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The story so far

We’ve learned:

• how to decide whether one estimator is “better” than another under a given DGP

• why our LS models don’t work well with time series

• how to obtain quantities of interest, such as E(y|xc) from an estimated model

• the basics of time series dynamics, including:
trends, autoregression, moving averages, seasonality, stationarity



What we’re doing today

Next steps:

• Use ML to estimate AR(p), MA(q), and ARMA(p,q) models for stationary series

• Use our time series knowledge & MLE fitting tools to select p and q

• Use simulations to understand how E(yt|xt) changes as we vary xt over time



An AR(1) Regression Model

To create a regression model for an AR(1) process,
we allow the mean of the process to shift by adding ct to the equation:

yt = yt−1φ1 + ct + εt

We then parameterize ct as the sum of a set of time varying covariates,

x1t, x2t, x3t, . . .

and their associated parameters,

β1, β2, β3, . . .

which we compactly write in matrix notation as ct = xtβ



An AR(1) Regression Model

Substituting for ct, we obtain the AR(1) regression model:

yt = yt−1φ1 + xtβ + εt

Estimation is by maximum likelihood, not LS

(We will discuss the LS version later)

MLE accounts for dependence of yt on past values; complex derivation
(see James Hamilton, Time Series Analysis for a review)

We’ll focus on interpreting this model in practice



Aside: the AR(1) likelihood function

Why is the MLE for AR(1) more complex than the MLE for linear regression?

Suppose our time series “starts” at t = 1:
there is no lag before t = 1, so period 1 has no AR(1) term

Then the distribution of the first observation is

y1 ∼ N (x1β, σ
2)

But after t = 1, yt is AR(1), so yt+1 depends on yt

y2|y1 ∼ N (x2β + φy1, σ
2)

y3|y2 ∼ N (x3β + φy2, σ
2)

and so on up to the distribution of yt

This means the yt’s are not iid: the usual Normal MLE is inadequate,
and we must create a new likelihood based on the distributions above



Aside: the AR(1) likelihood function

Multiplying together the pdfs of the distributions of y1, . . . yt
and reducing to sufficient statistics yields the following log-likelihood for AR(1):

L(β, φ1|y,X) = −1
2
log

(
σ2

1− φ21

)
−

(
y1 −

x1β

1− φ1

)2

2σ2

1− φ21

−T − 1

2
log σ2 −

T∑
t=2

(yt − xtβ − φ1yt−1)2

2σ2

Only differs from least squares in the treatment of y1,
so very similar to OLS with a lagged DV if T is large

But LS standard errors can be substantially biased if T is small

The definition of “small” depends on φ, σ, and covariates,
so you try both the AR(1) MLE and OLS if you are worried!



Aside: the AR(1) likelihood function

Multiplying together the pdfs of the distributions of y1, . . . yt
and reducing to sufficient statistics yields the following log-likelihood for AR(1):

L(β, φ1|y,X) = −1
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MLEs only get more complex as we move towards ARMA(p,q)

Generally, we can treat ARMA estimation as a black box

Our main concern will be how to select the right model
and interpret what it means substantively



Interpreting AR(1) parameters

Suppose that a country’s GDP follows this simple model

GDPt = φ1GDPt−1 + β0 + β1Democracyt + εt

GDPt = 0.9×GDPt−1 + 10 + 2×Democracyt + εt

Suppose that at year t, GDPt = 100,
and the country is a non-democracy, Democracyt = 0.

What would happen if we “made” this country a democracy in period t+ 1?



Interpreting AR(1) parameters

yt = yt−1φ1 + xtβ + εt

Recall:
an AR(1) process can be viewed as the geometrically declining sum of all its past
errors.

When we add the time-varying mean xtβ to the equation, the following now holds:

yt = (xtβ + εt) + φ1(xt−1β + εt−1) + φ21(xt−2β + εt−2) + φ31(xt−3β + εt−3) + . . .

That is, yt represents the sum of all past xt’s as filtered through β and φ1



Interpreting AR(1) parameters
Take a step back:
suppose ct is actually fixed for all time at c,
so that c = ct

Now, we have

yt = (c+ εt) + φ1(c+ εt−1) + φ21(c+ εt−2) + φ31(c+ εt−3) + . . .

=
c

1− φ1
+ εt + φ1εt−1 + φ21εt−2 + φ31εt−3 . . .

which follows from the limits for infinite series

Taking expectations removes everything but the first term:

E(yt) =
c

1− φ1

Implication:
if, starting at time t and going forward to ∞,
we fix xtβ,
then yt will converge to xtβ/(1− φ1)



Interpreting AR(1) parameters

GDPt = φ1GDPt−1 + β0 + β1Democracyt + εt

GDPt = 0.9×GDPt−1 + 10 + 2×Democracyt + εt

If at year t, GDPt = 100 and the country is a non-democracy (Democracyt = 0)
then:

This country is in a steady state –
it will tend to have GDP of 100 every period, with small errors from εt (verify this)



Interpreting AR(1) parameters

GDPt = φ1GDPt−1 + β0 + β1Democracyt + εt

GDPt = 0.9×GDPt−1 + 10 + 2×Democracyt + εt

Now suppose we make the country a democracy in period t+ 1,
so that Democracyt+1 = 1.

The model predicts that in period t+ 1, the level of GDP will rise by β = 2, to 102.

This appears to be a small effect, but. . .



Interpreting AR(1) parameters

GDPt = φ1GDPt−1 + β0 + β1Democracyt + εt

GDPt = 0.9×GDPt−1 + 10 + 2×Democracyt + εt

. . . the effect accumulates, so long as Democracy = 1

E(ŷt+2|xt+2) = 0.9× 102 + 10 + 2 = 103.8

E(ŷt+3|xt+3) = 0.9× 103.8 + 10 + 2 = 105.42

E(ŷt+4|xt+4) = 0.9× 105.42 + 10 + 2 = 106.878

. . .

E(ŷt=∞|xt=∞) = (10 + 2)/(1− 0.9) = 120

So is this a big effect or a small effect?



Interpreting AR(1) parameters

E(ŷt=∞|xt=∞) = (10 + 2)/(1− 0.9) = 120

So is this a big effect or a small effect?

It depends on the length of time your covariates remain fixed.

Many social variables change rarely, so their effects accumulate slowly over time
(e.g., institutions)

Presenting only β1, rather than the accumulated change in yt after xt changes,
could drastically understate the relative substantive importance of our social &
political covariates compared to rapidly changing covariates

This understatement gets larger the closer φ1 gets to 1
—which is where our φ1’s tend to be!

A catch: remember that if φ1 = 1, long-run predictions are impossible,
so forecasting will produce misleading results of nonstationary processes



Interpreting AR(1) parameters

Recommendation:
Simulate the change in yt given a change in xt through enough periods to capture
the real-world impact of your variables

If you are studying partisan effects, and new parties tend to stay in power 5 years,
don’t report β1 or the one-year change in y. Iterate out to five years.

What is the confidence interval around these cumulative changes in y given a
permanent change in x?

A complex function of the se’s of φ and β

So simulate out to yt+k using draws from the estimated distributions of φ̂ and β̂

R will help with this, using predict() and (in simcf), ldvsimev()



Example: UK vehicle accident deaths

Number of monthly deaths and serious injuries in UK road accidents

Data range from January 1969 to December 1984.

In February 1983, a new law requiring seat belt use took effect

Source: Harvey, 1989, p.519ff.

http://www.staff.city.ac.uk/~sc397/courses/3ts/datasets.html

Simple, likely stationary data

Possibly seasonal

Simplest possible covariate: a single dummy



0 50 100 150

10
00

20
00

Vehicular accident deaths, UK, 1969−1984

Time

de
at

hs

The time series itself – looks cyclical, with a break in the series
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The break corresponds closely with the change in seat belt laws

In a real data analysis, everything past this point is a bit gratuitous–
this time series plot is simple and persuasive

But as most data analyses are more complex,
this is a good testbed to learn techniques
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What does this suggest?

How should we model seasons?
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November and December look especially dangerous

October and January look a bit dangerous

We could control for each month, select months, or Q4

This might also depend on serial correlation



Model 1a: AR(1) specification

## Estimate an AR(1) using arima

xcovariates <- law

arima.res1a <- arima(death, order = c(1,0,0),

xreg = xcovariates, include.mean = TRUE

)

Coefficients:

ar1 intercept xcovariates

0.644 1719.19 -377.5

s.e. 0.055 42.08 107.7

sigma^2 estimated as 39289: log likelihood = -1288, aic = 2585

We begin with a simple model ignoring seasonality,
and controlling for one autoregressive lag



Model 1b: AR(1) specification with Q4 control

## Estimate an AR(1) using arima

xcovariates <- cbind(law, q4)

arima.res1b <- arima(death, order = c(1,0,0),

xreg = xcovariates, include.mean = TRUE

)

Coefficients:

ar1 intercept law q4

0.5352 1638.0301 -395.6701 324.5653

s.e. 0.0636 28.1199 72.3030 34.5033

sigma^2 estimated as 26669: log likelihood = -1250.97, aic = 2511.93



Model 1c: AR(1) specification with all months

## Estimate an AR(1) using arima

xcovariates <- cbind(law, jan, feb, mar, apr, may, jun, aug, sep, oct,

nov, dec)

arima.res1c <- arima(death, order = c(1,0,0),

xreg = xcovariates, include.mean = TRUE

)

Coefficients:

ar1 intercept law jan feb

0.6442 1638.6270 -370.0694 81.3021 -95.1350

s.e. 0.0550 42.9093 70.2727 54.8127 54.5036

mar apr may jun aug

-44.3298 -157.3445 -19.9428 -75.6674 14.7670

s.e. 53.0792 50.2149 45.0247 35.1890 35.1882

sep oct nov dec

67.4890 206.6686 405.9134 522.0696

s.e. 45.0184 50.1913 53.0074 54.3054

sigma^2 estimated as 16333: log likelihood = -1204, aic = 2437.99



Model 1d: AR(1) specification with select months

## Estimate an AR(1) using arima

xcovariates <- cbind(law, jan, sep, oct, nov, dec)

arima.res1d <- arima(death, order = c(1,0,0),

xreg = xcovariates, include.mean = TRUE

)

Coefficients:

ar1 intercept law jan sep

0.6045 1589.4405 -377.7457 154.7288 80.7422

s.e. 0.0575 29.4161 69.7719 35.7336 35.8534

oct nov dec

238.3880 451.3567 579.9770

s.e. 42.6836 44.3474 42.6108

sigma^2 estimated as 18989: log likelihood = -1218.42, aic = 2454.83



Model 1e: AR(1)AR(1)12 specification

## Estimate an AR(1)AR(1)_12 using arima

xcovariates <- cbind(law)

arima.res1e <- arima(death, order = c(1,0,0),

seasonal = list(order = c(1,0,0), period = 12),

xreg = xcovariates, include.mean = TRUE

)

Coefficients:

ar1 sar1 intercept law

0.4446 0.6511 1710.1531 -347.6812

s.e. 0.0695 0.0564 53.3648 73.0634

sigma^2 estimated as 23693: log likelihood = -1242.86, aic = 2495.71



Model 1e: AR(1)AR(1)12 specification

Two questions:

1. Which model to select?

Additive or multiplicative seasonality?

A full set of month dummies, or a selection?

2. What is the effect of adding the law?

In period t+ 1? t+ 12? t+ 60

How “significant” is this effect over those periods?



Summary of fit so far

Model Components AIC β̂Law se(β̂Law)

1a AR(1) 2585 −377 108
1b AR(1), q4 2512 −396 72
1c AR(1), all months 2438 −370 70
1d AR(1), sep to jan 2455 −378 70
1e AR(1)AR(1)12 2496 −348 73

Which is the best fitting approach to seasonality?

Why did I use AIC to select models? What might be better?

What substantive difference does it make?

And what about higher order serial correlation?



An AR(p) Regression Model

The AR(p) regression model is a straightforward extension of the AR(1)

yt = yt−1φ1 + yt−2φ2 + . . .+ yt−pφp + xtβ + εt

Estimation is again by MLE, but similar to OLS with p lags of DV if t is large;
MLE differs only in treatment of y1 to yp

Note that for fixed mean, yt now converges to

E(yt) =
c

1− φ1 − φ2 − φ3 − . . .− φp

Implication:
if, starting at time t and going forward to ∞, we fix xiβ,
then yt will converge to xiβ/(1− φ1 − φ2 − φ3 − . . .− φp)

Estimation and interpretation similar to above & uses same R functions



MA(1) Models

To create a regression model for an MA(1) process:

yt = εt−1ρ1 + xtβ + εt

Estimation is again by maximum likelihood;
no there is no obvious approximation to least squares

Once again a complex procedure, but still a generalization of the Normal MLE

Any dynamic effects in this model are quickly mean reverting



ARMA(p,q): Putting it all together

To create a regression model for an ARMA(p,q) process:

yt = yt−1φ1 + yt−2φ2 + . . .+ yt−pφp + εt−1ρ1 + εt−2ρ2 + . . .+ εt−qρq + xtβ + εt

We will need an MLE to obtain φ̂, ρ̂, and β̂

Once again a complex procedure, but still a generalization of the Normal case

Note the AR(p) process dominates in two senses:

• Stationarity determined just by AR(p) part of ARMA(p,q)

• Long-run level determined just by AR(p) terms: still xiβ/(1−
∑

p φp)



Model 2a: AR(2) specification

## Estimate an AR(2) using arima

xcovariates <- cbind(law, jan, feb, mar, apr, may, jun, aug, sep, oct,

nov, dec)

arima.res2a <- arima(death, order = c(2,0,0),

xreg = xcovariates, include.mean = TRUE

)

Coefficients:

ar1 ar2 intercept law jan

0.4696 0.2711 1635.0869 -347.9213 83.7469

s.e. 0.0692 0.0694 45.6076 80.5683 46.9299

feb mar apr may jun

-94.9882 -44.0442 -157.2316 -19.8376 -75.5957

s.e. 46.5145 45.0452 42.8448 37.9719 35.0631

aug sep oct nov dec

14.8059 67.5047 206.7362 406.0569 522.4596

s.e. 35.0623 37.9640 42.8242 44.9760 46.4368

sigma^2 estimated as 15118: log likelihood = -1196.65, aic = 2425.3



Model 2b: MA(1) specification

## Estimate an MA(1) using arima

xcovariates <- cbind(law, jan, feb, mar, apr, may, jun, aug, sep, oct,

nov, dec)

arima.res2b <- arima(death, order = c(0,0,1),

xreg = xcovariates, include.mean = TRUE

)

Coefficients:

ma1 intercept law jan feb

0.4539 1641.4834 -391.7280 79.9732 -94.6320

s.e. 0.0538 39.7814 45.5288 55.5797 55.6807

mar apr may jun aug

-44.0097 -157.2155 -19.8754 -75.6604 14.8400

s.e. 55.6807 55.6807 55.6807 43.9719 43.9719

sep oct nov dec

67.6897 207.0297 406.5988 522.4457

s.e. 55.6807 55.6807 55.6807 55.5411

sigma^2 estimated as 20566: log likelihood = -1225.97, aic = 2481.93



Model 2c: ARMA(1,1) specification

## Estimate an ARMA(1,1) using arima

xcovariates <- cbind(law, jan, feb, mar, apr, may, jun, aug, sep, oct,

nov, dec)

arima.res2c <- arima(death, order = c(1,0,1),

xreg = xcovariates, include.mean = TRUE

)

Coefficients:

ar1 ma1 intercept law jan

0.9349 -0.5994 1629.5549 -323.4929 85.7471

s.e. 0.0383 0.1076 58.6795 83.2081 40.4544

feb mar apr may jun

-94.0923 -43.6000 -156.8606 -19.6467 -75.5028

s.e. 40.2349 39.7247 38.8954 37.7225 36.1673

aug sep oct nov dec

14.7339 67.3872 206.5916 405.9572 522.3735

s.e. 36.1671 37.7207 38.8896 39.7111 40.2083

sigma^2 estimated as 14568: log likelihood = -1193.18, aic = 2418.37



Model 2d: ARMA(2,1) specification

## Estimate an ARMA(2,1) using arima

xcovariates <- cbind(law, jan, feb, mar, apr, may, jun, aug, sep, oct,

nov, dec)

arima.res2d <- arima(death, order = c(2,0,1),

xreg = xcovariates, include.mean = TRUE)

Coefficients:

ar1 ar2 ma1 intercept law

1.1899 -0.2157 -0.7950 1626.1862 -321.2201

s.e. 0.1071 0.0976 0.0724 68.6982 78.8301

jan feb mar apr may

84.8843 -94.5311 -43.8782 -157.0544 -19.7871

s.e. 41.3869 41.3010 41.0435 40.5352 39.3222

jun aug sep oct nov

-75.5646 14.8208 67.5749 206.8634 406.3691

s.e. 35.1484 35.1483 39.3216 40.5327 41.0341

dec

522.9159

s.e. 41.2487

sigma^2 estimated as 14284: log likelihood = -1191.33, aic = 2416.66



Model 2e: ARMA(1,2) specification

## Estimate an ARMA(1,2) using arima

xcovariates <- cbind(law, jan, feb, mar, apr, may, jun, aug, sep, oct,

nov, dec)

arima.res2e <- arima(death, order = c(1,0,2),

xreg = xcovariates, include.mean = TRUE)

Coefficients:

ar1 ma1 ma2 intercept law

0.9620 -0.5892 -0.1228 1627.146 -322.6854

s.e. 0.0253 0.0752 0.0705 66.814 79.2449

jan feb mar apr may

85.1562 -94.1511 -43.6591 -156.9126 -19.6915

s.e. 40.7504 40.6400 40.3701 39.9498 39.3736

jun aug sep oct nov

-75.5237 14.7645 67.4691 206.7084 406.1477

s.e. 35.5453 35.5453 39.3730 39.9476 40.3650

dec

522.6613

s.e. 40.5994

sigma^2 estimated as 14356: log likelihood = -1191.82, aic = 2417.63



Model 2f: ARMA(2,2) specification

## Estimate an ARMA(2,2) using arima

xcovariates <- cbind(law, jan, feb, mar, apr, may, jun, aug, sep, oct,

nov, dec)

arima.res2f <- arima(death, order = c(2,0,2),

xreg = xcovariates, include.mean = TRUE)

Coefficients:

ar1 ar2 ma1 ma2 intercept

0.0526 0.8449 0.3497 -0.6503 1625.7793

s.e. 0.0538 0.0413 0.1006 0.0998 61.5565

law jan feb mar apr

-312.2308 86.0931 -91.7482 -43.7677 -154.3960

s.e. 81.8335 40.9421 38.1258 40.4084 36.9053

may jun aug sep oct

-19.6984 -72.8430 17.6629 67.3856 209.8757

s.e. 38.9443 34.4385 34.4299 38.9431 36.8765

nov dec

405.8869 526.1152

s.e. 40.3991 38.0647

sigma^2 estimated as 13794: log likelihood = -1189.2, aic = 2414.39



Whew!

This gets tedious fast. . .

To have R search automatically for a low AIC model,
try auto.arima() in the forecast library.

This gets complicated if the series is potentially seasonal and/or nonstationary

My practice: search/diagnose manually where feasible,
automatically where many runs are needed (e.g., 1 million time series analyses?)

More on this in lab. . .



Summary of fit

Model Components AIC β̂Law se(β̂Law)

1a AR(1) 2585 −377 108
1b AR(1), q4 2512 −396 72
1c AR(1), all months 2438 −370 70
1d AR(1), sep to jan 2455 −378 70
1e AR(1)AR(1)12 2496 −348 73
2a AR(2), all months 2425 −348 81
2b MA(1), all months 2482 −392 46
2c ARMA(1,1), all months 2418 −323 83
2d,3a ARMA(2,1), all months 2417 −321 79
2e ARMA(1,2), all months 2418 −323 79
2f ARMA(2,2), all months 2414 −321 79

Which model looks best?

What might be a better way to judge than AIC?



Cross-validation

Out of sample tests of fit are more reliable than in sample tests

But what is out-of-sample in time series?

Can’t just pull random observations out of sequence:
best CV method for time series is a rolling forecast window

Issue for all cross-validation:
danger of collinearity if you have binary covariates that change rarely!



Summary of fit

Model Components AIC cv1-MAE βLaw se(βLaw)

1a AR(1) 2585 120.4 −377 108
1b AR(1), q4 2512 108.5 −396 72
1c AR(1), all months 2438 83.9 −370 70
1d AR(1), sep to jan 2455 119.7 −378 70
1e AR(1)AR(1)12 2496 119.7 −348 73
2a AR(2), all months 2425 92.6 −348 81
2b MA(1), all months 2482 79.9 −392 46
2c ARMA(1,1), all months 2418 89.5 −323 83
2d,3a ARMA(2,1), all months 2417 83.5 −321 79
2e ARMA(1,2), all months 2418 84.8 −323 79
2f ARMA(2,2), all months 2414 85.5 −321 79

We could look at the one-period-ahead out-of-sample forecast

cv1-MAE shows the mean absolute error in this prediction

Note we have fairly few periods left to forecast, as we need a long window to
estimate the effect of the law (which doesn’t start until period 170)



Summary of fit

Model Components AIC cv1-MAE βLaw se(βLaw)

1a AR(1) 2585 120.4 −377 108
1b AR(1), q4 2512 108.5 −396 72
1c AR(1), all months 2438 83.9 −370 70
1d AR(1), sep to jan 2455 119.7 −378 70
1e AR(1)AR(1)12 2496 119.7 −348 73
2a AR(2), all months 2425 92.6 −348 81
2b MA(1), all months 2482 79.9 −392 46
2c ARMA(1,1), all months 2418 89.5 −323 83
2d,3a ARMA(2,1), all months 2417 83.5 −321 79
2e ARMA(1,2), all months 2418 84.8 −323 79
2f ARMA(2,2), all months 2414 85.5 −321 79

Is MA(1) really the best fitting model, against the in-sample evidence?

Perhaps we should look at forecasts beyond one period ahead?

A graphic helps. . .
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Summary of fit

Model Components AIC cv12-MAE βLaw se(βLaw)

1a AR(1) 2585 166.4 −377 108
1b AR(1), q4 2512 101.5 −396 72
1c AR(1), all months 2438 80.4 −370 70
1d AR(1), sep to jan 2455 93.6 −378 70
1e AR(1)AR(1)12 2496 170.7 −348 73
2a AR(2), all months 2425 81.4 −348 81
2b MA(1), all months 2482 83.7 −392 46
2c ARMA(1,1), all months 2418 79.5 −323 83
2d,3a ARMA(2,1), all months 2417 80.3 −321 79
2e ARMA(1,2), all months 2418 80.1 −323 79
2f ARMA(2,2), all months 2414 78.1 −321 79

We might summarize the prior figure with the average MAE averaged over the 12
month forecast

This suggests similar performance for most ARMA models,
except MA(1), which is poorer



Summary of fit

Model Components AIC cv8-MAE βLaw se(βLaw)

1a AR(1) 2585 168.0 −377 108
1b AR(1), q4 2512 96.2 −396 72
1c AR(1), all months 2438 87.2 −370 70
1d AR(1), sep to jan 2455 97.9 −378 70
1e AR(1)AR(1)12 2496 171.7 −348 73
2a AR(2), all months 2425 89.5 −348 81
2b MA(1), all months 2482 89.1 −392 46
2c ARMA(1,1), all months 2418 87.2 −323 83
2d,3a ARMA(2,1), all months 2417 87.0 −321 79
2e ARMA(1,2), all months 2418 87.0 −323 79
2f ARMA(2,2), all months 2414 86.0 −321 79

Even discounting the forecasts past 8 months, model 2f comes out slightly ahead. . .

But all of the models with monthly controls and at least one AR term do roughly
equally well



Selected model: ARMA(2,2)

Coefficients:

ar1 ar2 ma1 ma2 intercept

0.0526 0.8449 0.3497 -0.6503 1625.7793

s.e. 0.0538 0.0413 0.1006 0.0998 61.5565

law jan feb mar apr

-312.2308 86.0931 -91.7482 -43.7677 -154.3960

s.e. 81.8335 40.9421 38.1258 40.4084 36.9053

may jun aug sep oct

-19.6984 -72.8430 17.6629 67.3856 209.8757

s.e. 38.9443 34.4385 34.4299 38.9431 36.8765

nov dec

405.8869 526.1152

s.e. 40.3991 38.0647

sigma^2 estimated as 13794: log likelihood = -1189.2, aic = 2414.39

We have a model – but what does it mean?

Where does this series go over time, with or without the law?



Counterfactual forecasting

We consider two algorithms for forecasting:

Both assume we have point estimates and the variance covariance matrix of the
model parameters, β̂, φ̂, ρ̂

Both compute forecast over the next K periods given hypothetical values of the
covariates, xc,t+1, . . . ,xc,t+k

Both forecasts are uncertain due to uncertainty in model parameter estimates

Approach 1: predicted values ỹt+k, which include the uncertainty due to shocks,
εt+1, . . . , εt+K

For this approach, we also need the estimated variance of these shocks, σ̂2

Approach 2: expected values ŷt+k, which average over the anticipated shocks

Expected values show the expected path of the outcome over the next K periods,
given the counterfactual covariates



Counterfactual forecasting: Predicted Values

1. Start in period t with the observed yt and xt;
choose hypothetical xc,t+k’s for each period t+ 1, . . . , t+ k, . . . , t+K forecast.

2. Draw a vector of simulated parameters from their asymptotic distribution:

vec
(
β̃, φ̃, ρ̃

)
∼MVN

(
vec
(
β̂, φ̂, ρ̂

)
,Var

(
vec
(
β̂, φ̂, ρ̂

)))
.

3. Iterate over the following steps for forecast period k in 1, . . . ,K:

(a) Draw a new random shock ε̃t+1 ∼ N (0, σ̂2).

(b) Calculate one simulated predicted value, ỹt+k using

ỹt+k =

P∑
p=1

yt+k−pφ̃p + xc,t+kβ̃ +

Q∑
q=1

ε̃t+k−qρ̃q + ε̃t+k.

This formula uses past values of y and ε,
which may be simulates from prior iterations of the forecast.

4. Repeat steps 2 and 3 sims times to construct sims simulated forecasts.
Summarize these predicted values by means and quantiles (predictive intervals).



Counterfactual forecasting: Expected Values

1. Start in period t with the observed yt and xt;
choose hypothetical xc,t+k’s for each period t+ 1, . . . , t+ k, . . . , t+K forecast.

2. Draw a vector of simulated parameters from their asymptotic distribution:

vec
(
β̃, φ̃, ρ̃

)
∼MVN

(
vec
(
β̂, φ̂, ρ̂

)
,Var

(
vec
(
β̂, φ̂, ρ̂

)))
.

3. Iterate over the following step for forecast period k in 1, . . . ,K:

(a) Calculate one simulated expected value of yt+k using

E
(
ỹt+k|β̃, φ̃, ρ̃, xc,t, . . . ,xc,t+k,yt

)
=

P∑
p=1

yt+k−pφ̃p + xc,t+kβ̃.

This formula uses past values of y and ε,
which may be simulates from prior iterations of the forecast.

4. Repeat steps 2 and 3 sims times to construct sims simulated forecasts.
Summarize these expected values by means and quantiles (confidence intervals).



Effect of repealing seatbelt law?

What does the model predict would happen if we repealed the law?

How much would deaths increase after one month? One year? Five years?

If we run this experiment, how much might the results vary from model expectations?

Need forecast deaths—no law for the next 60 periods, plus predictive intervals

predict(arima.res1, # The model

n.ahead = 60, # predict out 60 periods

newxreg = newdata) # using these counterfactual x’s
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What the model predicts would happen if the seat belt requirement is repealed
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which is easier to read as a polygon
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Confidence intervals vs. Predictive Intervals

Suppose we want confidence intervals instead of predictive intervals

CIs just show the uncertainty from estimation

Analog to se(β) and significance tests

predict.arima() won’t give us CIs

Need to use another package,
or simcf (later in the course)



Neat. But is ARMA(p,q) appropriate for our data?

ARMA(p,q) an extremely flexible, broadly applicable model of single time series yt

But ONLY IF yt is stationary

If data are non-stationary (have a unit root), then:

• Results may be spurrious

• Long-run predictions impossible

Can assess stationarity through two methods:

1. Examine the data: time series, ACF, and PACF plots

2. Statistical tests for a unit root



Unit root tests: Basic notion

• If yt is stationary, large negative shifts should be followed by large positive shifts,
and vice versa (mean-reversion)

• If yt is non-stationary (has a unit root), large negative shifts should be uncorrelated
with large positive shifts

Thus if we regress yt − yt−1 on yt−1, we should get a negative coefficient if and only
if the series is stationary

To do this:

Augmented Dickey-Fuller test adf.test() in the tseries library

Phillips-Perron test: PP.test()

Tests differ in how they model heteroskedasticity, serial correlation,
and the number of lags



Unit root tests: Limitations

Form of unit root test: rejecting the null of a unit root

Will tend to fail to reject for many non-unit roots with high persistence

Very hard to distinguish near-unit roots from unit roots with test statistics

Famously low power tests for single time series



Unit root tests: Limitations

Analogy: Using polling data to predict a very close election

Null Hypothesis: Left Party will get 50.01% of the vote

Alternative Hypothesis: Left will get < 50% of the vote

We’re okay with a 3% CI if we’re interested in alternatives like 45% of the vote

But suppose we need to compare the Null to 49.99%

To confidently reject the Null in favor of a very close alternative like this,
we’d need a CI of about 0.005% or less



Unit root tests: Limitations

In many political science applications, we ask whether φ = 1 or, say, φ = 0.95

Small numerical difference makes a huge difference for modeling

And single-series unit root tests are weak,
and poorly discriminate across these cases

Simply not much use to us for a single time series,
unless we have panel data

Then we can use panel versions of unit root tests that have somewhat more power

More about panel unit root tests later in the course



Unit root tests: usage

> # Check for a unit root

> PP.test(death)

Phillips-Perron Unit Root Test

data: death

Dickey-Fuller = -6.435, Truncation lag parameter = 4, p-value = 0.01

> adf.test(death)

Augmented Dickey-Fuller Test

data: death

Dickey-Fuller = -6.537, Lag order = 5, p-value = 0.01

alternative hypothesis: stationary



Linear regression with yt−1 as a control

A popular model in comparative politics & political science is:

yt = yt−1φ1 + xtβ + εt

estimated by least squares, rather than maximum likelihood

That is, treat yt−1 as “just another covariate”, rather than a special term

Danger of this approach: yt−1 and εt are almost certainly correlated (Why?)

Unless we model serial correlation correctly, our errors will be serially correlated,
and last period’s error is definitely correlated with last period’s realization

So if yt−1 is treated as a covariate in a linear regression,
this violates G-M condition 2, which requires that E(xiεi) = 0

The consequences could be bias in β̂ and incorrect s.e.’s



When can you use a lag of y as a control in OLS?

My recommendation:

1. Estimate an LS model with the lagged DV

2. Check for remaining serial correlation (Breusch-Godfrey)

3. Compare your results to the corresponding AR(p) estimated by MLE

4. Consider ARMA(p,q) alternatives estimated by MLE

5. Use LS only if it make no statistical or substantive difference

Upshot: You can use LS in cases where it works just as well as MLE

If you model the right number of lags, and need no MA(q) terms,
and have lots of time periods, LS often not far off

Be skeptical of LS standard errors that disgree with AR(p)

Still need to interpret the β’s and φ’s dynamically



Testing for serial correlation in errors

In LS models, serial correlation makes estimates inefficient (like heteroskedasticity)

If the model includes a lagged dependent variable,
serial correlation → inconsistent estimates: E(xε) 6= 0

So we need to be able to test for serial correlation.

A general test that will work for single time series or panel data is based on the
Lagrange Multiplier

Called Breusch-Godfrey test, or the LM test



Lagrange Multiplier test for serial correlation

1. Run your time series regression by least squares, regressing

yt = β0 + β1x1t + . . .+ βkxkt + φ1yt−1 + . . .+ φkyt−p + ut

2. Regress (using LS) ût on a constant,
the explanatory variables x1, . . . , xk, yt−1, . . . , yt−m,
and the lagged residuals, ût−1, . . . ût−m

Be sure to chose m ≤ p. If you choose m = 1, you have a test for
1st degree autocorrelation; if you choose m = 2, you have a test
for 2nd degree autocorrelation, etc.

3. Compute the test-statistic (T −m)R2, where R2 is the coefficient of determination
from the regression in step 2. This test statistic is distributed χ2 with m degrees
of freedom.

4. Rejecting the null for this test statistic is equivalent to rejecting no autocorrelation.



Regression with lagged DV for Accidents
Call:

lm(formula = death ~ lagdeath + jan + feb + mar + apr + may +

jun + aug + sep + oct + nov + dec + law)

Residuals:

Min 1Q Median 3Q Max

-323.58 -84.45 -3.80 80.97 404.88

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 635.11393 96.64706 6.571 5.38e-10 ***

lagdeath 0.64313 0.05787 11.114 < 2e-16 ***

jan -302.58936 59.33982 -5.099 8.71e-07 ***

feb -211.00947 48.46926 -4.353 2.26e-05 ***

mar -31.82070 47.33602 -0.672 0.502314

apr -177.52653 47.35870 -3.749 0.000241 ***

may 32.58040 47.55810 0.685 0.494199

jun -111.47957 47.43316 -2.350 0.019863 *

aug -33.76181 47.52523 -0.710 0.478393

sep 9.48411 47.61220 0.199 0.842339

oct 114.89374 48.04444 2.391 0.017832 *



nov 224.81981 50.07068 4.490 1.28e-05 ***

dec 213.09991 54.93824 3.879 0.000148 ***

law -145.31036 37.36477 -3.889 0.000142 ***

---

Signif. codes:

0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 133.9 on 177 degrees of freedom

(1 observation deleted due to missingness)

Multiple R-squared: 0.802,Adjusted R-squared: 0.7875

F-statistic: 55.17 on 13 and 177 DF, p-value: < 2.2e-16



Tests for serial correlation

Breusch-Godfrey test for serial correlation of

order up to 1

data: lm.res1f

LM test = 11.5457, df = 1, p-value = 0.000679

Breusch-Godfrey test for serial correlation of

order up to 2

data: lm.res1f

LM test = 11.9843, df = 2, p-value = 0.002498

Clear evidence of residual serial correlation



Regression with two lags of DV for Accidents
Call:

lm(formula = death ~ lagdeath + lag2death + jan + feb + mar +

apr + may + jun + aug + sep + oct + nov + dec + law)

Residuals:

Min 1Q Median 3Q Max

-378.22 -88.29 -5.04 89.71 308.44

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 475.12645 103.68324 4.582 8.71e-06 ***

lagdeath 0.47250 0.07332 6.445 1.09e-09 ***

lag2death 0.26362 0.07284 3.619 0.000387 ***

jan -311.45937 57.62112 -5.405 2.09e-07 ***

feb -329.58156 57.96856 -5.686 5.37e-08 ***

mar -68.08737 46.99905 -1.449 0.149212

apr -152.44095 46.46031 -3.281 0.001248 **

may 25.02334 46.18114 0.542 0.588610

jun -65.76811 47.71466 -1.378 0.169851

aug -6.16090 46.72852 -0.132 0.895259

sep 19.68658 46.27238 0.425 0.671032



oct 130.18618 46.79714 2.782 0.005997 **

nov 249.97112 49.06743 5.094 9.00e-07 ***

dec 235.55993 53.65766 4.390 1.96e-05 ***

law -111.47166 37.45979 -2.976 0.003336 **

---

Signif. codes:

0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 129.8 on 175 degrees of freedom

(2 observations deleted due to missingness)

Multiple R-squared: 0.8155,Adjusted R-squared: 0.8008

F-statistic: 55.26 on 14 and 175 DF, p-value: < 2.2e-16



Tests for serial correlation

Breusch-Godfrey test for serial correlation of

order up to 1

data: lm.res1g

LM test = 0.6961, df = 1, p-value = 0.4041

> bgtest(lm.res1g,2)

Breusch-Godfrey test for serial correlation of

order up to 2

data: lm.res1g

LM test = 3.2256, df = 2, p-value = 0.1993

Perhaps some weak evidence of residual serial correlation,
but as with other tests, hard to be sure if we need to go beyond AR(2)


