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Plan for today

Estimating deterministic trends in panel data

Performing panel unit root tests

Estimating linear panel models with large(ish) T



Estimating Deterministic Trends

Recall that for a single time series,
we estimated the following model to capture a deterministic trend:

yt = tθ1 + xiβ + εt

For panel data,
if we assume a common deterministic trend across units we can estimate:

yit = tθ1 + xitβ + εit

We could also add in ARMA terms if we like,
as they capture distinct time series dynamics

As before, the question is whether we can trust θ̂ to estimate the trend well

With a single, short time series,
θ̂ will be unbiased but often far from the truth and frequently incorrectly signed

Let’s see whether assuming a common trend within a panel helps



Estimating Deterministic Trends

Let’s see whether assuming a common trend within a panel helps

Revist our Monte Carlo experiment to see how well β̂1 estimates β1 in practice.

We set the true model to:

yit = β0 + β1t+ εit, εit ∼ N (0, σ2)



Estimating Deterministic Trends

Let’s see whether assuming a common trend within a panel helps

Revist our Monte Carlo experiment to see how well β̂1 estimates β1 in practice.

We set the true model to:

yit = β0 + β1t+ εit, εit ∼ N (0, σ2)

yit = 0 + 0.1t+ εit, εit ∼ N (0, 1)

Then, for each t ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 50, 100}, we draw
100,000 datasets from this “true” model and see how well we estimate β1 = 0.1

We repeat the experiment for N = {1, 2, 5, 10, 20, 50, 100} and compare results



−0.2 −0.1 0 +0.1 +0.2 +0.3 +0.4
Estimate of trend (truth = +0.1/period)

T=100

T=10

Recall that for a single time series,
we got very unreliable estimates and frequent sign errors at T = 10 (dotted red line)

Not biased: the mean of the distribution is centered on the truth, β1 = 0.1,
but not reliable in any specific dataset

More data helped: vastly more efficient estimates at T = 100 (purple spike)

What happens if we had 100 observations, but spread across units?



−0.2 −0.1 0 +0.1 +0.2 +0.3 +0.4
Estimate of trend (truth = +0.1/period)

N=10, T=10

N=1, T=10

What happens if we had 100 observations, but spread across units?

The dotted red linestill marks the performance of trend estimation with a single time
series of 10 periods

We can improve quite a bit by pooling 10 cross-sections in the same model



−0.2 −0.1 0 +0.1 +0.2 +0.3 +0.4
Estimate of trend (truth = +0.1/period)

N=1, T=100, NT=100

N=10, T=10, NT=100

Note the 10 cross-sections of 10 periods case is not as efficient as 100 observations
in a single series

Choices:

either assume the series has a very long stable trend (and find a long data set)

or assume different cross-sections follow the same trend (and pool across short time
periods)
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Let’s get more systematic. Recall these Monte Carlo results for a single time series
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Efficient trend estimation gets much easier with more units and fixed T
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When N is really large – e.g., individual data in the 1000s – can efficiently estimate
trends in very small T , provided pooling assumption is valid
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Recall how frequently we got the direction of the trend wrong with a single, short
series
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Sign errors rapidly diminish with higher N and even modest T
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But you might want to check your own case in Monte Carlos that match your
assumptions



Panel Unit Root Tests

Deterministic trend estimation was hard in single time series,
but much easier when we pooled N > 1 time series together and assumed a common
trend

Unit root tests were underpowered in a single time series. . .
Perhaps pooling time series and assuming degree of stationarity will help?

Panel unit root tests do exactly this, and are considerably more powerful:

Most assume balanced panels
(and R implementation in plm::purtest seems to impose this globally)

See also the R package punitroots



Panel Unit Root Tests

Generally, these tests find ways to combine the results from indivual ADF tests on
the different series in different ways

Most treat nonstationarity as the null hypothesis

A few well-known tests:

Im-Pesaran-Shin (2003) test: Pools the units; allows different AR processes.

LevinLinChu (2002) test: Pools the units; assumes common AR process.

Maddala-Wu (1999) test: Pools the p-values from separate ADFs; more flexible

Hadri (2000) test: Also more flexible test; null is stationarity

Although performance is better than single-series ADF,
panel unit root tests make a variety of complex identifying assumptions,
and those assumptions can lead to different results

Care is still indicated in using these tests:
they aren’t foolproof or guaranteed to be right



Estimating Linear Panel Models

Last time, we discussed how including random and/or fixed effects changes the
properties of our estimators of β

In this lecture, we’ll talk about how to estimate and interpet panel models using
fixed and/or random effects

And how to decide if we need (or even can use) fixed effects

We can always add random effects, but in some cases FEs either be too costly to
estimate (in terms of dfs), or simply impossible to estimate



Estimating Linear Panel Models

Last time, we discussed how including random and/or fixed effects changes the
properties of our estimators of β

In this lecture, we’ll talk about how to estimate and interpet panel models using
fixed and/or random effects

And how to decide if we need (or even can use) fixed effects

We can always add random effects, but in some cases FEs either be too costly to
estimate (in terms of dfs), or simply impossible to estimate

We will consider first the small N , large T case,
which allows more complex time series modeling

Then the large N , small T case
which raises the possibility of bias in fixed effects estimation

Finally, we consider heteroskedasticity in time or across panel structures



Estimating Fixed Effects Models

Option 1: Fixed effects or “within” estimator:

yit − ȳi = (xit − x̄i)β + (uit − ūi)

• estimating the fixed effects by differencing them out before applying least squares

• including time-invariant variables directly in xit impossible here

• (rarely usable workaround: if we have an instrument for the time-invariant variable
that is uncorrelated with the fixed effects; see Hausman-Taylor)

• suggests a complementary “between” estimator of ȳi on x̄i which could include
time-invariant xi; together these models explain the variance in yit

• does not actually provide estimates of the fixed effects themselves; just purges them
from the model to remove omitted time-invariant variables

• to recover the fixed effects, could compute α̂i = yit − xitβ̂



Estimating Fixed Effects Models

Option 2: Dummy variable estimator (sometimes called LSDV)

yit = xitβ + αi + uit

• also estimated by least squares (hence Least Squares Dummy Variable)

• yields estimates of αi fixed effects (may be useful in quest for omitted variables;
see if the αi look like a variable you know)

• for large T , should be very similar to FE estimator

• not a good idea for very small T : estimates of αi will be poor



Time-Invariant Covariates & Fixed Effects

We can’t include time-invariant variables in fixed effects models

If we do, we will have perfect collinearity, and can’t get estimates

That is, we will get some parameter estimates equal to NA

Never report a regression with NA parameters

The regression you tried to run was impossible. Start over with a possible one.



Time-Invariant Covariates & Fixed Effects

If we can’t include time-invariant variables in a fixed effects model,
does that mean time-invariant variables can never explain changes over time?



Time-Invariant Covariates & Fixed Effects

If we can’t include time-invariant variables in a fixed effects model,
does that mean time-invariant variables can never explain changes over time?

You might think so: how can a constant explain a variable?

But time-invariant variables could still effect time-varying outcomes in a special
way. . .



Time-Invariant Covariates & Fixed Effects

If we can’t include time-invariant variables in a fixed effects model,
does that mean time-invariant variables can never explain changes over time?

You might think so: how can a constant explain a variable?

But time-invariant variables could still effect time-varying outcomes in a special
way. . .

Time-invariant variables can influence how a unit weathers time-varying shocks in
some other variable

Example: labor market regulations (e.g. employment protection) don’t change much
over time

Blanchard & Wolfers found that when a negative economic shock hits,
unemployment may rebound more slowly where such protections are stronger



Time-Invariant Covariates & Fixed Effects

We can model how a slow moving or time-invariant covariate conditions the effect of
a quickly changing covariate on yit

To estimate how a time-invariant covariate xi mediates the effect of a shock, sit,
include on the RHS xi × sit and sit, while omitting xi itself

(It’s okay and necessary to omit the xi base term in this special case,
because αi already captures the effect of xi)

Many theories about institutions can be tested this way



Time-Invariant Covariates & Fixed Effects

What if we want to “include” time-invariant covariates’ effect on the long term
average level of y?

We might partition the fixed effect into:

1. the portion “explained” by known time-invariant variables and

2. the portion still unexplained

Plümper & Troeger have methods to do this.

In this case, our estimates of the time-invariant effects are vulnerable to omitted
variable bias from unmeasured time-invariant variables, even though time varying
variables in the model are not

Thus you now need to control for lots of time-invariant variables directly,
even hard to measure ones like culture



Estimating Random & Mixed Effects Models

Estimation of random effects is by maximum likelihood (ML)
or generalized least squares (GLS)

Technically we’re just adding one parameter to estimate:
the variance of the random effects, σ2

α

This is partitioned out of the overall variance, σ2

Can understand this most easily by abstracting away from time series for a moment



Estimating Random & Mixed Effects Models

Recall that for linear regression, we assume homoskedastic, serially uncorrelated
errors, and thus a variance-covariance matrix like this:

Ω =


σ2 0 0 0
0 σ2 0 0
0 0 σ2 0
0 0 0 σ2





Estimating Random & Mixed Effects Models

And recall that heteroskedastic (but serially uncorrelated) errors have this
variance-covariance matrix

Ω =


σ2
1 0 0 0

0 σ2
2 0 0

0 0 σ2
3 0

0 0 0 σ2
4





Estimating Random & Mixed Effects Models

And finally, remember heteroskedastic, serially correlated errors follow this general
form of variance-covariance

Ω =


σ2
1 σ12 σ13 σ14

σ21 σ
2
2 σ23 σ24

σ31 σ32 σ
2
3 σ34

σ41 σ42 σ43 σ
2
4



What does this matrix look like for random effects with no serial correlation?



Estimating Random & Mixed Effects Models

Define the variance of the random effect as

E(α2
i ) = σ2

α = var(αi)



Estimating Random & Mixed Effects Models

Define the variance of the random effect as

E(α2
i ) = σ2

α = var(αi)

Define the expected value of the squared white noise term as σ2
ε

E(ε2it) = σ2
ε = var(εit)



Estimating Random & Mixed Effects Models

Define the variance of the random effect as

E(α2
i ) = σ2

α = var(αi)

Define the expected value of the squared white noise term as σ2
ε

E(ε2it) = σ2
ε = var(εit)

White noise is serially uncorrelated, so has covariance 0 for t 6= s:

E(εitεis) = 0 = cov(εit, εis)



Estimating Random & Mixed Effects Models

Define the variance of the random effect as

E(α2
i ) = σ2

α = var(αi)

Define the expected value of the squared white noise term as σ2
ε

E(ε2it) = σ2
ε = var(εit)

White noise is serially uncorrelated, so has covariance 0 for t 6= s:

E(εitεis) = 0 = cov(εit, εis)

Finally, note that we assumed the white noise error and random effect are
uncorrelated,

E(αiεit) = 0 = cov(αi, εit)



Estimating Random & Mixed Effects Models

Thus the variance of the whole random component of the model is

E((αi + εit)(αi + εit)) = E(α2
i ) + 2E(αiεit) + E(ε2it)



Estimating Random & Mixed Effects Models

Thus the variance of the whole random component of the model is

E((αi + εit)(αi + εit)) = E(α2
i ) + 2E(αiεit) + E(ε2it)

= σ2
α + 0 + σ2

ε



Estimating Random & Mixed Effects Models

Thus the variance of the whole random component of the model is

E((αi + εit)(αi + εit)) = E(α2
i ) + 2E(αiεit) + E(ε2it)

= σ2
α + 0 + σ2

ε

= σ2
α + σ2

ε



Estimating Random & Mixed Effects Models

Thus the variance of the whole random component of the model is

E((αi + εit)(αi + εit)) = E(α2
i ) + 2E(αiεit) + E(ε2it)

= σ2
α + 0 + σ2

ε

= σ2
α + σ2

ε

And the covariance of the whole random component is:

E((αi + εit)(αi + εis)) = E(α2
i ) + E(αiεis) + E(αiεit) + E(εitεis)



Estimating Random & Mixed Effects Models

Thus the variance of the whole random component of the model is

E((αi + εit)(αi + εit)) = E(α2
i ) + 2E(αiεit) + E(ε2it)

= σ2
α + 0 + σ2

ε

= σ2
α + σ2

ε

And the covariance of the whole random component is:

E((αi + εit)(αi + εis)) = E(α2
i ) + E(αiεis) + E(αiεit) + E(εitεis)

= σ2
α + 0 + 0 + 0



Estimating Random & Mixed Effects Models

Thus the variance of the whole random component of the model is

E((αi + εit)(αi + εit)) = E(α2
i ) + 2E(αiεit) + E(ε2it)

= σ2
α + 0 + σ2

ε

= σ2
α + σ2

ε

And the covariance of the whole random component is:

E((αi + εit)(αi + εis)) = E(α2
i ) + E(αiεis) + E(αiεit) + E(εitεis)

= σ2
α + 0 + 0 + 0

= σ2
α



Estimating Random & Mixed Effects Models

If our data have a single random effect in the mean for each unit
→ serially correlated errors, but expressable using only two variances:

• the random effects variance σ2
α

• the white noise term’s variance σ2
ε

Ω =


σ2
α + σ2

ε σ2
α σ2

α σ2
α

σ2
α σ2

α + σ2
ε σ2

α σ2
α

σ2
α σ2

α σ2
α + σ2

ε σ2
α

σ2
α σ2

α σ2
α σ2

α + σ2
ε





Estimating Random & Mixed Effects Models

We have drastically simplified this matrix, and can now use FGLS (Feasible
Generalized Least Squares) or ML to estimate it

β̂GLS =

(
N∑
i=1

X′iΩ
−1Xi

)−1( N∑
i=1

X′iΩ̂
−1yi

)

where Xi is the T ×K matrix of covariates for unit i, all times t = 1, . . . T ,
and all K covariates

All we need are the estimates σ̂2
α and σ̂2

ε, and we can calculate β̂GLS



Estimating Random & Mixed Effects Models

We get σ̂2
ε from the residuals from a LS regression:

σ̂2
ε =

1

NT −K

N∑
i=1

T∑
t=1

ε̂2itLS

(This is the usual estimator, but for NT observations)



Estimating Random & Mixed Effects Models

To get an estimator of σ̂2
α, we need to adjust for the fact that we have only so many

unique pairs of errors to compare:

σ̂2
α = E

(
T−1∑
t=1

T∑
s=t+1

(αi + εit)(αi + εis)

)



Estimating Random & Mixed Effects Models

To get an estimator of σ̂2
α, we need to adjust for the fact that we have only so many

unique pairs of errors to compare:

σ̂2
α = E

(
T−1∑
t=1

T∑
s=t+1

(αi + εit)(αi + εis)

)

= E

T−1∑
t=1

T∑
s=t+1

((αi + εit)(αi + εis))



Estimating Random & Mixed Effects Models

To get an estimator of σ̂2
α, we need to adjust for the fact that we have only so many

unique pairs of errors to compare:

σ̂2
α = E

(
T−1∑
t=1

T∑
s=t+1

(αi + εit)(αi + εis)

)

= E

T−1∑
t=1

T∑
s=t+1

((αi + εit)(αi + εis))

=

T−1∑
t=1

T∑
s=t+1

σ2
α



Estimating Random & Mixed Effects Models

To get an estimator of σ̂2
α, we need to adjust for the fact that we have only so many

unique pairs of errors to compare:

σ̂2
α = E

(
T−1∑
t=1

T∑
s=t+1

(αi + εit)(αi + εis)

)

= E

T−1∑
t=1

T∑
s=t+1

((αi + εit)(αi + εis))

=

T−1∑
t=1

T∑
s=t+1

σ2
α

= σ2
α

T−1∑
t=1

(T − t)



Estimating Random & Mixed Effects Models

To get an estimator of σ̂2
α, we need to adjust for the fact that we have only so many

unique pairs of errors to compare:

σ̂2
α = E

(
T−1∑
t=1

T∑
s=t+1

(αi + εit)(αi + εis)

)

= E

T−1∑
t=1

T∑
s=t+1

((αi + εit)(αi + εis))

=

T−1∑
t=1

T∑
s=t+1

σ2
α

= σ2
α

T−1∑
t=1

(T − t)

= σ2
α((T − 1) + (T − 2) + . . .+ 2 + 1)



Estimating Random & Mixed Effects Models

= σ2
α((T − 1) + (T − 2) + . . .+ 2 + 1)



Estimating Random & Mixed Effects Models

= σ2
α((T − 1) + (T − 2) + . . .+ 2 + 1)

= σ2
αT (T − 1)/2



Estimating Random & Mixed Effects Models

= σ2
α((T − 1) + (T − 2) + . . .+ 2 + 1)

= σ2
αT (T − 1)/2

σ̂2
α =

1

NT (T − 1)/2−K

N∑
i=1

T−1∑
t=1

T∑
s=t+1

ε̂itε̂is

where in the last step we replace σ2
α with its estimator from pooled LS

(the average of the products of the unique pairs of residuals)



Estimating Random & Mixed Effects Models

= σ2
α((T − 1) + (T − 2) + . . .+ 2 + 1)

= σ2
αT (T − 1)/2

σ̂2
α =

1

NT (T − 1)/2−K

N∑
i=1

T−1∑
t=1

T∑
s=t+1

ε̂itε̂is

where in the last step we replace σ2
α with its estimator from pooled LS

(the average of the products of the unique pairs of residuals)

With some algebra, this approach extends to serial correlaton of other kinds (ARMA)

For complex models, with many levels and/or hyperparameters, best to go Bayesian,
set diffuse priors on the parameters, and use MCMC



Selecting Fixed Effects vs Random Effects Models

Choosing random effects when αi is actually correlated with xit
will lead to omitted variable bias

Choosing fixed effects when αi is really uncorrelated with xit
will lead to inefficient estimates of β (compared to random effects estimation)
and kick out our time-invariant variables

Often in comparative we are certain there are important omitted time invariant
variables (culture, unmeasured institutions, long effects of history)

So choice to include fixed effects requires nothing more than theory

Still could include random effects in addition to the fixed effects



Selecting Fixed Effects vs Random Effects Models

But if we are uncertain, or want to check against estimating unnecessary fixed
effects, we can use the Hausman test for (any) fixed effects versus just having
random effecxts

Hausman sets up the null hypothesis of random effects

Attempts to reject it in favor of fixed effects



Selecting Fixed Effects vs Random Effects Models

But if we are uncertain, or want to check against estimating unnecessary fixed
effects, we can use the Hausman test for (any) fixed effects versus just having
random effecxts

Hausman sets up the null hypothesis of random effects

Attempts to reject it in favor of fixed effects

Checks whether the random αi’s are correlated with xi under the null

Does this by calculating the variance-covariance matrices of regressors under FE and
then just RE

Null is no correlation between these covariances



Selecting Fixed Effects vs Random Effects Models

But if we are uncertain, or want to check against estimating unnecessary fixed
effects, we can use the Hausman test for (any) fixed effects versus just having
random effecxts

Hausman sets up the null hypothesis of random effects

Attempts to reject it in favor of fixed effects

Checks whether the random αi’s are correlated with xi under the null

Does this by calculating the variance-covariance matrices of regressors under FE and
then just RE

Null is no correlation between these covariances

If there is no correlation, that means the regressors do not predict the random effects
(ie, are uncorrelated)

Rejecting the null suggests you may need fixed effects to deal with omitted variable
bias

phtest in plm library



Interpreting Random Effects Models

Usually, interest focuses on the percentage of variance explained by the random
effects

And how this variance compares to that remaining in the model

Reported by your estimation routine



What if T is very small?

If T is very small (< 15 perhaps), estimating panel dynamics efficiently and without
bias gets harder

In these cases, we should investigate alternatives:

1. First differencing the series to produce a stationary, hopefully white noise processs

2. Including fixed effects for the time period (time dummies)

3. Checking for serial correlation after estimation (LM test)

4. Using lags of the dependent variable, while removing the bias from including lags
with fixed effects by instrumenting with lagged differences (Arellano-Bond)



Example: GDP in a panel

Let’s use the Przeworski et al democracy data to try out our variable intercept
models

This exercise is for pedagogical purposes only; the models we fit are badly specified

We will investigate the following model:

∆dGDPit = αi + β1OILit + β2REGit + β3EDTit + νit

• where νit ∼ ARMA(p, q),

• d may be 0 or 1, and

• αi may be fixed, random, or a mixed



Example: GDP in a panel

We first investigate the time series properties of GDP

But we have N = 113 countries! So we would have to look at 113 time series plots,
113 ACF plots, and 113 PACF plots

Fortunately, they do look fairly similar. . .
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What would we see if there were no unit roots?
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Choosing AR(p,q) for panel

What do we think?

Clearly some heterogeneity

If had to pick one time series specification, choose ARIMA(0,1,0) or ARIMA(1,1,0)

Seems to fit many cases; guards against spurious regression

But if we’re dubious about imposing a single ARIMA(p,d,q) across units,
we could let them be heterogeneous
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What is this pattern consistent with?
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Example continued in R demonstration

We will continue this example in section using the code provided

For now, let’s focus on the results that emerge,
and how they depend on treating intercepts as either random or fixed by country

In particular, we want to see if fixed effects can help us with omitted time invariant
variables, which are legion in this example

In the example, we will decide on an ARIMA(1,1,0) model of GDP
(What does this mean?)

We will fit three different models of the relationship between education and GDP:

1. ARIMA(1,1,0) with random country intercepts
and controls for oil producing countries and democracy

2. ARIMA(1,1,0) with fixed country intercepts
and controls for democracy

3. ARIMA(1,1,0) with “mixed” country intercepts
and controls for democracy



Model
RE FE FE-pcse FE ME

Educationit 23.96 −75.56 −75.56 −86.68 −84.75
5.59 12.16 13.48 12.45 14.56

Democracyit 110.94 −12.90 −12.90 −26.15 −3.63
34.63 47.69 50.58 47.97 55.22

Oil-Producerit −26.89 — — — —
44.84 — — — —

GDPi,t−1 0.23 0.15 0.15 0.17 0.20
0.02 0.02 0.02

GDPi,t−2 −0.12
0.02

σα 0.14 — — — 309.10

Fixed effects x x x x
Random effects x x
N 113 113 113 113 113
T 328 328 328 228 328
observed N × T 2794 2794 2794 2741 2794
AIC 43376 42112
LM test p-value <0.001 <0.001 0.131
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What does the model imply substantively,
and how does this depend on model assumptions?
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Suppose we have a country with “average” characteristics,
and we increase education to 1 sd above the mean

How much does the model predict education to rise over the following years?
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The above plot shows the expected change in GDP over time
in the high education country relative to an average (untreated) country
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The result seems sensible, but the model:
(1) ignored many unmeasured confounders and (2) differences GDP,
so we should be skeptical in both the short- and long-run
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Adding fixed effects completely flips the results for education

Now the results make little sense
(Suggests the model is badly identified, even with fixed effects)
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In a model with both RE and FE for countries, the FEs dominate,
as the “Mixed” effects model shows


