state and year effects might isolate better estimates of
effect of tax variation on smoking behavior

What kinds of omitted variables could still confound this model?

What kinds of variation are we exploiting to estimate the causal effect of taxes on
smoking?



Dynamic Panel Example: Cigarette Taxes

What kinds of omitted variables could still confound this model?

Difference or system GMM could be confounded by:

Time and state-varying covariates correlated with both taxes and consumption

One candidate for a confounder:
Over time, social stigma/pressure not to smoke has risen in most states

This social pressure likely directly reduces smoking
and lowers public opposition to cigarette taxes and other anti-smoking policies

If people in different states come to socially punish smoking at different rates over
time, tax effects are confounded with social forces/other state & local policies



Dynamic Panel Example: Cigarette Taxes

What kinds of omitted variables could still confound this model?

System GMM could also be confounded by:

Correlations between individual time-invariant characteristics
and changes over time in the rate of change in y (and hence the instruments),
after conditioning on observed covariates

Example: Over the study, most states reduce their tobacco consumption

After controlling for measured covariates xit,
suppose some states are early leaders in reduction and other states early laggards

System GMM will be biased if those early laggards later tend to reduce smoking
faster (on the scale of yit) than early leaders as a form of “catch-up”

Note we could look for evidence of this in the data,
and either controls or appropriate transformation of yit might help



Dynamic Panel Example: Cigarette Taxes

What kinds of variation are we exploiting to estimate the causal effect of taxes on
smoking?

Variation in legislative cycle?

Variation in budget crises?

Variation in parties in office?

Do these suggest other avenues of confounding?

Dynamic panel models narrow the scope of confounding, but do not eliminate it



Dynamic Panel Example: Cigarette Taxes

A panel data model with state and year effects might isolate better estimates of
effect of tax variation on smoking behavior

From Jonathan Gruber (MIT), we have state-year data (1985–1995) on:

• packs smoked per capita annually

• average price per pack

• average taxes per pack

• household income per capita (1995 dollars)

We will combine prices and taxes,
assuming tax increases operate like other price changes
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Code for this display is in the sample script – complex but powerful

Consider displaying all of the data, even for panel

We see strong trends in smoking and in taxes in opposite directions
Is the connection causal or spurious?



Dynamic Panel Example: Cigarette Taxes

Specification 1 (Linear):

packpcit = αi + τt + β1priceit + β2incomeit + φ1packpci,t−1 + εit

A linear specification is simple, but probably inappropriate

Taxes affect elasticities:
a percentage increase in price should yield a constant percent change in consumption

Specification 2 (Log-Log):

log packpcit = α∗
i + τ∗t + β∗

1 log priceit + β∗
2 log incomeit

+φ∗1 log packpci,t−1 + ε∗it

While β1 is a slope, in a log-log model, β∗
1 is an elasticity,

the percent change in packspc for a percent change in price



Dynamic Panel Example: Cigarette Taxes

Specification 1 (Linear), After differencing out fixed effects:

∆packpcit = ∆τt + β1∆priceit + β2∆incomeit + φ1∆packpci,t−1 + ∆εit

A linear specification is simple, but probably inappropriate

Taxes affect elasticities:
a percentage increase in price should yield a constant percent change in consumption

Specification 2 (Log-Log) , After differencing out fixed effects:

∆ log packpcit = ∆τ∗t + β∗
1∆ log priceit + β∗

2∆ log incomeit

+φ∗1∆ log packpci,t−1 + ∆ε∗it

While β1 is a slope, in a log-log model, β∗
1 is an elasticity,

the percent change in packspc for a percent change in price



Dynamic Panel Example: Cigarette Taxes

Both specifications control for fixed intercepts and lagged outcomes

We have only 11 periods and need to sweep out fixed effects,
so Nickell bias is a concern

Let’s use dynamic panel models (difference GMM and system GMM)

Model issues/assumptions to investigate:

1. Number/Weakness of instruments

2. Serial correlation of error terms – should be AR(1) only

3. Difference or system GMM (whether to use lagged differences as IV)

4. Use of year effects

5. Use of linear or log-log specification

Panel GMM is very sensitive to assumptions –
need to check GOF and substantive implications of each of the above



Dynamic Panel Models of Cigarette Consumption
1a 1b 1c 1d

Price −0.18 −0.18 −0.18 −0.16
0.03 0.03 0.03 0.03

Income −0.48 −0.33 −0.26 0.11
0.49 0.50 0.46 0.45

φ1 0.64 0.65 0.66 0.70
0.06 0.06 0.05 0.05

GMM diff diff diff diff
n of IVs all 4 2 1
Year Effects
State Effects x x x x
Sargan p 0.31 0.05 0.00 0.00
AR(2) errors p 0.57 0.59 0.62 0.72
N 48 48 48 48
T 11 11 11 11
NT used 432 432 432 432

First question: If we use a linear specification, difference GMM & no year effects,
how many instruments do we need?



Cheat sheet

Sargan-Hansen test of overidentifying restrictions:

Exploits abundance of instruments (overidentification) to check whether model fits
moments of data well; null is good fit, so low p indicates a poor fitting model

AR(2) serial correlation:

Panel GMM errors are AR(1) by construction;
anything higher violates model assumptions (and would require more lags)
high p indicates no evidence of AR(2) serial correlation

Both tests reported by summary.pgmm()



Dynamic Panel Models of Cigarette Consumption
1a 1b 1c 1d

Price −0.18 −0.18 −0.18 −0.16
0.03 0.03 0.03 0.03

Income −0.48 −0.33 −0.26 0.11
0.49 0.50 0.46 0.45

φ1 0.64 0.65 0.66 0.70
0.06 0.06 0.05 0.05

GMM diff diff diff diff
n of IVs all 4 2 1
Year Effects
State Effects x x x x
Sargan p 0.31 0.05 0.00 0.00
AR(2) errors p 0.57 0.59 0.62 0.72
N 48 48 48 48
T 11 11 11 11
NT used 432 432 432 432

Sargan tests show concern if we limit instruments to recent lags of yi,t
Another worry: Sargan p biased → 1 as number of IVs increases. . .



Dynamic Panel Models of Cigarette Consumption
1a 1b 1c 1d

Price −0.18 −0.18 −0.18 −0.16
0.03 0.03 0.03 0.03

Income −0.48 −0.33 −0.26 0.11
0.49 0.50 0.46 0.45

φ1 0.64 0.65 0.66 0.70
0.06 0.06 0.05 0.05

GMM diff diff diff diff
n of IVs all 4 2 1
Year Effects
State Effects x x x x
Sargan p 0.31 0.05 0.00 0.00
AR(2) errors p 0.57 0.59 0.62 0.72
N 48 48 48 48
T 11 11 11 11
NT used 432 432 432 432

Still, results are little changed substantively



Dynamic Panel Models of Cigarette Consumption
1a 1b 1c 1d

Price −0.18 −0.18 −0.18 −0.16
0.03 0.03 0.03 0.03

Income −0.48 −0.33 −0.26 0.11
0.49 0.50 0.46 0.45

φ1 0.64 0.65 0.66 0.70
0.06 0.06 0.05 0.05

GMM diff diff diff diff
n of IVs all 4 2 1
Year Effects
State Effects x x x x
Sargan p 0.31 0.05 0.00 0.00
AR(2) errors p 0.57 0.59 0.62 0.72
N 48 48 48 48
T 11 11 11 11
NT used 432 432 432 432

Are we worried about unmodeled serial correlation?



Substantive interpretation

So what does this mean for our substantive question?

How much will smoking decline if we raise cigarette taxes?

Suppose we take the average state (which has about $0.60/pack taxes in 1995),
and double those taxes to $1.20/pack

How much will smoking decline the next year?

Over the next three years?

Does this depend on our model?

What’s the 95% confidence interval?
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Once again, we turn to simulation,
applying our old friends ldvsimev(), ldvsimfd(), and ldvsimrr()

The effect of a doubled tax in the average state under model 1a is shown

Left plot: expected levels of smoking under the baseline and counterfactual

Middle plot: the difference-in-difference over time in packs consumed given a 60
cent increase in cigarette taxes

Right plot: percent change in packs consumed given the tax increase
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Note: As you will see in section, coding these simulations is very painstaking

Panel GMM estimators are complex:
lots of choices of assumptions, and lots of different ways to deal with the data

Complex models: Sensitive to assumptions and coding errors!



Model checkpoint 1

1. Number/Weakness of instruments

not much difference here

2. Serial correlation of error terms – should be AR(1) only

model passes tests

Next to test. . .

3. Difference or system GMM (whether to use lagged differences as IV)

4. Use of year effects

5. Use of linear or log-log specification



Dynamic Panel Models of Cigarette Consumption
1a 1e 1g 1h

Price −0.18 0.00 −0.29 −0.10
0.03 0.01 0.06 0.03

Income −0.48 0.20 1.06 −0.02
0.49 0.12 0.67 0.11

φ1 0.64 0.94 0.25 0.91
0.06 0.01 0.12 0.04

Intercept 23.28
7.56

GMM diff sys diff sys
n of IVs all all all all
Year Effects x x
State Effects x x x x
Sargan p 0.31 0.74 0.39 0.81
AR(2) errors p 0.57 0.55 0.98 0.46
N 48 48 48 48
T 11 11 11 11
NT used 432 912 432 912



How do models 1a, 1e, 1g, and 1h differ in assumptions?

In goodness of fit?

In substantive implications?
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Model 1e (system GMM) exploits an additional kind of instrument:
lagged differences of yit in addition to lagged levels

Goal is still coping with Nickell bias

Results are very sensitive:
In the linear, one-way model,
the effect of prices totally disappears in the system GMM estimates!

Maybe less important if we improve the rest of the model?
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Model 1g adds year fixed effects to the difference estimator

Year fixed effects flexibly estimate the trend in smoking consumption

Strong reason to believe in an exogenous trend downwards due to health concerns
and social pressure

Baseline smoking now shows a sharp decline, matching the behavior in the data
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Two questions:

1. What trend do the year effects imply? How do we capture this in simulations?
Could we substitute a linear trend?

2. These are big effects from a 60 cent tax. What would the model predict if taxes
went up $2 dollars? Do you believe it? Is linearity reasonable here?
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1. What trend do the year effects imply? How do we capture this in
simulations? Could we substitute a linear trend?

We will return to this question in detail after settling on the rest of the specification
(logs vs linear)

In these simulations, I assume that the near future follows a similar trend to that
captured in recent year effects
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1. What trend do the year effects imply? How do we capture this in
simulations? Could we substitute a linear trend?

A serious forecasting exercise would need to predict the future trend as well as model
the effects of taxes

In our simulations, we just assume “recent” trends persist

This is already a big improvement over the models with no year effects,
which tend to predict increased smoking over time from growing incomes!
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2. These are big effects from a 60 cent tax. What would the model predict if
taxes went up $2 dollars? Do you believe it? Is linearity reasonable here?

A $2 dollar increase might reduce expected smoking to zero

That seems unreasonable –
some smokers will likely hold on even at very high taxes of $10 or more

Lower zero bound on smoking rate also reinforces the need for a log-log specification
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Now we consider model 1h, linear system GMM with year effects

When we combine the year effects and the system GMM instruments,
we find more agreement between difference and system GMM

But the magnitude of our effects is still sensitive to instrument choice;
maybe if we log everything this will get better?



Model checkpoint 2

1. Number/Weakness of instruments

not much difference here

2. Serial correlation of error terms – should be AR(1) only

model passes tests

3. Difference or system GMM (whether to use lagged differences as IV)

substantive sensitivity, mitigated by better models

4. Use of year effects

strongly justified

Next to test. . .

5. Use of linear or log-log specification



Dynamic Panel Models of Cigarette Consumption
3a 3e 3g 3h

log Price −0.31 0.01 −0.62 −0.17
0.04 0.01 0.11 0.05

log Income −0.07 −0.01 0.18 −0.01
0.11 0.02 0.18 0.02

φ1 0.67 0.99 0.33 0.95
0.06 0.01 0.15 0.03

Intercept 1.09
0.34

GMM diff sys diff sys
n of IVs all all all all
Year Effects x x
State Effects x x x x
Sargan p 0.39 0.75 0.50 0.85
AR(2) errors p 0.95 0.33 0.60 0.27
N 48 48 48 48
T 11 11 11 11
NT used 432 912 432 912



Interpreting elasticities

How do we interpret the coefficients in this table?

Because the model is logged in the outcome and covariates,
the coefficients are elasticities

E.g., in model 3a, a 1% increase in taxes reduces consumption 0.31%

From the coefficients, it’s clear results are sensitive to model assumptions

But note that the estimates of β1 and φ1 are negatively correlated

This suggests that sometimes there is a big immediate effect that doesn’t grow,
while other times there is a small immediate effect that gets bigger over time

How different are these results, really?
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Now the effects of taxes are nonlinear

Reasonable: Otherwise a $2 tax increase would completely wipe out smoking;
in reality, some would be willing to pay

(Intuition check: How should log-log estimates compare to linear ones for a $0.1
increase? A $10 increase?)

This also implies the same tax increase in different states would have different
effects, depending on other covariates and the initial tax rate
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Constructing these simulations –
of a differenced, logged outcome from a complex model –
is very tricky

A single coding error will drastically change results

Not a case for simple copy and paste of simcf code:
think deeply about what each model is doing



t t+1 t+2 t+3

50

60

70

80

90

100

Cigarette Taxes & Consumption: 3e. Log−Log System GMM, Individual Effects

Forecast Year

E
xp

ec
te

d 
P

ac
ks

 p
er

 c
ap

ita

t t+1 t+2 t+3

−40

−30

−20

−10

0

Forecast Year

C
ha

ng
e,

 P
ac

ks
 p

er
 c

ap
ita

t t+1 t+2 t+3

−40

−30

−20

−10

0

Forecast Year

%
C

ha
ng

e,
 P

ac
ks

 p
er

 c
ap

ita

+$.60/packbaseline

change
in packs

percent
change

In a system GMM with no year effects, we find no effect of taxes

But we have strong reason to think there is a yearly trend,
so let’s restore the year effects

System GMM is biased when change over time in y correlates with unit effects

Purging potential over-time confounding is thus even more important in this model
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Adding year effects,
The difference GMM with year effects finds a big effect
that diminishes over time

More than 20% decline in total consumption after three years

Model assumptions and result are most plausible yet

This model is probably our best bet,
but let’s see what happens when we add system GMM instruments
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But the system GMM with year effects also find a substantial impact

While the immediate impact is different in these models,
over time they converge
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Controlling for years and logging the outcome helped remedy sources of bias in
system GMM

E.g., on a linear scale, if all states are lowering smoking, but at different rates, then
laggards must eventually catch up because of the zero lower bound

On a log-log scale, this is a smaller problem – leaders could maintain high
percentage reductions even as levels get low, at least for a while
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Panel GMM is very sensitive to assumptions –
lots to investigate even in the simplest model

(we should probably check in these final models – 1g and 1h – on the number of
instruments again)

Very hard to tell whether differences are substantive without thinking hard about
what the model means/doing some simulations
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Aside: What trend do the year effects imply? How do we capture this in
simulations? Could we substitute a linear trend?

Because the model is differenced, the year effects are differences of τ ’s;
for example, the 1993 effect is τ1993 − τ1992

Because the model is also in logs,
it’s easiest to see the year effects through simulation



1988 1990 1992 1994

100

110

120

130

140

Year

Tr
en

d 
du

e 
to

 y
ea

r 
ef

fe
ct

s 
on

ly

● ● ●
●

●
●

●

● ●

EV and 95% CI

Aside: What trend do the year effects imply? How do we capture this in
simulations? Could we substitute a linear trend?

Here, I assume all covariates remained fixed at their 1992 levels,
then simulated the evolution of the level of smoking given the changing τ ’s over time

Hint of a downward trend?
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WLS trend and 95% CI

2. What trend do the year effects imply? How do we capture this in
simulations? Could we substitute a linear trend?

A weighted least squares fit (with standard errors of the estimates as weights)
suggests there is a bit of a downward trend, but is it really linear?
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2. What trend do the year effects imply? How do we capture this in
simulations? Could we substitute a linear trend?

A loess fit suggests the trend was flat in the first part of the data,
and sharply downward over the last three years

In the simulations shown above,
we assume the average trend of the last three years persists in the near future;
e.g., we let the year effect be 1/3× (τ1995 − τ1992)
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Collecting results across models helps resolve these sensitivities

1. sys GMM is particularly sensitive: finds no effect under misspecification;
agrees more with diff GMM year with years and logs included

2. Even under the preferred specification, effect size is sensitive to choice of
instruments



Dynamic Panel Data Models: Final thoughts

More sensitive to assumptions than almost any other model

Poor behavior if outcome is nonstationary (or nearly so),
as instruments will be weaker (hard to predict a random walk)

Relying on a large pool of weak instruments introduces special challenges –
important to check whether this is changing results

Lots of instruments → singular var-cov matrices
important to use generalized VC methods to compute standard errors

As we shall see, it’s also important to use a heteroskedasticity and autocorrelation
consistent VC matrix


