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Review of heteroskedasticity

Recall that in cross-sectional LS, heteroskedasticity

• is assumed away

• if present, biases our standard errors

We noted two approaches

• Model the heteroskedasticity directly with an appropriate ML model, or

• Less optimally, continue to use the wrong method (LS), but try to correct the se’s;
these are known as Huber-White, sandwich, or robust standard errors

How do these approaches transfer to the time series context? to panel data?



Dynamic heteroskedasticity

As with cross-sectional models, we can model heteroskedasticity directly

One possibility is to let heteroskedasticity evolve dynamically

We can let heteroskedasticity be (sort-of) “ARMA”, under the name “GARCH”
Generalized Autoregressive Conditional Heteroskedasticity:

yt = µt + εt εt ∼ fN
(
0, σ2

t

)
where

µt = α+ xtβ +

P∑
p=1

yt−pφp +

Q∑
q=1

εt−qθq

σ2
t = exp (η + ztγ) +

C∑
c=1

σ2
t−cλc +

D∑
d=1

ε2
t−dξd

In words, yt is an ARMA(P,Q)-GARCH(C,D) distributed time-series

(Of course, we could leave out x and/or z if we wanted)



Dynamic heteroskedasticity
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Models like the above are workhorses of financial forecasting

Can estimated by ML as usual

In R, garch() in the tseries package does GARCH

May have to look around a bit for ARMA-GARCH



Dynamic and panel heteroskedasticity

Panel data allows for more complex forms of heteroskedasticity and serial correlation
than cross-sectional data. For example. . .

• Serial correlation: E(εisεit) = σst 6= 0

(Reduced/eliminated by appropriate ARMA specification)

• Contemporaneous correlation: E(εitεjt) = σij 6= 0

(Globally reduced by year fixed effects, but what about pairs of correlated units?)

• Panel heteroskedasticity: E(ε2
is) = E(ε2

it) = σ2
i , but σ2

i 6= σ2
j

(How to fix?)

• Dynamic heteroskedasticity: σ2
it = f(σ2

i,t−k)

(How to fix?)



Dynamic and panel heteroskedasticity

Consider a Panel ARMA-GARCH model:

yit = µit + εit εit ∼ fN
(
0, σ2

it

)
µit = αi + τt + xitβ +

P∑
p=1

yi,t−pφp +

Q∑
q=1

εi,t−qθq

σ2
it = exp (ηi + ζt + zitγ) +

C∑
c=1

σ2
i,t−cλc +

D∑
d=1

ε2
i,t−dξd

Suppose we estimated yit as a function of µit,
but ignored the structure of the error term

That is, we estimate a panel ARMA or GMM,
but assume εit is homoskedastic and serially uncorrelated,
conditional on the covariates and lags in µit



Dynamic and panel heteroskedasticity

If we ignore this:

σ2
it = exp (ηi + ζt + zitγ) +

C∑
c=1

σ2
i,t−cλc +

D∑
d=1

ε2
i,t−dξd

We would miss three non-standard features of the error variance-covariance:

• Panel heteroskedasticity, from ηi, the unit random effect in the variance function

• Contemporaneous correlation, from ζt, the time random effect in the variance
function

• Conditional heteroskedasticity: λi and ξi make the variance time dependent

Thankfully, few reasonable models are this complex. . .



Dynamic and panel heteroskedasticity

Suppose we think this AR(1) with panel heteroskedasticity is appropriate:

yit = µit + εit εit ∼ fN
(
0, σ2

i

)
µit = αi + xitβ + yi,t−pφ

σ2
i = exp (ηi)

Only source of heteroskedasticity is now ηi:
panel heteroskedasticity, not dynamic heteroskedasticity

We could switch this to contemporaneous correlation, by swapping ζt for ηi

Roughly the model Beck & Katz advocate as a baseline for comparative politics

Suggest estimating by LS then correcting se’s for omission of ηi & contemp. corr.

This procedure yields “panel-corrected standard errors”, PCSEs

What are they, and how do we compute them?



What would we do if we had a plain-vanilla cross-sectional regression
and suspected or detected heteroskedasticity?

Recall the standard errors from LS are the square roots of the diagonal elements of

V̂(β̂) = σ̂2(X′X)−1

So if σ2 varies by i, these will be badly estimated

Instead, of the usual σ2 estimator, we could use the residual from each observation
as a robust estimate of its variance:

σ̂2
i = ε̂2

i

A “heteroskedasticity robust” formula for the Var-Cov matrix follows:

V̂(β̂) = (X′X)−1(
∑
i

ε̂ix
′
ixi)(X

′X)−1

The standard errors of our parameters (β’s)
are the square roots of the diagonal of this matrix



Review: Adjusting standard errors for heteroskedasticity

V̂(β̂) = (X′X)−1(
∑
i

ε̂ix
′
ixi)(X

′X)−1

SE’s calculated from this equation are known by many names:

• Huber-White standard errors

• robust standard errors

• sandwich standard errors

• heteroskedastcity consistent standard errors

If you have a single time series, Newey-West standard errors
generalize this concept to include robustness to serial correlation

For panel data there are many further options,
leading to a vast literature exploring refinements to this basic concept



Panel-corrected standard errors

To calculate panel-corrected standard errors,
we need to estimate the correct variance-covariance matrix

Why not just use Huber-White? That would ignore panel structure,
which is inefficient if we know how that structure affects heteroskedasticity:

σ̂2
it = ε̂2

it

Beck and Katz’s panel correction produces sharper estimates of σ̂2
it by borrowing

strength across the observations from a single unit:

σ̂2
it = σ̂2

i =
1

T
(ε̂2
i,1 + ε̂2

i,2 + · · ·+ ε̂2
i,T )

Beck and Katz’s panel correction also accounts for contemporaneous correlations
across units:

σ̂i,j =
1

T
(ε̂i,1ε̂j,1 + ε̂i,2ε̂j,2 + · · ·+ ε̂i,T ε̂j,T )

Note the above will work better if T is large relative to N



Panel-corrected standard errors

Building this intuition out into a variance-covariance matrix involves a bit of algebra

To make PCSEs,
suppose the variance-covariance matrix Ω is NT ×NT block-diagonal
with an N ×N matrix Σ of contemporaneous covariances on diagonal

In other words, allow for unit or contemporaneous heteroskedaticity that stays the
same over time

Visualizing this large matrix is tricky

Note that “NT ×NT block-diagonal” means we are ordering the observations first
by time, then by unit (reverse of our usual practice)



Panel-corrected standard errors
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Panel-corrected standard errors

Instead, suppose Ω is NT ×NT block-diagonal
with an N ×N matrix Σ of contemporaneous covariances on diagonal

In other words, allow for unit or contemporaneous heteroskedaticity that stays the
same over time

Beck and Katz (1995) estimate Σ using LS residuals ei,t:

Σ̂i,j =

T∑
t=1

ei,tej,t
T

And then use Σ̂ to construct the covariance matrix



Panel-corrected standard errors

Monte Carlo experiments show panel-corrected standard errors are “correct”
unless contemporaneous correlation is very high or T is small relative to N

(Note: alternative is to estimate random effects in variance by ML.)

Beck and Katz suggest using LS with PCSEs and lagged DVs as a baseline model

Most practioners think fixed effects should also be used

Most important: getting the right lag structure & including FEs where appropriate

PCSEs (or other var-cov correction) is a second-order concern

In R, package pcse will calculate PCSEs for a linear regression

Even easier: In the plm package,
vcovBK() will produce a panel corrected var-cov matrix from a plm object

If N is large relative to T , consider the Driscoll and Kraay alternative, vcovSCC()



Panel-corrected standard errors: Application

Let’s apply Beck-Katz PCSEs to our panel ARIMA/plm example:
we’ll replace the usual variance-covariance matrix with
the panel corrected variance covariance matrix

We must make this substitution manually after estimation
to get corrected standard errors, confidence intervals, and var-cov matrices:

1. to print the summary() of a plm model

Example: summary(plm.res, .vcov=vcovBK(plm.res))

2. to use the coeftest() function on a plm model

Example: coeftest(plm.res, .vcov=vcovBK(plm.res))

3. to simulate parameters with mvrnorm() for computing counterfactuals

Example: mvrnorm(10000, coef(plm.res), vcovBK(plm.res))



Model
RE FE FE-pcse FE ME

Educationit 23.96 −75.56 −75.56 −86.68 −84.75
5.59 12.16 13.48 12.45 14.56

Democracyit 110.94 −12.90 −12.90 −26.15 −3.63
34.63 47.69 50.58 47.97 55.22

Oil-Producerit −26.89 — — — —
44.84 — — — —

GDPi,t−1 0.23 0.15 0.15 0.17 0.20
0.02 0.02 0.02

GDPi,t−2 −0.12
0.02

σα 0.14 — — — 309.10

Fixed effects x x x x
Random effects x x
N 113 113 113 113 113
T 328 328 328 228 328
observed N × T 2794 2794 2794 2741 2794
AIC 43376 42112
LM test p-value <0.001 <0.001 0.131
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Recall the fixed effects results. . .

These are uncorrected for panel heteroskedasticity or contemporaneous correlation
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Panel correction usually makes little difference in long T small N contexts

But in short T , robust standard errors can be quite important. . .



Heteroskedastic and serial correlation consistent Var-Cov

In the PCSEs approach, the focus is on panel heteroskedasticity

It is assumed that serial correlation has been adequately modeled and purged

A reasonable check when we have a few dozen periods of data, though similar in
most cases to either ordinary SEs or White SEs

But what if we have a low T? We might be more worried about residual serial
correlation (and don’t have practical access to ARMA diagnostics or fitting)

Now there is more need for a correction to the variance covariance that corrects for
observed error correlation across units and across periods

Arellano (1987) provides a heteroskastic and autocorrelation consistent
variance-covariance matrix: in plm, vcovHC()

Use the same commands as above, but with vcovHC() instead of vcovBK()

Particularly important to correct with panel GMM estimators
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Our prior results for cigarette taxes used the Arellano heteroskedastic and serial
correlation consistent var-cov matrix

What would happen if we had used the ordinary, homoskedastic var-cov matrix to
compute CIs?
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The effects sizes are mostly unchanged:
adjustments to standard errors affect CIs, not point estimates

But the CIs are radically different under the traditional var-cov estimator

Far too small (invisible even!) for the misspecified linear models

And too large for the more correctly specified log-log models!
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Just as panel GMM point estimate are sensitive to assumptions,
so are the standard errors

Use caution, and prefer vcovHC() to vcov() in PGMM models

Be sure to check which var-cov matrix your functions are using:
the default may be wrong!


