
Essex Summer School in Social Science Data Analysis

Panel Data Analysis for Comparative Research

LAB: Introduction to R

Christopher Adolph

Department of Political Science

and

Center for Statistics and the Social Sciences

University of Washington, Seattle

Why R?

Real question: Why programming?

Non-programmers stuck with package defaults

For your substantive problem, defaults may be

• inappropriate (not quite the right model, but “close”)

• unintelligible (reams of non-linear coefficients and stars)

Programming allows you to match the methods to the data & question

Get better, more easily explained results.

Why R?

Many side benefits:

1. Never forget what you did: The code can be re-run.

2. Repeating an analysis n times? Write a loop!

3. Programming makes data processing/reshaping easy.

4. Programming makes replication easy.

Why R?

R is

• free

• open source

• growing fast

• widely used

• the future for most fields

But once you learn one language, the others are much easier

Introduction to R

R is a calculator that can store lots of information in memory

R stores information as “objects”

> x <- 2

> print(x)

[1] 2

> y <- "hello"

> print(y)

[1] "hello"

> z <- c(15, -3, 8.2)

> print(z)

[1] 15.0 -3.0 8.2

Introduction to R

> w <- c("gdp", "pop", "income")

> print(w)

[1] "gdp" "pop" "income"

>

Note the assignment operator, <-, not =

An object in memory can be called to make new objects

> a <- x^2

> print(x)

[1] 2

> print(a)

[1] 4

> b <- z + 10

> print(z)

[1] 15.0 -3.0 8.2

> print(b)

[1] 25.0 7.0 18.2

Introduction to R

> c <- c(w,y)

> print(w)

[1] "gdp" "pop" "income"

> print(y)

[1] "hello"

> print(c)

[1] "gdp" "pop" "income" "hello"

Commands (or “functions”) in R are always written command()

The usual way to use a command is:

output <- command(input)

We’ve already seen that c() pastes together variables.

A simple example:

> z <- c(15, -3, 8.2)

> mz <- mean(z)

> print(mz)

[1] 6.733333

Introduction to R

Some commands have multiple inputs. Separate them by commas:

plot(var1,var2) plots var1 against var2

Some commands have optional inputs. If omitted, they have default values.

plot(var1) plots var1 against the sequence {1,2,3,. . . }

Inputs can be identified by their position or by name.

plot(x=var1,y=var2) plots var2 against var1

Entering code

You can enter code by typing at the prompt, by cutting or pasting, or from a file

If you haven’t closed the parenthesis, and hit enter, R let’s you continue with this
prompt +

You can copy and paste multiple commands at once

You can run a text file containing a program using source(), with the name of the
file as input (ie, in ””)

I prefer the source() approach. Leads to good habits of retaining code.

Data types

R has three important data types to learn now

Numeric y <- 4.3

Character y <- "hello"

Logical y <- TRUE

We can always check a variable’s type, and sometimes change it:

population <- c("1276", "562", "8903")

print(population)

is.numeric(population)

is.character(population)

Oops! The data have been read in as characters, or “strings”. R does not know they
are numbers.

population <- as.numeric(population)

Some special values

Missing data NA

A “blank” NULL

Infinity Inf

Not a number NaN

Data structures

All R objects have a data type and a data structure

Data structures can contain numeric, character, or logical entries

Important structures:

Vector

Matrix

Dataframe

List (to be covered later)

Vectors in R

Vector is R are simply 1-dimensional lists of numbers or strings

Let’s make a vector of random numbers:

x <- rnorm(1000)

x contains 1000 random normal variates drawn from a Normal distribution with
mean 0 and standard deviation 1.

What if we wanted the mean of this vector?

mean(x)

What if we wanted the standard deviation?

sd(x)

Vectors in R

What if we wanted just the first element?

x[1]

or the 10th through 20th elements?

x[10:20]

what if we wanted the 10th percentile?

sort(x)[100]

Indexing a vector can be very powerful. Can apply to any vector object.

What if we want a histogram?

hist(x)

Vectors in R

Useful commands for vectors:

seq(from, to, by) generates a sequence
rep(x,times) repeats x

sort() sorts a vector from least to greatest
rev() reverses the order of a vector
rev(sort()) sorts a vector from greatest to least

Matrices in R

Vector are the standard way to store and manipulate variables in R

But usually our datasets have several variables measured on the same observations

Several variables collected together form a matrix with one row for each observation
and one column for each variable

Matrices in R

Many ways to make a matrix in R

a <- matrix(data=NA, nrow, ncol, byrow=FALSE)

This makes a matrix of nrow × ncol, and fills it with missing values.

To fill it with data, substitute a vector of data for NA in the command. It will fill up
the matrix column by column.

We could also paste together vectors, binding them by column or by row:

b <- cbind(var1, var2, var3)

c <- rbind(obs1, obs2)

Matrices in R

Optionally, R can remember names of the rows and columns of a matrix

To assign names, use the commands:

colnames(a) <- c("Var1", "Var2")

rownames(a) <- c("Case1", "Case2")

Substituting the actual names of your variables and observations (and making sure
there is one name for each variable & observation)

Matrices in R

Matrices are indexed by row and column.

We can subset matrices into vectors or smaller matrices

a[1,1] Gets the first element of a
a[1:10,1] Gets the first ten rows of the first column
a[,5] Gets every row of the fifth column
a[4:6,] Gets every column of the 4th through 6th rows

To make a vector into a matrix, use as.matrix()

R defaults to treating one-dimensional arrays as vectors, not matrices

Useful matrix commands:

nrow() Gives the number of rows of the matrix
ncol() Gives the number of columns
t() Transposes the matrix

Much more on matrices next week.

Dataframes in R

Dataframes are a special kind of matrix used to store datasets

To turn a matrix into a dataframe (note the extra .):

a <- as.data.frame(a)

Dataframes always have columns names, and these are set or retrieved using the
names() command

names(a) <- c("Var1","Var2")

Dataframes can be “attached”, which makes each column into a vector with the
appropriate name

attach(a)

Loading data

There are many ways to load data to R. I prefer using comma-separated variable
files, which can be loaded with read.csv

You can also check the foreign library for other data file types

If your data have variable names, you can attach the dataset like so:

data <- read.csv("mydata.csv")

attach(data)

to access the variables directly

Benefits and dangers of attach()

If your data have variable names, you can also “attach” the dataset like so:

data <- read.csv("mydata.csv")

attach(data)

to access all the variables directly through newly created vectors.

Be careful! attach() is tricky.

1. If you attach a variable data$x in data and then modify x, the original data$x is
unchanged.

2. If you have more than one dataset with the same variable names, attach() is a
bad idea: only the first will be attached!

Sometimes attach() is handy, but be careful!

Missing data

When loading a dataset, you can often tell R what symbol that file uses for missing
data using the option na.strings=

So if your dataset codes missings as ., set na.strings="."

If your dataset codes missings as a blank, set na.strings=""

If your dataset codes missings in multiple ways, you could set, e.g.,
na.strings=c(".","","NA")

Missing data

Many R commands will not work properly on vectors, matrices, or dataframes
containing missing data (NAs)

To check if a variables contains missings, use is.na(x)

To create a new variable with missings listwise deleted, use na.omit

If we have a dataset data with NAs at data[15,5] and data[17,3]

dataomitted <- na.omit(data)

will create a new dataset with the 15th and 17th rows left out

Be careful! If you have a variable with lots of NAs you are not using in your analysis,
remove it from the dataset before using na.omit()

Mathematical Operations

R can do all the basic math you need

Binary operators:

+ - * / ^

Binary comparisions:

< <= > >= == !=

Logical operators (and, or, not, control-flow and, control-flow not; use parentheses!):

& | ! && ||

Math/stat fns:

log exp mean median min max sd var cov cor

Set functions (see help(sets)), Trigonometry (see help(Trig)),

R follows the usual order of operations; if it doubt, use parentheses

Example 1: US Economic growth

Let’s investigate an old question in political economy:

Are there partisan cycles, or tendencies, in economic performance?

Does one party tend to produce higher growth on average?

(Theory: Left cares more about growth vis-a-vis inflation than the Right

If there is partisan control of the economy,
then Left should have higher growth ceteris paribus)

Data from the Penn World Tables (Annual growth rate of GDP in percent)

Two variables:

grgdpch The per capita GDP growth rate
party The party of the president (Dem = -1, Rep = 1)

Example 1: US Economic growth

Load data

data <- read.csv("gdp.csv", na.strings="")

attach(data)

Construct party specific variables

gdp.dem <- grgdpch[party==-1]

gdp.rep <- grgdpch[party==1]

Make the histogram

hist(grgdpch,

breaks=seq(-5,8,1),

main="Histogram of US GDP Growth, 1951--2000",

xlab="GDP Growth")

Histogram of US GDP Growth, 1951−−2000

GDP Growth

F
re

qu
en

cy

−4 −2 0 2 4 6 8

0
2

4
6

8
10

GDP Growth under Democratic Presidents

GDP Growth

F
re

qu
en

cy

−4 −2 0 2 4 6 8

0
1

2
3

4
5

6

GDP Growth under Republican Presidents

GDP Growth

F
re

qu
en

cy

−4 −2 0 2 4 6 8

0
2

4
6

8

Make a box plot

boxplot(grgdpch~as.factor(party),

boxwex=0.3,

range=0.5,

names=c("Democratic\n Presidents",

"Republican\n Presidents"),

ylab="GDP growth",

main="Economic performance of partisan governments")

Note the unusual first input: this is an R formula

y~x1+x2+x3

In this case, grgdpch is being “modelled” as a function of party

boxplot() needs party to be a “factor” or an explicitly categorical variable

Hence we pass boxplot as.factor(party), which turns the numeric variable into a
factor

Box plots: Annual US GDP growth, 1951–2000

Democratic
 President

Republican
 President

−
4

−
2

0
2

4
6

Economic performance of partisan governments

Annual GDP
growth
(percent)

Box plots: Annual US GDP growth, 1951–2000

Democratic
 President

Republican
 President

−
4

−
2

0
2

4
6

Economic performance of partisan governments

Annual GDP
growth
(percent)

mean 3.1

mean 1.7

75th 4.5

25th 2.1
median 2.4

75th 3.2

25th --0.5

median 3.4

std dev 1.7 std dev 3.0

Box plots: Annual US GDP growth, 1951–2000

Democratic
 President

Republican
 President

−
4

−
2

0
2

4
6

Economic performance of partisan governments

Annual GDP
growth
(percent)

Reagan 1984

Reagan 1982

Carter 1980

JFK 1961

mean 3.1

mean 1.7

75th 4.5

25th 2.1
median 2.4

75th 3.2

25th --0.5

median 3.4

std dev 1.7 std dev 3.0

Box plots: Annual US GDP growth, 1951–2000

Democratic
 President

Republican
 President

−
4

−
2

0
2

4
6

Economic performance of partisan governments

Annual GDP
growth
(percent)

Reagan 1984

Reagan 1982

Carter 1980

JFK 1961

Help!

To get help on a known command x, type help(x) or ?x

To search the help files using a keyword string s, type help.search(s)

Note that this implies to search on the word regression, you should type
help.search("regression")

but to get help for the command lm, you should type help(lm)

Installing R on a PC

• Go to the Comprehensive R Archive Network (CRAN)
http://cran.r-project.org/

• Under the heading “Download and Install R”, click on “Windows”

• Click on “base”

• Download and run the R setup program.
The name changes as R gets updated;
the current version is “R-3.4.0-win.exe”

• Once you have R running on your computer,
you can add new libraries from inside R by selecting
“Install packages” from the Packages menu

Installing R on a Mac

• Go to the Comprehensive R Archive Network (CRAN)
http://cran.r-project.org/

• Under the heading “Download and Install R”, click on “MacOS X”

• Download and run the R setup program.
The name changes as R gets updated;
the current version is “R-3.4.0.pkg”
(El Capitan or higher OS)

• Once you have R running on your computer,
you can add new libraries from inside R by selecting
“Install packages” from the Packages menu

Editing scripts

Don’t use Microsoft Word to edit R code!

Word adds lots of “stuff” to text; R needs the script in a plain text file.

Some text editors:

• Notepad: Free, and comes with Windows (under Start → Programs →
Accessories). Gets the job done; not powerful.

• TextEdit: Free, and comes with Mac OS X. Gets the job done; not powerful.

• TINN-R: Free and fairly powerful. Windows only.
http://www.sciviews.org/Tinn-R/

• Emacs: Free and very powerful (my preference). Can use for R and Latex.
Available for Mac and PC.

For Mac (easy installation): http://aquamacs.org/

For Windows (see the README): http://ftp.gnu.org/gnu/emacs/windows/

Editing data

R can load many other packages’ data files

See the foreign library for commands

For simplicity & universality, I prefer Comma-Separated Variable (CSV) files

Microsoft Excel can edit and export CSV files (under Save As)

R can read them using read.csv()

OpenOffice is free alternative to Excel & makes CSV files (for all platforms):
http://www.openoffice.org/

My detailed guide to installing social science software on the Mac:
http://thewastebook.com/?post=social-science-computing-for-mac

Focus on steps 1.1 and 1.3 for now; come back later for Latex in step 1.2

Example 2: A simple linear regression

Let’s investigate a bivariate relationship

Cross-national data on fertility (children born per adult female) and the percentage
of women practicing contraception.

Data are from 50 developing countries.

Source: Robey, B., Shea, M. A., Rutstein, O. and Morris, L. (1992) “The
reproductive revolution: New survey findings.” Population Reports. Technical Report
M-11.

Example 2: A simple linear regression

Load data

data <- read.csv("robeymore.csv", na.strings="")

completedata <- na.omit(data)

attach(completedata)

Transform variables

contraceptors <- contraceptors/100

Run linear regression

res.lm <- lm(tfr~contraceptors)

print(summary(res.lm))

Get predicted values

pred.lm <- predict(res.lm)

Example 2: A simple linear regression

Make a plot of the data

plot(x=contraceptors,

y=tfr,

ylab="Fertility Rate",

xlab="% of women using contraception",

main="Average fertility rates & contraception; \n

50 developing countries",

xaxp=c(0,1,5)

)

Add predicted values to the plot

points(x=contraceptors,y=pred.lm,pch=16,col="red")

Example 2: A simple linear regression

> summary(res.lm)

Call:

lm(formula = tfr ~ contraceptors)

Residuals:

Min 1Q Median 3Q Max

-1.54934 -0.30133 0.02540 0.39570 1.20214

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.8751 0.1569 43.83 <2e-16 ***

contraceptors -5.8416 0.3584 -16.30 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.5745 on 48 degrees of freedom

Multiple R-Squared: 0.847, Adjusted R-squared: 0.8438

F-statistic: 265.7 on 1 and 48 DF, p-value: < 2.2e-16

Data and Prediction

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

0.2 0.4 0.6

2
3

4
5

6
7

Average fertility rates & contraception;
 50 developing countries

% of women using contraception

F
er

til
ity

 R
at

e

●

●

●
●

●

●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

Matrix Algebra in R

det(a) Computes the determinant of matrix a

solve(a) Computes the inverse of matrix a

t(a) Takes the transpose of a

a%*%b Matrix multiplication of a by b

a*b Element by element multiplication

An R list is a basket containing many other variables

> x <- list(a=1, b=c(2,15), giraffe="hello")

> x$a

[1] 1

> x$b

[1] 2 15

> x$b[2]

[1] 15

> x$giraffe

[1] "hello"

> x[3]

$giraffe

[1] "hello"

> x[["giraffe"]]

[1] "hello"

R lists

Things to remember about lists

• Lists can contain any number of variables of any type

• Lists can contain other lists

• Contents of a list can be accessed by name or by position

• Allow us to move lots of variables in and out of functions

• Functions often return lists (only way to have multiple outputs)

lm() basics

To run a regression

res <- lm(y~x1+x2+x3, # A model formula

data # A dataframe (optional)

)

To print a summary

summary(res)

To get the coefficients

res$coefficients

or

coef(res)

#To get residuals

res$residuals

#or

resid(res)

lm() basics

To get the variance-covariance matrix of the regressors

vcov(res)

To get the standard errors

sqrt(diag(vcov(res)))

To get the fitted values

predict(res)

To get expected values for a new observation or dataset

predict(res,

newdata, # a dataframe with same x vars

as data, but new values

interval = "confidence", # alternative: "prediction"

level = 0.95

)

R lists & Object Oriented Programming

A list object in R can be given a special “class” using the class() function

This is just a metatag telling other R functions that this list object conforms to a
certain format

So when we run a linear regression like this:

res <- lm(y~x1+x2+x3, data)

The result res is a list object of class ‘‘lm’’

Other functions like plot() and predict() will react to res in a special way
because of this class designation

Specifically, they will run functions called plot.lm() and predict.lm()

Object-oriented programming:
a function does different things depending on class of input object

An example: Party systems & Redistribution

Cross sectional data on industrial democracies:

povertyReduction Percent of citizens lifted out of poverty
by taxes and transfers

effectiveParties Effective number of parties
partySystem Whether the party system is Majoritarian,

Proportional, or Unanimity (Switzerland)

Source of data & plot: Torben Iversen and David Soskice, 2002, “Why do some
democracies redistribute more than others?” Harvard University.

Considerations:

1. The marginal effect of each extra party is probably diminishing,
so we want to log the effective number of parties

2. The party system variable needs to be “dummied out;”
there are several ways to do this

An example: Party systems & Redistribution

Clear memory of all objects

rm(list=ls())

Load libraries

library(RColorBrewer) # For nice colors

Load data

file <- "iverRevised.csv"

iversen <- read.csv(file,header=TRUE)

Create dummy variables for each party system

iversen$majoritarian <- as.numeric(iversen$partySystem=="Majoritarian")

iversen$proportional <- as.numeric(iversen$partySystem=="Proportional")

iversen$unanimity <- as.numeric(iversen$partySystem=="Unanimity")

A bivariate model, using a formula to log transform a variable

model1 <- povertyReduction ~ log(effectiveParties)

lm.res1 <- lm(model1, data=iversen)

summary(lm.res1)

An example: Party systems & Redistribution

Call:

lm(formula = model1, data = iversen)

Residuals:

Min 1Q Median 3Q Max

-48.907 -4.115 8.377 11.873 18.101

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 21.80 16.15 1.349 0.2021

log(effectiveParties) 24.17 12.75 1.896 0.0823 .

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 19.34 on 12 degrees of freedom

Multiple R-squared: 0.2305,Adjusted R-squared: 0.1664

F-statistic: 3.595 on 1 and 12 DF, p-value: 0.08229

An example: Party systems & Redistribution

A new model with multiple regressors

model2 <- povertyReduction ~ log(effectiveParties) + majoritarian

+ proportional

lm.res2 <- lm(model2, data=iversen)

summary(lm.res2)

An example: Party systems & Redistribution

Call:

lm(formula = model2, data = iversen)

Residuals:

Min 1Q Median 3Q Max

-23.3843 -1.4903 0.6783 6.2687 13.9376

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -31.29 26.55 -1.178 0.26588

log(effectiveParties) 26.69 14.15 1.886 0.08867 .

majoritarian 48.95 17.86 2.740 0.02082 *

proportional 58.17 13.52 4.302 0.00156 **

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 12.37 on 10 degrees of freedom

Multiple R-squared: 0.7378,Adjusted R-squared: 0.6592

F-statistic: 9.381 on 3 and 10 DF, p-value: 0.002964

An example: Party systems & Redistribution

A new model with multiple regressors and no constant

model3 <- povertyReduction ~ log(effectiveParties) + majoritarian

+ proportional + unanimity - 1

lm.res3 <- lm(model3, data=iversen)

summary(lm.res3)

An example: Party systems & Redistribution

Call:

lm(formula = model3, data = iversen)

Residuals:

Min 1Q Median 3Q Max

-23.3843 -1.4903 0.6783 6.2687 13.9376

Coefficients:

Estimate Std. Error t value Pr(>|t|)

log(effectiveParties) 26.69 14.15 1.886 0.0887 .

majoritarian 17.66 12.69 1.392 0.1941

proportional 26.88 21.18 1.269 0.2331

unanimity -31.29 26.55 -1.178 0.2659

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 12.37 on 10 degrees of freedom

Multiple R-squared: 0.9636,Adjusted R-squared: 0.949

F-statistic: 66.13 on 4 and 10 DF, p-value: 3.731e-07

An example: Party systems & Redistribution

A new model with multiple regressors and an interaction

model4 <- povertyReduction ~ log(effectiveParties) + majoritarian

+ proportional + log(effectiveParties):majoritarian

lm.res4 <- lm(model4, data=iversen)

summary(lm.res4)

An example: Party systems & Redistribution

Call:

lm(formula = model4, data = iversen)

Residuals:

Min 1Q Median 3Q Max

-22.2513 0.0668 2.8532 4.7318 12.9948

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -14.83 31.42 -0.472 0.64813

log(effectiveParties) 16.78 17.39 0.965 0.35994

majoritarian 16.34 37.65 0.434 0.67445

proportional 56.18 13.70 4.102 0.00267 **

log(effectiveParties):majoritarian 29.55 30.02 0.984 0.35065

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 12.39 on 9 degrees of freedom

Multiple R-squared: 0.7633,Adjusted R-squared: 0.6581

F-statistic: 7.256 on 4 and 9 DF, p-value: 0.006772

An example: Party systems & Redistribution

A more efficient way to specify an interaction

model5 <- povertyReduction ~ log(effectiveParties)*majoritarian +

proportional

lm.res5 <- lm(model5, data=iversen)

summary(lm.res5)

An example: Party systems & Redistribution

Call:

lm(formula = model5, data = iversen)

Residuals:

Min 1Q Median 3Q Max

-22.2513 0.0668 2.8532 4.7318 12.9948

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -14.83 31.42 -0.472 0.64813

log(effectiveParties) 16.78 17.39 0.965 0.35994

majoritarian 16.34 37.65 0.434 0.67445

proportional 56.18 13.70 4.102 0.00267 **

log(effectiveParties):majoritarian 29.55 30.02 0.984 0.35065

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 12.39 on 9 degrees of freedom

Multiple R-squared: 0.7633,Adjusted R-squared: 0.6581

F-statistic: 7.256 on 4 and 9 DF, p-value: 0.006772

Plotting a best fit line

2 3 4 5 6 7

0
10

20
30

40
50

60
70

80
90

10
0

Effective Number of Parties

P
ov

er
ty

 R
ed

uc
tio

n

Australia

Canada

France

Germany
United Kingdom

United States

Belgium

Denmark
Finland

Italy

NetherlandsNorway
Sweden

●

Switzerland

Let’s turn to the code to see how we can make this plot using R base graphics

