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What we’re doing today

Next steps:

• Learn some (weak) techniques for identifying non-stationary time series
(from previous lecture slides)

• Analyze non-stationary series using differences

• Analyze non-stationary series using cointegration



Differences & Integrated time series

Define ∆dyt as the dth difference of yt

For the first difference (d = 1), we write

∆yt = yt − yt−1

For the second difference (d = 2), we write

∆2yt = (yt − yt−1)− (yt−1 − yt−2)

or the difference of two first differences

or the difference in the difference



Differences & Integrated time series

For the third difference (d = 3), we write

∆3yt = ((yt − yt−1)− (yt−1 − yt−2))− (yt−1 − yt−2)− (yt−2 − yt−3)

or the difference of two second differences

or the difference in the difference in the difference

This gets perplexing fast.

Fortunately, we will rarely need d > 1, and almost never d > 2.



Differences & Integrated time series

What happens if we difference a stationary AR(1) process (|φ1| < 1)?

yt = yt−1φ1 + xtβ + εt



Differences & Integrated time series

What happens if we difference a stationary AR(1) process (|φ1| < 1)?

yt = yt−1φ1 + xtβ + εt

yt − yt−1 = yt−1φ1 − yt−1 + xtβ + εt



Differences & Integrated time series

What happens if we difference a stationary AR(1) process (|φ1| < 1)?

yt = yt−1φ1 + xtβ + εt

yt − yt−1 = yt−1φ1 − yt−1 + xtβ + εt

∆yt = (1− φ)yt−1 + xtβ + εt

We still have an AR(1) process,
and we’ve thrown away some useful information – the levels in yt –
that our covariates xt might have explained



Differences & Integrated time series

What happens if we difference a random walk?

yt = yt−1 + xtβ + εt
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Differences & Integrated time series

What happens if we difference a random walk?

yt = yt−1 + xtβ + εt

yt − yt−1 = yt−1 − yt−1 + xtβ + εt

∆yt = xtβ + εt

The result is AR(0), and stationary –
we could analyze it using ARMA(0,0), which is just LS regression!

When a single differencing removes non-stationarity from a time series yt,
we say yt is integrated of order 1, or I(1).

A time series that does not need to be differenced to be stationary is I(0).

This differencing trick comes at a price:
we can only explain changes in yt, not levels,
and hence not the long-run relationship between yt and xt.



Differences & Integrated time series

What happens if we difference an AR(2) unit root process?

yt = 1.5yt−1 − 0.5yt−2 + xtβ + εt
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Differences & Integrated time series

What happens if we difference an AR(2) unit root process?

yt = 1.5yt−1 − 0.5yt−2 + xtβ + εt

yt − yt−1 = 1.5yt−1 − yt−1 − 0.5yt−2 + xtβ + εt

∆yt = 0.5yt−1 − 0.5yt−2 + xtβ + εt

We get a stationary AR(2) process.
We could analyze this new process with ARMA(2,0).

We say that the original process is ARIMA(2,1,0),
or an integrated autoregressive process of order 2, integrated of order 1.



Differences & Integrated time series

Recall our GDP & Democracy example

GDPt = φ1GDPt−1 + β0 + β1Democracyt + εt

GDPt = 0.9×GDPt−1 + 10 + 2×Democracyt + εt

At year t, GDPt = 100 and the country is a non-democracy Democracyt = 0,
and we were curious what would happen to GDP if in t+ 1 to t+ k,
the country becomes a democracy.

But now suppose φ1 is 1, β0 is 0,
and we want to model the first difference, ∆GDPt, instead of the level of GDPt.



Differences & Integrated time series

At year t, GDPt = 100 and the country is a non-democracy Democracyt = 0,
and we are curious what would happen to GDP if in t+ 1 to t+ k,
the country becomes a democracy.

GDPt = GDPt−1 + β0 + β1Democracyt + εt



Differences & Integrated time series

At year t, GDPt = 100 and the country is a non-democracy Democracyt = 0,
and we are curious what would happen to GDP if in t+ 1 to t+ k,
the country becomes a democracy.

GDPt = GDPt−1 + β0 + β1Democracyt + εt

GDPt −GDPt−1 = GDPt−1 −GDPt−1 + β0 + β1Democracyt + εt



Differences & Integrated time series

At year t, GDPt = 100 and the country is a non-democracy Democracyt = 0,
and we are curious what would happen to GDP if in t+ 1 to t+ k,
the country becomes a democracy.

GDPt = GDPt−1 + β0 + β1Democracyt + εt

GDPt −GDPt−1 = GDPt−1 −GDPt−1 + β0 + β1Democracyt + εt

∆GDPt = β0 + β1Democracyt + εt



Differences & Integrated time series

At year t, GDPt = 100 and the country is a non-democracy Democracyt = 0,
and we are curious what would happen to GDP if in t+ 1 to t+ k,
the country becomes a democracy.

GDPt = GDPt−1 + β0 + β1Democracyt + εt

GDPt −GDPt−1 = GDPt−1 −GDPt−1 + β0 + β1Democracyt + εt

∆GDPt = β0 + β1Democracyt + εt

∆GDPt = 0 + 2×Democracyt + εt



Differences & Integrated time series

At year t, GDPt = 100 and the country is a non-democracy Democracyt = 0,
and we are curious what would happen to GDP if in t+ 1 to t+ k,
the country becomes a democracy.

∆GDPt = 0 + 2×Democracyt + εt

Works just as before – but gives only the one period change in GDP

Iterating, we get the cumulative change

We have to supply external information on the levels in order to get predictions of
the level

The model doesn’t know them

Moreover, the impact of lagged ε’s here doesn’t ever diminish over time

So long predictions are very unreliable



ARIMA(p,d,q) models

An ARIMA(p,d,q) regression model has the following form:

∆dyt = ∆dyt−1φ1 + ∆dyt−2φ2 + . . .+ ∆dyt−pφp

+εt−1ρ1 + εt−2ρ2 + . . .+ εt−qρq

+xtβ + εt

This just an ARMA(p,q) model applied to differenced yt

The same MLE that gave us ARMA estimates still estimates φ̂, ρ̂, and β̂

We just need to choose d based on theory, ACFs and PACFs, and unit root tests
(ugh)



ARIMA(p,d,q) models

Mechanically,
conditional forecasting and in-sample counterfactuals work just as before

Same code from last time will work; just change the d term of the ARIMA order to 1

But we need to be careful about forecasting too far into the future. . .



Example: Presidential Approval

We have data on the percent (× 100) of Americans supporting President Bush,
averaged by month, over 2/2001–6/2006.

Our covariates include:

The average price of oil per month, in $/barrel

Dummies for September and October of 2001

Dummies for first three months of the Iraq War

Let’s look at our two continuous time series
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Example: Presidential Approval

Many suspect approve and avg.price are non-stationary processes

Theoretically, what does this mean? Could an approval rate drift anywhere?

Note a better dependent variable would be the logit transformation of approve,
log(approve/(1− approve)),
which is unbounded and probably closer to the latent concept of support

And extending approve out to T =∞ would likely stretch the concept too far for a
democracy with regular, anticipated elections

We’ll ignore this to focus on the time series issues



Example: Presidential Approval

To a first approximation, we suspect approve and avg.price may be
non-stationary processes

We know that regressing one I(1) process on another risks spurrious correlation

How can we investigate the relationship between these variables?

Strategy 1: ARIMA(0,1,0), first differencing



Example: Presidential Approval

We load the data, plot it, with ACFs and PACFs

Then perform unit root tests

> PP.test(approve)

Phillips-Perron Unit Root Test

data: approve

Dickey-Fuller = -2.839, Truncation lag parameter = 3, p-value = 0.2350

> adf.test(approve)

Augmented Dickey-Fuller Test

data: approve

Dickey-Fuller = -3.957, Lag order = 3, p-value = 0.01721

alternative hypothesis: stationary



Example: Presidential Approval

> PP.test(avg.price)

Phillips-Perron Unit Root Test

data: avg.price

Dickey-Fuller = -2.332, Truncation lag parameter = 3, p-value = 0.4405

> adf.test(avg.price)

Augmented Dickey-Fuller Test

data: avg.price

Dickey-Fuller = -3.011, Lag order = 3, p-value = 0.1649

alternative hypothesis: stationary



Example: Presidential Approval

We create differenced versions of the time series, and repeat

> adf.test(na.omit(approveDiff))

Augmented Dickey-Fuller Test

data: na.omit(approveDiff)

Dickey-Fuller = -4.346, Lag order = 3, p-value = 0.01

alternative hypothesis: stationary

> adf.test(na.omit(avg.priceDiff))

Augmented Dickey-Fuller Test

data: na.omit(avg.priceDiff)

Dickey-Fuller = -5.336, Lag order = 3, p-value = 0.01

alternative hypothesis: stationary



Example: Presidential Approval

We estimate an ARIMA(0,1,0), which fit a little better than ARIMA(2,1,2) on the
AIC criterion

Call:

arima(x = approve, order = c(0, 1, 0),

xreg = xcovariates, include.mean = TRUE)

Coefficients:

sept.oct.2001 iraq.war avg.price

11.207 5.690 -0.071

s.e. 2.519 2.489 0.034

sigma^2 estimated as 12.4: log likelihood = -171.2, aic = 350.5



Example: Presidential Approval

To interpret the model, we focus on historical counterfactuals

What would Bush’s approval have looked like if 9/11 hadn’t happened?

What if Bush had not invaded Iraq?

What if the price of oil had remained at pre-war levels?

Naturally, we only trust our results so far as we trust the model

(which is not very much – we’ve left out a lot, like unemployment, inflation,
boundedness of approve, . . . )

We simulate counterfactual approval using Zelig’s implementation of ARIMA
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In blue: Predicted Bush approval without Iraq

In black: Actual approval
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At first, starting the war in Iraq appears to help Bush’s popularity

Then, it hurts – a lot. Sensible result. So are we done?
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In blue: Predicted Bush approval with Iraq war

In black: Actual approval
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Wait – can the model predict the long run approval rate?
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Wait – can the model predict the long run approval rate? Not even close
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The model fit well for the first few months, then stays close to the ex ante“mean”
approval

But reality (which is I(1)) drifts off into the cellar
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First differences show that all the action is in the short-run

Long-run predictions are not feasible with unit root processes
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Suppose Oil had stayed at its pre-war price of $161/barrel

Then Bush’s predicted popularity looks higher than the data
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But wait – here are the factual “predictions” under the actual oil price

Miss the data by a mile
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The first difference makes more sense, and avoids predicting unknowable levels



Limits of ARIMA

ARIMA(p,1,q) does a good job of estimating the short run movement of stationary
variables

But does a terrible job with long-run levels

No surprise: The model includes no level information

While the observed level could drift anywhere



Limits of ARIMA

Using ∆yt as our response has a big cost

Purging all long-run equilibrium relationships from our time series

These empirical long-run relationships may be spurious (why we’re removing them)

But what if they are not? What if yt and xt really move together over time?

Then removing that long-run relationship removes theoretically interesting
information from our data

Since most of our theories are about long-run levels of our variables,
we have usually just removed the most interesting part of our dataset!



Aside: Multiple Time Series

In our stationary time series example (road accidents),
we had a single continuous time series and a binary covariate

In our nonstationary example (approval),
we have two continuous time series

We chose to model approval as a function of oil prices,
but we could have reversed this,
and modeled oil prices as a function of approval

Why didn’t we?



Aside: Multiple Time Series

In our stationary time series example (road accidents),
we had a single continuous time series and a binary covariate

In our nonstationary example (approval),
we have two continuous time series

We chose to model approval as a function of oil prices,
but we could have reversed this,
and modeled oil prices as a function of approval

Why didn’t we? We had a theory-based model:
we don’t think oil markets are driven by American opinions about their president

Theory informs the specification of “structual models”

Structural models could, of course, encompass multiple equations, as in SEM

But what if we don’t have (or trust) a single theory about temporal relationships
among multiple continuous variable?



Aside: Multiple Time Series

There are atheoretical approaches to multiple continuous time series

Consider the following Vector Autoregression (VAR):

approvalt = β0 +

J∑
j=0

β1joilt−j +

K∑
k=1

β2kapprovalt−k + εt



Aside: Multiple Time Series

There are atheoretical approaches to multiple continuous time series
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Aside: Multiple Time Series

There are atheoretical approaches to multiple continuous time series

Consider the following Vector Autoregression (VAR):

approvalt = β0 +

J∑
j=0

β1joilt−j +

K∑
k=1

β2kapprovalt−k + εt

oilt = δ0 +

J∑
j=0

δ1japprovalt−j +

K∑
k=1

δ2koilt−k + ηt

This setup allows the price of oil to affect many things:
the future price of oil, through δ2k, k = 1, . . . ,K;
the current approval rate, through β10; and
the future approval rating, through β1j, j = 1, . . . , J

A parallel set of effects is possible for approval ratings



Aside: Multiple Time Series

approvalt = β0 +

J∑
j=0

β1joilt−j +

K∑
k=1

β2kapprovalt−k + εt

oilt = δ0 +

J∑
j=0

δ1japprovalt−j +

K∑
k=1

δ2koilt−k + ηt

We can use this system of equations to model
the short run effects of shocks in any variable on all other variables

Those shocks should gradually die out in stationary series

Note the absence of MA terms. We could add them, making a VARMA model

Note the absence of binary covariates. We could add them, too.

Of course, this VAR assumes stationarity of both oil and approval

That’s a problem – so we need, as before, to difference these variables first



Aside: Multiple Time Series

∆approvalt = ψ0 +

J∑
j=1

ψ1j∆oilt−j +

K∑
k=1

ψ2k∆approvalt−k + ut

∆oilt = ζ0 +

J∑
j=1

ζ1j∆approvalt−j +

K∑
k=1

ζ2k∆oilt−k + vt

Now this is a VAR on differenced time series
(I’ve changed parameters to emphasize this)

Now the recent changes in each variable can influence
subsequent changes in all variables

This model still does not have anything to say about the long run

If you want to know more about VAR models, start with Box-Steffensmeier Ch. 4;
there’s a huge literature in econometrics



Cointegration

Consider two time series yt and xt:

xt = xt−1 + εt

yt = yt−1 + 0.6xt + νt

where εt and νt are (uncorrelated) white noise

xt and yt are both: AR(1) processes, random walks, non-stationary, and I(1).

They are not spuriously correlated, but genuinely causally connected

Neither tends towards any particular level, but each tends towards the other

A particularly large νt may move yt away from xt briefly,
but eventually, yt will move back to xt’s level

As a result, they will move together through t indefinitely

xt and yt are said to be cointegrated
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Cointegration

Any two (or more) variables yt, xt are said to be cointegrated if

1. each of the variables is I(d), d ≥ 1
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Cointegration

Any two (or more) variables yt, xt are said to be cointegrated if

1. each of the variables is I(d), d ≥ 1 . . . usually, both are assumed to be I(1)

2. there is some cointegrating vector α such that

zt = [yt, xt]
′α

zt ∼ I(0)

or in words, there is some linear combination of the non-stationary variables which
is stationary

There may be many cointegrating vectors;
the cointegration rank r gives their number



Cointegration: Engle-Granger Two Step

Several ways to find the cointegration vector(s) and use it to anaylze the system

Simplest is Engle-Granger Two Step Method

Just repeated application of linear regression!

Works best if cointegration rank is r = 1 and

serial correlation is ARIMA(p,d,0) with clearly established p

that is, more complex or uncertain serial correlation can cause bias,
as with any other least square time series model

Fancier estimation techniques will address this limitation



Cointegration: Engle-Granger Two Step

Step 1: Estimate the cointegration vector by least squares with no constant:

yt = α∗1xt−1 + α∗2xt−2 + . . .+ α∗Kxt−K + zt

This gives us the cointegration vector α = (1,−α∗1,−α∗2, . . .− α∗K)

and the long-run equilibrium path of the cointegrated variables, ẑt

We can test for cointegration by checking that ẑt is stationary

Note that the usual unit root tests work, but with different critical values

This is because the α̂’s are very well estimated: “super-consistent”
(converge to their true values very fast as T increases)



Cointegration: Engle-Granger Two Step

Step 2: Estimate an Error Correction Model

After obtaining the equilibrium ẑt’s and confirming they are I(0), we can estimate a
particularly useful specification known as an error correction model, or ECM

ECMs simultaneously estimate long- and short-run effects for a system of
cointegrated variables

Better than ARIMA(p,d,0) because we don’t throw away level information

ECMs are simple generalizations of VARs in the differences of our time series

Interestingly, ECMs can also be estimated with least squares



Cointegration: Engle-Granger Two Step

For a bivariate system of yt, xt, two equations describe how this cointegrated process
evolves over time:

∆yt = ψ0 + γ1ẑt−1 +

J∑
j=1

ψ1j∆xt−j +

K∑
k=1

ψ2k∆yt−k + ut
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J∑
j=1

ψ1j∆xt−j +

K∑
k=1

ψ2k∆yt−k + ut

∆xt = ζ0 + γ2ẑt−1 +
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Cointegration: Engle-Granger Two Step

For a bivariate system of yt, xt, two equations describe how this cointegrated process
evolves over time:

∆yt = ψ0 + γ1ẑt−1 +
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ψ1j∆xt−j +
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These equations are the “error correction” form of the model



Cointegration: Engle-Granger Two Step

For a bivariate system of yt, xt, two equations describe how this cointegrated process
evolves over time:

∆yt = ψ0 + γ1ẑt−1 +

J∑
j=1

ψ1j∆xt−j +

K∑
k=1

ψ2k∆yt−k + ut

∆xt = ζ0 + γ2ẑt−1 +

J∑
j=1

ζ1j∆yt−j +

K∑
k=1

ζ2k∆xt−k + vt

These equations are the “error correction” form of the model

Like the VAR on which it is based (the one we saw earlier!),
it shows the short-run relationships across all our time series

Unlike a VAR, an error correction model (ECM) also captures
how yt and xt respond to deviations from their long run relationship

(Technically, the above is a Vector ECM or VECM model,
which is the cointegrated generalization of VAR)



Cointegration: Engle-Granger Two Step

Let’s focus on the evolution of ∆yt as a function of its lags, lags of ∆xt,
and the “error” in the long-run equilibrium, ẑt−1:

∆yt = ψ0 + γ1ẑt−1 +

J∑
j=1

ψ1j∆xt−j +

K∑
k=1

ψ2k∆yt−k + ut



Cointegration: Engle-Granger Two Step

Let’s focus on the evolution of ∆yt as a function of its lags, lags of ∆xt,
and the “error” in the long-run equilibrium, ẑt−1:

∆yt = ψ0 + γ1ẑt−1 +

J∑
j=1

ψ1j∆xt−j +

K∑
k=1

ψ2k∆yt−k + ut

γ < 0 must hold for at least one γ:
This is the speed of adjustment back to equilibrium;
larger negative values imply faster adjustment

This is the central assumption of cointegration:
In the long run, yt and xt cannot diverge too much

So short-run differences must be made up later by convergence

For example, yt (or xt) must eventually reverse course after a big shift away from xt

A negative γ1 shows how quickly yt reverses back to xt



Cointegration: Engle-Granger Two Step

Recall our cointegrated time series, yt and xt:

xt = xt−1 + εt

yt = yt−1 + 0.6xt + νt

To estimate the Engle-Granger Two Step for these data, we do the following in R:

set.seed(123456)

# Generate cointegrated data

e1 <- rnorm(100)

e2 <- rnorm(100)

x <- cumsum(e1)

y <- 0.6*x + e2

# Run step 1 of the E-G two step

coint.reg <- lm(y ~ x -1)

coint.err <- residuals(coint.reg)



# Check for stationarity of the cointegration vector

punitroot(adf.test(coint.err)$statistic, trend="nc")

# Make the lag of the cointegration error term

coint.err.lag <- coint.err[1:(length(coint.err)-2)]

# Make the difference of y and x

dy <- diff(y)

dx <- diff(x)

# And their lags

dy.lag <- dy[1:(length(dy)-1)]

dx.lag <- dx[1:(length(dx)-1)]

# Delete the first dy, because we are missing lags for this obs

dy <- dy[2:length(dy)]

# Estimate an Error Correction Model with LS

ecm1 <- lm(dy ~ coint.err.lag + dy.lag + dx.lag)

summary(ecm1)



Call:

lm(formula = x ~ y - 1)

Residuals:

Min 1Q Median 3Q Max

-3.4565 -0.7754 0.3567 1.7542 5.7091

Coefficients:

Estimate Std. Error t value Pr(>|t|)

y 1.43472 0.05568 25.77 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.737 on 99 degrees of freedom

Multiple R-squared: 0.8702,Adjusted R-squared: 0.8689

F-statistic: 663.9 on 1 and 99 DF, p-value: < 2.2e-16

> punitroot(adf.test(coint.err)$statistic, trend="nc")

Dickey-Fuller

6.551997e-05



Call:

lm(formula = dy ~ coint.err.lag + dy.lag + dx.lag)

Residuals:

Min 1Q Median 3Q Max

-2.9553 -0.5375 0.1538 0.7042 2.3240

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.02267 0.10381 0.218 0.828

coint.err.lag -0.96617 0.15864 -6.090 2.45e-08 ***

dy.lag -1.05776 0.10848 -9.751 6.21e-16 ***

dx.lag 0.81035 0.11223 7.221 1.33e-10 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.026 on 94 degrees of freedom

Multiple R-squared: 0.5456,Adjusted R-squared: 0.5311

F-statistic: 37.62 on 3 and 94 DF, p-value: 4.624e-16



Cointegration: Johansen estimator
Alternatively, we can use the urca package, which handles unit roots and
cointegration analysis:

# Create a matrix of the cointegrated variables

cointvars <- cbind(y,x)

# Perform cointegration tests

coint.test1 <- ca.jo(cointvars,

ecdet = "const",

type="eigen",

K=2,

spec="longrun"

)

summary(coint.test1) # Check the cointegration rank here

# Using the output of the test, estimate an ECM

ecm.res1 <- cajorls(coint.test1,

r = 1, # Cointegration rank

reg.number = 1) # which variable(s) to put on LHS

# (column indexes of cointvars)

summary(ecm.res1$rlm)



Cointegration: Johansen estimator
######################

# Johansen-Procedure #

######################

Test type: maximal eigenvalue statistic (lambda max) , without linear trend and constant in cointegration

Eigenvalues (lambda):

[1] 3.105e-01 2.077e-02 -1.400e-18

Values of teststatistic and critical values of test:

test 10pct 5pct 1pct

r <= 1 | 2.06 7.52 9.24 12.97

r = 0 | 36.44 13.75 15.67 20.20

Eigenvectors, normalised to first column:

(These are the cointegration relations)

y.l2 x.l2 constant

y.l2 1.00000 1.00 1.000

x.l2 -0.58297 10.13 -1.215



constant -0.02961 -50.24 -38.501

Weights W:

(This is the loading matrix)

y.l2 x.l2 constant

y.d -0.967715 -0.001015 -1.004e-18

x.d 0.002461 -0.002817 -2.899e-19



Cointegration: Johansen estimator

Call:

lm(formula = substitute(form1), data = data.mat)

Residuals:

Min 1Q Median 3Q Max

-2.954 -0.536 0.150 0.712 2.318

Coefficients:

Estimate Std. Error t value Pr(>|t|)

ect1 -0.968 0.158 -6.13 2.0e-08 ***

y.dl1 -1.058 0.108 -9.82 4.1e-16 ***

x.dl1 0.809 0.112 7.26 1.1e-10 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.02 on 95 degrees of freedom

Multiple R-squared: 0.546, Adjusted R-squared: 0.532

F-statistic: 38.1 on 3 and 95 DF, p-value: 2.97e-16



Example: Approval

Return to our Bush approval example, and estimate an ECM equivalent to the
ARIMA(0,1,0) model we chose:

Residuals:

Min 1Q Median 3Q Max

-7.140 -1.675 -0.226 1.643 5.954

Coefficients:

Estimate Std. Error t value Pr(>|t|)

ect1 -0.1262 0.0301 -4.20 9.4e-05 ***

sept.oct.2001 19.5585 2.1174 9.24 5.4e-13 ***

iraq.war 5.0187 1.6243 3.09 0.0031 **

approve.dl1 -0.3176 0.0945 -3.36 0.0014 **

avg.price.dl1 -0.0505 0.0259 -1.95 0.0561 .

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 2.67 on 58 degrees of freedom

Multiple R-squared: 0.63, Adjusted R-squared: 0.598

F-statistic: 19.8 on 5 and 58 DF, p-value: 1.91e-11



Cointegration: Final Thoughts

Cointegration and ECMs give us a way to cope with nonstationary time series
without throwing away levels information

They provide information on short-run effects and long-run tendencies towards
equilibrium

They do not tell us exact long-run destinations,
because for nonstationary series there isn’t one

Could you use ECM to talk about long-run equilibria in stationary time series?

Many methodologists think this is possible and useful


