
Models of 
Ordered Data

Christopher Adolph

Political Science and CSSS
University of Washington, Seattle

POLS 510 � CSSS 510

 All photo credits Chris Adolph and Erika Steiskal  2017 

Maximum Likelihood Methods 
for the Social Sciences



Ordered Discrete Variables

So far, we’ve discussed binary variables: y ∈ {0, 1}.

Another way to think of a binary variable is as a set of ordered values,
where the size of the “gap” between values is unknown: y ∈ {lowest, highest}
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Ordered Discrete Variables

So far, we’ve discussed binary variables: y ∈ {0, 1}.

Another way to think of a binary variable is as a set of ordered values,
where the size of the “gap” between values is unknown: y ∈ {lowest, highest}

A straightforward generalization adds more levels, again with unknown intervals:
y ∈ {lowest, second lowest, . . . second highest, highest}

For convenience, we will say y ∈ {1, 2, . . . ,m− 1,m} but understand the gaps
between these variables may be of different (but unknown) sizes.

Ordered discrete data are very common:

Likert scales (Disagree strongly, disagree, somewhat disagree, . . . )
Policy options (Privatize social security, partially privatize, leave unchanged)
Survey questions (Some high school, HS grad, some college, college grad, . . . )
Ranks in hierarchies (Staff, manager, upper management, executive)
Health (Healthy, Sick, Dead)
and so on . . .
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Thought experiment: We observe a variable measuring the violence of a subject’s
responses to provocations made by a stranger

The variable is coded in three ordered categories:

1. did the subject ignore the provocation?

2. did the subject verbally argue with the stranger?

3. did the subject physically punch the stranger?
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β̂1 = 0.25 (p = 0.22)

We’re interested in the relationship between violence of response
and prior alcohol consumption (perhaps the data come from altercations in bars)

The plot shows what happens when
we treat the ordered categories of violence as an interval measure

Do we trust this model’s estimate of the slope or predictions of ŷ?
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β̂1 = 0.25 (p = 0.22)

The model at left rests on very shaky assumptions,
especially if the number of choices is small

Violence ∈ {ignore, argue, punch} is not equally spaced on most interpretations

Most would say argue is close to ignore than it is to punch

Applying a model that treats them as such makes a strong & incorrect assumption
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β̂1 = 0.25 (p = 0.22) β̂1 = 0.34 (p = 0.11)

Suppose the intervals at the right are “correct”

Linear regression in this case recovers a much larger β̂ –
nearly 50% larger than under the incorrect assumption of equal spacing

Linear regression is biased with three or more categories (it wasn’t with just two)

In small samples, this bias could lead to Type II errors –
failure to reject an incorrect null of no relationship
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ŷ = 1.5

ŷ = 1.2

Assuming equal spacing also leads to large errors
when predicting ŷ, the level of violence

Here we overestimate the risk of violence for low levels of alcohol

What does it mean to say ŷ = 1.5 or ŷ = 1.2?
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The models make similar predictions of violence for high alcohol consumption

Not much help: without knowing the true intervals,
we can’t know where (if anywhere) ŷ is approximately unbiased

But what does ŷ = 2.5 even mean? Does it mean anything at all?



Ignore

Argue

Punch

Treat categories as interval

alcohol consumption

Ignore
Argue

Punch

True intervals between categories

alcohol consumption

β̂1 = 0.25 (p = 0.22) β̂1 = 0.34 (p = 0.11)
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ŷ� ŷ� 2.5
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Problems with linear regression on ordered categories:

(1) Same problems as linear regression with a binary outcome:
inefficient & predictions can fall outside the range of y

(2) Treating 3+ categories as interval data creates measurement error:
potentially large bias in β̂, ŷ, and p-values

(3) Data generating process completely wrong: β̂ shifts units of what, exactly?
⇒ ŷ cannot be interpreted at all (certainly not as a probability)
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Saying a set of discrete, ordered choices are not “equally spaced”
implicitly appeals to their values on a continuous latent variable

Let’s make explicit the relationship between
the ordered discrete variable y and the latent continuous variable y∗

Start with a review of latent variables in the binary context
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Recall: a model of binary yi can be motivated by a latent variable y∗i such that

yi =

{
0 if −∞ < y∗i ≤ τ1
1 if τ1 < y∗i ≤ ∞

b/c y∗ is unobserved, we assumed τ1 = 0 for identification & w.o. loss of generality

We noted that if y∗i ∼ Normal(xiβ, σ2 = 1), this produces the probit model for yi
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In linear regression an expected value is a real number ŷ on the scale of y
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In linear regression an expected value is a real number ŷ on the scale of y

If we could observe y∗i , then its expected value would simply be xiβ̂,
as shown on the pdf at left
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In models of binary outcomes an expected value is a probability π̂,
computed from a cdf – here, the Normal cdf

Really, it’s two probabilities, one for each category of yi:

Pr(yi = 0) =

∫ τ1=0

−∞
Normal(xiβ̂, 1)dy∗i
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In models of binary outcomes an expected value is a probability π̂,
computed from a cdf – here, the Normal cdf

Really, it’s two probabilities, one for each category of yi:

Pr(yi = 0) =

∫ τ1=0

−∞
Normal(xiβ̂, 1)dy∗i Pr(yi = 1) = 1− Pr(yi = 0)
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β0= 0, β1= 0.5, x =3
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We learned these probabilities shift as xiβ does

In our running example, we have xiβ = β0 + β1xi = 0 + 0.5xi

An increase in x1 from 1 to 3 moves the mean of the latent variable from 0.5 to 1.5

Shifting this much mass of the latent variable across the cutpoint τ1 = 0
raises the probability of category 1 from 69% to 93%, as shown by the cdf
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xβ = β0 + β1x 

β0= 0, β1= 0.5, x =1

τ1= 0
y* ~ Normal(xβ,1)
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�y*dy*
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Pr(failure)
        = 0.31Pr(success)

Pr(success)
           = 0.69

We also learned that for binary outcomes the names of the outcomes are immaterial

Instead of 0 and 1, we could call them “failure” and “success”
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Or simply “1” and “2” for category 1 and category 2

Note that here “1” and “2” are just names –
we don’t propose to treat them as numbers that can be added or multiplied

They are simply ordered categories
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Rewrite the relationship between the binary variable yi ∈ {1, 2} and the latent y∗i :

yi =

{
1 if τ0 < y∗i ≤ τ1
2 if τ1 < y∗i ≤ τ2

τ0 = −∞ and τ2 =∞, so there are m+ 1 = 3 τ ’s
for m = 2 categories of y
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How might we add categories to this model? What if we added more cutpoints?

Suppose the outcome could be any of four ordered categories, yi ∈ {1, 2, 3, 4}

Let’s add two more cutpoints τ2 and τ3 to mark off the new categories
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Now we generalize our latent variable setup to accommodate m categories:

yi =


1 if τ0 < y∗i ≤ τ1
2 if τ1 < y∗i ≤ τ2
3 if τ2 < y∗i ≤ τ3
. . .
m if τm−1 < y∗i ≤ τm
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β0= 0, β1= 0.5, x =1
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More compactly: yi = j if τj−1 < y∗i ≤ τj

As in the binary case, we assume τ0 = −∞, τ1 = 0, and τm =∞ for identification

That leaves m− 2 of the τ ’s as free parameters – here, these are τ2 and τ3

If we knew these τ ’s, how would we calculate the probability yi falls in each category?
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Calculating the probability of the first category is the same as in the binary case:

Pr(yi = 1) =

∫ τ1=0

−∞
Normal(xiβ̂, 1)dy∗i

This is the probability the latent variable y∗i falls between τ0 = −∞ and τ1 = 0
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Calculating the probability of the second category follows the same logic –
compute the chance y∗i falls between the appropriate cutpoints

Pr(yi = 2) =

∫ τ2

τ1=0

Normal(xiβ̂, 1)dy∗i

But τ2 can be any quantity between 0 and τ3 – it is not fixed



0

0.2

0.4

0.6

0.8

1

xβ = β0 + β1x 

β0= 0, β1= 0.5, x =1

τ1= 0
y* ~ Normal(xβ,1)

τj

�y*dy*

Pr(y=1) Pr(y=2) Pr(y=3)
Pr(y=1) = 0.31

Pr(y=2) = 0.31

Pr(y=3) = 0.30

τ3= 1.9τ2= 0.8

To calculate the probability of the third category,
insert the appropriate cutpoints into the Normal CDF:

Pr(yi = 3) =

∫ τ3

τ2

Normal(xiβ̂, 1)dy∗i

Because τ2 and τ3 are free parameters like β, we’ll need to estimate them
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To calculate the probability of the final category,
we could insert the appropriate cutpoints into the Normal CDF:

Pr(yi = 4) =

∫ ∞
τ3

Normal(xiβ̂, 1)dy∗i
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There’s also a shortcut for the last category:
subtract the probability of the other categories from 1

Pr(yi = 4) = 1−
m−1∑
j=1

Pr(yi = j)



One way to solve
ordered probit:
calculus

Another way:
a scale, an egg slicer,
and some clay

Shape 100 grams of
clay into a Normal
distribution

Imagine drawing a
speck of clay at
random from this
shape

Specks drawn from
further right represent
a greater chance of
high categories of y



Load the clay in the
egg slicer

Where do we to
position the clay?
Its mean should be
centered over xiβ

Let’s assume this is
the middle of the slicer
for now

The slicer should have
one wire for each
(non-infinite) cutpoint,
spaced apart as
indicated by
τ1, τ2, τ3, . . .



Slicing the clay
produces four separate
pieces

Each of these
represents the relative
weight of probability
that a randomly drawn
speck comes from a
given category

Before we used
calculus to compute
the probability of a
draw coming from
each piece. . .



Assuming a constant
density of clay, we
could instead just
weigh each piece

Because they sum to
100 grams, each gram
indicates one percent
of probability

The weights of these
four categories match
what we obtained from
computing the Normal
CDF for each piece of
the latent variable

An egg slicer can do
ordered probit!
But R is faster and
cleaner, so. . .
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Notice the CDF curves on the right are all parallel

They are the same CDF shifted left or right by the τ ’s

This is the key identifying assumption of the model:
proportional (or parallel) probits for each category

→ only need to estimate one probit (or logit) regardless of the number of categories
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Just as in the binary case, the covariates xi influence the probabilities of the
categories by shifting the latent variable through the cutpoints

Suppose we increase x1 from 1 to 3

As before, this raises xiβ by 1.5. . .
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And shifts the latent variable pdf up, so more of its mass lies between high cutpoints

There is a corresponding shift in the CDFs,
so that the probability of categories 3 and 4 rise (and 1 and 2 shrink)
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What if we raise x1 even more, to 3, so that xiβ is 2.5?

Now the pdf mass is largely concentrated between the two highest cutpoints

The probability of category 4 rises at the expense of all other categories



0

0.2

0.4

0.6

0.8

1

xβ = β0 + β1x 

β0= 0, β1= 0.5, x =5

τ1= 0
y* ~ Normal(xβ,1)

τj

�y*dy*

Pr(y=1) Pr(y=2) Pr(y=3) Pr(y=4)

Pr(y=1) = 0.01
Pr(y=2) = 0.04

Pr(y=3) = 0.23

Pr(y=4) = 0.73

τ3= 1.9τ2= 0.8

As xiβ increases, Pr(y = j) for intermediate j first rises, then falls

If xiβ is large enough, almost all the probability falls in the most extreme category

In that case, further increases in xiβ will have little effect

This makes the model nonlinear – like binary probit, the biggest effects of covariates
are when the probabilities of the categories start out balanced
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Returning to the original level of x1,
what happens if we instead shift either of the moveable cutpoints τ2 and τ3?

Let’s move τ3 and find out. . .
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Suppose τ3 is 1.4 instead of 1.9

Because the cutpoints for category 3 are closer together,
the probability of this category shrinks and the probability of 4 rises
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With the cutpoints closer together,
a shift in xiβ more rapidly shifts probability to the highest category
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With the closer cutpoints,
x1 = 5 produces a huge probability for y = 4

and little chance of other categories

From what you have seen so far, can you interpret β1 directly?
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To a limited extent, ordered probit β’s are interpretable, if we also know the τ ’s

Suppose that initially, x1 is 1, so that in our model y∗ is 0.5

This puts the mean of the latent variable pdf between τ1 = 0 and τ2 = 0.8,
so in some sense yi = 2 is the median expected category



0

0.2

0.4

0.6

0.8

1

xβ = β0 + β1x 

β0= 0, β1= 0.5, x =3

τ1= 0
y* ~ Normal(xβ,1)

τj

�y*dy*

Pr(y=1) Pr(y=2) Pr(y=3) Pr(y=4)
Pr(y=1) = 0.07

Pr(y=2) = 0.18

Pr(y=3) = 0.22

Pr(y=4) = 0.54

τ3= 1.4τ2= 0.8

Now suppose that x1 rises to 3:
because β1 = 0.5, the most likely value of y∗ is now 1.5

y∗ is now most likely between τ3 = 1.4 and τ4 =∞,
so now yi = 4 is the median expected category

If we know that β1 = 0.5, τ2 = 0.8, and τ3 = 1.4,
we can say a shift from x1 = 2 to x1 = 3 will probably raise y by two categories
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Not totally satisfactory: “median category” is a bit vague,
and all categories are still possible – but to what extent?

We’ll devise better ways to interpret the model

But first, how do we estimate β and τ?



An ordered probit MLE

Let’s build a likelihood for the ordered probit model

Start with the latent variable y∗i and recall that

FN
(
y∗i |µi, σ2

)
=

∫ y∗i

−∞
fN
(
y∗i |µi, σ2

)
dy∗i
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An ordered probit MLE

Let’s build a likelihood for the ordered probit model

Start with the latent variable y∗i and recall that

FN
(
y∗i |µi, σ2

)
=

∫ y∗i

−∞
fN
(
y∗i |µi, σ2

)
dy∗i

=

∫ y∗i

−∞

1√
2πσ2

exp

(
−(y∗i − µi)2

2σ2

)
dy∗i

= Φ
(
y∗i |µi, σ2

)
We can thus write the CDF of the standard normal distribution as

Φ (y∗i |µi, 1)

And we can have R calculate this:

pnorm(y, mean=mu, sd=1)



An ordered probit MLE

Next, we need a probability model of yi

Let’s recode yi into a vector, s.t. yij = 1 if y∗i falls into category j:

yij =

{
1 if τj−1 < y∗i ≤ τj
0 otherwise
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Now we can write the probability of yij:

Pr (yij = 1) = Pr (τj−1 < y∗i ≤ τj)
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Next, we need a probability model of yi

Let’s recode yi into a vector, s.t. yij = 1 if y∗i falls into category j:

yij =

{
1 if τj−1 < y∗i ≤ τj
0 otherwise

Now we can write the probability of yij:

Pr (yij = 1) = Pr (τj−1 < y∗i ≤ τj)

=
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−∞
fN (y∗i |µi, 1) dy∗i −
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−∞
fN (y∗i |µi, 1) dy∗i

= Φ (τj|µi, 1)− Φ (τj−1|µi, 1)



An ordered probit MLE

Next, we need a probability model of yi

Let’s recode yi into a vector, s.t. yij = 1 if y∗i falls into category j:

yij =

{
1 if τj−1 < y∗i ≤ τj
0 otherwise

Now we can write the probability of yij:

Pr (yij = 1) = Pr (τj−1 < y∗i ≤ τj)

=

∫ τj

τj−1

fN (y∗i |µi, 1) dy∗i

=

∫ τj

−∞
fN (y∗i |µi, 1) dy∗i −

∫ τj−1

−∞
fN (y∗i |µi, 1) dy∗i

= Φ (τj|µi, 1)− Φ (τj−1|µi, 1)

using R: pnorm(tau[j], mean=mu[i], sd=1)

- pnorm(tau[j-1], mean=mu[i], sd=1)



An ordered probit MLE

If yi falls into category j, then the likelihood of yi is proportional to Pr (yij = 1).
All other categories 6= j are irrelevant.



An ordered probit MLE

If yi falls into category j, then the likelihood of yi is proportional to Pr (yij = 1).
All other categories 6= j are irrelevant.

This requirement suggests maximizing the following likelihood,

L (β, τ |y) =

n∏
i=1


m∏
j=1

[Φ (τj|xiβ, 1)− Φ (τj−1|xiβ, 1)]
yij


which “picks out” the probability of the right category for each observation.



An ordered probit MLE

If yi falls into category j, then the likelihood of yi is proportional to Pr (yij = 1).
All other categories 6= j are irrelevant.

This requirement suggests maximizing the following likelihood,

L (β, τ |y) =

n∏
i=1


m∏
j=1

[Φ (τj|xiβ, 1)− Φ (τj−1|xiβ, 1)]
yij


which “picks out” the probability of the right category for each observation.

Taking logs, we have

logL (β, τ |y) =

n∑
i=1

m∑
j=1

yij log [Φ (τj|xiβ, 1)− Φ (τj−1|xiβ, 1)]

When programming this likelihood, there is one caveat:
The τ ’s must remain in order, and nothing in logL(·) guarantees this.
Solution: penalty functions – subtract 1,000,000 from logL(·) if order wrong.



Ordered probit quantities of interest

In models of ordered data, we get one expected probability for each category of y

These probabilities sum to one:

Pr(y = 1|xiβ̂, τ̂ ) = π̂1i

Pr(y = 2|xiβ̂, τ̂ ) = π̂2i

Pr(y = 3|xiβ̂, τ̂ ) = π̂3i

. . .

Pr(y = m|xiβ̂, τ̂ ) = 1−
m−1∑
j=1

π̂ji



Ordered probit quantities of interest

In models of ordered data, we get one expected probability for each category of y

To calculate these π̂’s we use the standard normal CDF:

Pr(y = 1|xiβ̂, τ̂ ) = Φ
(
τ̂1|xiβ̂, 1

)
Pr(y = 2|xiβ̂, τ̂ ) = Φ

(
τ̂2|xiβ̂, 1

)
− Φ

(
τ̂1|xiβ̂, 1

)
Pr(y = 3|xiβ̂, τ̂ ) = Φ

(
τ̂3|xiβ̂, 1

)
− Φ

(
τ̂2|xiβ̂, 1

)
. . .

Pr(y = m|xiβ̂, τ̂ ) = 1− Φ
(
τ̂m−1|xiβ̂, 1

)

These are the colored vertical line segments from the CDF plots

If you wanted a counterfactual xc, you could substitute it above

How do we actually do this in R?



Ordered probit quantities of interest

In models of ordered data, we get one expected probability for each category of y

In R, for a four category probit, let xib <- x[i,]%*%beta, and then:

Pr(y = 1|xiβ̂, τ̂ ) = pnorm(0, mean=xib)

Pr(y = 2|xiβ̂, τ̂ ) = pnorm(tau2, mean=xib) - pnorm(0, mean=xib)

Pr(y = 3|xiβ̂, τ̂ ) = pnorm(tau3, mean=xib) - pnorm(tau2, mean=xib)

Pr(y = 4|xiβ̂, τ̂ ) = 1 - pnorm(tau3, mean=xib)

Predicted values are similar, but instead of a probability of each category,
we predict a single category will happen (we get only 1s and 0s for each ỹij)

Slightly different for ordered logit (substitute logistic CDF)

Confidence intervals’s for π̂ depend on uncertainty in β̂ and τ̂ :
We will need to simulate

The simcf package can help:
see oprobitsimev(), oprobitsimfd(), and oprobitsimrr()



Goodness of Fit

The gamut of GOF tests from last week applies to ordered choice models as well

Many are straightforward (LR, BIC, Wald)

Some may take a bit of thought:

Percent correctly predicted The right category vs. the wrong ones?

Actual vs. Predicted plots One for each category?

ROC plots Right vs. wrong? Something multidimensional?

Concordance index / AUC Right vs. wrong? Something multidimensional?



Goodness of Fit

The gamut of GOF tests from last week applies to ordered choice models as well

Many are straightforward (LR, BIC, Wald)

Some may take a bit of thought:

Percent correctly predicted The right category vs. the wrong ones?

Actual vs. Predicted plots One for each category?

ROC plots Right vs. wrong? Something multidimensional?

Concordance index / AUC Right vs. wrong? Something multidimensional?

Final concern: validating the parallel probits / proportional logits assumption

Statistical tests exist but are widely criticized as too conservative

Instead, use week’s model (multinomial logit) as a robustness check:
if it makes a substantive difference, use MNL instead of ordered probit



How to write the Ordered Probit model in a paper

When writing up an ordered probit (or ordered logit) in a paper,
don’t write out a linear regression model (like yi = xiβ + εi)
and say you estimated it with “ordered probit”

Ordered probit is not a linear model and does not have an error term



How to write the Ordered Probit model in a paper

When writing up an ordered probit (or ordered logit) in a paper,
don’t write out a linear regression model (like yi = xiβ + εi)
and say you estimated it with “ordered probit”

Ordered probit is not a linear model and does not have an error term

Either just say you used ordered probit and avoid writing an equation,
or write the model compactly, e.g.:

I estimated an ordered probit model where the probability that
the ordered response y falls into the j category for case i is given by:

Pr (yi = j|xi) =

∫ τj

τj−1

Normal (xiβ, 1) dxiβ,

where x is a vector of covariates, β is a vector of coefficients,
and τ is a j + 1 vector of cutpoints with t0 = −∞, t1 = 0,
and tj =∞ for identification.



Sexist Attitudes to Working Mothers

In 1977 and 1989, the General Social Survey read a statement to respondents (R’s):

“A working mother can establish just as warm and secure of a relationship
with her child as a mother who does not work.”

R’s could strongly disagree (D), disagree (d), agree (a), or strongly agree (A):

strongly strongly
Percent who. . . disagree disagree agree agree
1977 sample (n=1379) 17.1 33.3 33.8 15.7
1989 sample (n=914) 6.7 28.8 42.7 21.9

Combining disagree’s (d+D) and agree’s (a+A) can be illuminating,
but beware this throws away information!

disagree or agree or
Percent who. . . strongly disagree strongly agree
1977 sample (n=1379) 50.5 49.5
1989 sample (n=914) 35.4 64.6



Sexist Attitudes to Working Mothers

In 1977 and 1989, the General Social Survey read a statement to respondents (R’s):

“A working mother can establish just as warm and secure of a relationship
with her child as a mother who does not work.”

R’s could strongly disagree (D), disagree (d), agree (a), or strongly agree (A):

strongly strongly
Percent who. . . disagree disagree agree agree
1977 sample (n=1379) 17.1 33.3 33.8 15.7
1989 sample (n=914) 6.7 28.8 42.7 21.9

We also have five covariates that might explain variation in this response:

male whether the respondent was male (1) or female (0)
white whether the respondent was white (1) or some other race (0)
age respondent’s age in years
education respondent’s years of education completed
prestige % of other survey respondents rating this R’s job as prestigious



Sexist Attitudes to Working Mothers

In 1977 and 1989, the General Social Survey read a statement to respondents (R’s):

“A working mother can establish just as warm and secure of a relationship
with her child as a mother who does not work.”

R’s could strongly disagree (D), disagree (d), agree (a), or strongly agree (A):

strongly strongly
Percent who. . . disagree disagree agree agree
1977 sample (n=1379) 17.1 33.3 33.8 15.7
1989 sample (n=914) 6.7 28.8 42.7 21.9

Research questions:

(1) Do attitudes vary by subgroup – sex, race, age, edu, prestige – all else equal?

(2) Do subgroup differences persist or attenuate over time: did subgroups with more
sexist attitudes in 1977 “catch-up” to changing social attitudes by 1989?

(3) To what extent did changes over time result from attitudinal change within
subgroups, versus shifts in population composition towards less sexist groups?



Sexist Attitudes: descriptive results

% agree or str agree, ’77 % agree or str agree, ’89
group 1 (group 2) 1 (2) 1 − (2) 1 (2) 1 − (2)

female (male) 57 41 16 69 59 11
age 28±5 (age 61±5) 63 39 24 74 52 22

nonwhite (white) 56 49 7 71 64 7
college grad (hs grad) 62 50 12 66 62 4
high prestige job (low) 48 47 2 69 65 4

As a first cut, look at subgroup means without even fitting a model:

Some subgroups are consistently less sexist, especially women and the young

All groups became less sexist over time (or at least more circumspect)

Perhaps some “catch-up” by groups the were more sexist in 1977 (high school grads
and men)?

But do we trust these results?



Sexist Attitudes: descriptive results

% agree or str agree, ’77 % agree or str agree, ’89
group 1 (group 2) 1 (2) 1 − (2) 1 (2) 1 − (2)

female (male) 57 41 16 69 59 11
age 28±5 (age 61±5) 63 39 24 74 52 22

nonwhite (white) 56 49 7 71 64 7
college grad (hs grad) 62 50 12 66 62 4
high prestige job (low) 48 47 2 69 65 4

Lots of potential confounding bias and sampling error:

(1) Covariates are correlated by period, so age could absorb education differences,
and education could mask race or job effects

(2) Observed differences across periods could result from changing views by group,
changing confounders by group, or uniform changes in the population

(3) To estimate age, education, and job differences, we looked at small subgroups
→ greater risk of sampling error

I’ve omitted the subgroup n’s to save space – you should show



Sexist Attitudes: descriptive results

% agree or str agree, ’77 % agree or str agree, ’89
group 1 (group 2) 1 (2) 1 − (2) 1 (2) 1 − (2)

female (male) 57 41 16 69 59 11
age 28±5 (age 61±5) 63 39 24 74 52 22

nonwhite (white) 56 49 7 71 64 7
college grad (hs grad) 62 50 12 66 62 4
high prestige job (low) 48 47 2 69 65 4

A further problem affecting efficiency:

(4) Before summarizing, we collapsed from 4 to 2 categories,
so we reduced information at the start

To fix these problems, we need a regression model for ordered categorical data

To understand what the model tells us,
we need a way to make estimation results at least this substantively relevant



1977 1989 1977 1989
sample sample sample sample

male −0.397 −0.443 job prestige 0.002 0.005
(0.058) (0.073) (0.003) (0.003)

white −0.238 −0.206 intercept 1.322 1.984
(0.091) (0.108) (0.179) (0.229)

age −0.012 −0.013 τ2 1.016 1.198
(0.002) (0.002) (0.041) (0.067)

education 0.045 0.028 τ3 2.078 2.415
(0.012) (0.015) (0.054) (0.078)

log likelihood −1758.824 −1082.657
AIC 3501.649 2149.314

In-sample concordance (null=0.5) 0.634 0.626
LOO-VC concordance (null=0.5) 0.625 0.609

N 1379 914

Some questions to test your ability to read ordered probit coefficients

1. If a 1977 subject were in the middle of “agree,”
how many years older would they have to be to reach the middle of “disagree”?



1977 1989 1977 1989
sample sample sample sample

male −0.397 −0.443 job prestige 0.002 0.005
(0.058) (0.073) (0.003) (0.003)

white −0.238 −0.206 intercept 1.322 1.984
(0.091) (0.108) (0.179) (0.229)

age −0.012 −0.013 τ2 1.016 1.198
(0.002) (0.002) (0.041) (0.067)

education 0.045 0.028 τ3 2.078 2.415
(0.012) (0.015) (0.054) (0.078)

log likelihood −1758.824 −1082.657
AIC 3501.649 2149.314

In-sample concordance (null=0.5) 0.634 0.626
LOO-VC concordance (null=0.5) 0.625 0.609

N 1379 914

Some questions to test your ability to read ordered probit coefficients

2. In either year, is there any covariate that can move someone
from the middle of “disagree” to the middle of “agree” by itself?



1977 1989 1977 1989
sample sample sample sample

male −0.397 −0.443 job prestige 0.002 0.005
(0.058) (0.073) (0.003) (0.003)

white −0.238 −0.206 intercept 1.322 1.984
(0.091) (0.108) (0.179) (0.229)

age −0.012 −0.013 τ2 1.016 1.198
(0.002) (0.002) (0.041) (0.067)

education 0.045 0.028 τ3 2.078 2.415
(0.012) (0.015) (0.054) (0.078)

log likelihood −1758.824 −1082.657
AIC 3501.649 2149.314

In-sample concordance (null=0.5) 0.634 0.626
LOO-VC concordance (null=0.5) 0.625 0.609

N 1379 914

Some questions to test your ability to read ordered probit coefficients

3. The coefficient for male is larger in 1989 than in 1977:
is this a bigger effect?



1977 1989 1977 1989
sample sample sample sample

male −0.397 −0.443 job prestige 0.002 0.005
(0.058) (0.073) (0.003) (0.003)

white −0.238 −0.206 intercept 1.322 1.984
(0.091) (0.108) (0.179) (0.229)

age −0.012 −0.013 τ2 1.016 1.198
(0.002) (0.002) (0.041) (0.067)

education 0.045 0.028 τ3 2.078 2.415
(0.012) (0.015) (0.054) (0.078)

log likelihood −1758.824 −1082.657
AIC 3501.649 2149.314

In-sample concordance (null=0.5) 0.634 0.626
LOO-VC concordance (null=0.5) 0.625 0.609

N 1379 914

Some questions to test your ability to read ordered probit coefficients

4. If I forgot to include the estimated cutpoints (τ ’s) in the table,
could you ever interpret these coefficients beyond their signs?



1977 1989 1977 1989
sample sample sample sample

male −0.397 −0.443 job prestige 0.002 0.005
(0.058) (0.073) (0.003) (0.003)

white −0.238 −0.206 intercept 1.322 1.984
(0.091) (0.108) (0.179) (0.229)

age −0.012 −0.013 τ2 1.016 1.198
(0.002) (0.002) (0.041) (0.067)

education 0.045 0.028 τ3 2.078 2.415
(0.012) (0.015) (0.054) (0.078)

log likelihood −1758.824 −1082.657
AIC 3501.649 2149.314

In-sample concordance (null=0.5) 0.634 0.626
LOO-VC concordance (null=0.5) 0.625 0.609

N 1379 914

Some questions to test your ability to read ordered probit coefficients

5. What is the correct null hypothesis use in a test of τ3’s significance?



1977 1989 1977 1989
sample sample sample sample

male −0.397 −0.443 job prestige 0.002 0.005
(0.058) (0.073) (0.003) (0.003)

white −0.238 −0.206 intercept 1.322 1.984
(0.091) (0.108) (0.179) (0.229)

age −0.012 −0.013 τ2 1.016 1.198
(0.002) (0.002) (0.041) (0.067)

education 0.045 0.028 τ3 2.078 2.415
(0.012) (0.015) (0.054) (0.078)

log likelihood −1758.824 −1082.657
AIC 3501.649 2149.314

In-sample concordance (null=0.5) 0.634 0.626
LOO-VC concordance (null=0.5) 0.625 0.609

N 1379 914

Some questions to test your ability to read ordered probit coefficients

6. How well do the models fit? Can you say if one fits better than the other?
What might concordance mean here?



1977 1989 1977 1989
sample sample sample sample

male −0.397 −0.443 job prestige 0.002 0.005
(0.058) (0.073) (0.003) (0.003)

white −0.238 −0.206 intercept 1.322 1.984
(0.091) (0.108) (0.179) (0.229)

age −0.012 −0.013 τ2 1.016 1.198
(0.002) (0.002) (0.041) (0.067)

education 0.045 0.028 τ3 2.078 2.415
(0.012) (0.015) (0.054) (0.078)

log likelihood −1758.824 −1082.657
AIC 3501.649 2149.314

In-sample concordance (null=0.5) 0.634 0.626
LOO-VC concordance (null=0.5) 0.625 0.609

N 1379 914

Clearly need a better way to display ordered probit than a table of coefficients

For a start, let’s go back to PDF and CDF plots



males, all else equal, 1977

−1× latent sexism

0

0.2

0.4

0.6

0.8

1

Can working moms be warm to kids?

Pr(D) Pr(d) Pr(a) Pr(A)

τ1= 0 τ3= 2.08τ2= 1.02

τ
j

Pr(D) = 0.21

Pr(d) = 0.37

Pr(a) = 0.31

Pr(A) = 0.10

Consider someone in 1977 who is male but otherwise average on all covariates:

xhypβ̂ = β̂0 +
∑
∀k 6=malex̄kβ̂k + β̂male × 1

= 1.322 − 0.123 − 0.397× 1 = 0.801

“Median” category is disagree, while the CDFs show the probability of each category

Combined probability of either agree or strongly agree is 31% + 10% = 41%



females, all else equal, 1977

−1× latent sexism

0

0.2

0.4

0.6

0.8

1

Can working moms be warm to kids?

Pr(D) Pr(d) Pr(a) Pr(A)

τ1= 0 τ3= 2.08τ2= 1.02

τ
j

Pr(D) = 0.12

Pr(d) = 0.31

Pr(a) = 0.38

Pr(A) = 0.19

Consider someone in 1977 who is female but otherwise average on all covariates:

xhypβ̂ = β̂0 +
∑
∀k 6=malex̄kβ̂k + β̂male × 0

= 1.322 − 0.123 − 0.397× 0 = 1.200

“Median” category is agree, while the CDFs show the probability of each category

Combined probability of either agree or strongly agree is 38% + 19% = 57%



males, all else equal, 1989

−1× latent sexism

0
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0.8

1

Can working moms be warm to kids?

Pr(D) Pr(d) Pr(a) Pr(A)

τ1= 0 τ3= 2.41τ2= 1.20

τ
j

Pr(D) = 0.10 

Pr(d) = 0.36

Pr(a) = 0.41

Pr(A) = 0.13

Consider someone in 1989 who is male but otherwise average on all covariates:

xhypβ̂ = β̂0 +
∑
∀k 6=malex̄kβ̂k + β̂male × 1

= 1.984 − 0.195 − 0.442× 1 = 1.346

“Median” category is agree, while the CDFs show the probability of each category

Combined probability of either agree or strongly agree is 41% + 13% = 54%



females, all else equal, 1989

−1× latent sexism

0

0.2

0.4

0.6

0.8

1

Can working moms be warm to kids?

Pr(D) Pr(d) Pr(a) Pr(A)

τ1= 0 τ3= 2.41τ2= 1.20

τ
j

Pr(D) = 0.04 

Pr(d) = 0.25

Pr(a) = 0.46

Pr(A) = 0.25

Consider someone in 1989 who is female but otherwise average on all covariates:

xhypβ̂ = β̂0 +
∑
∀k 6=malex̄kβ̂k + β̂male × 0

= 1.984 − 0.195 − 0.442× 0 = 1.789

“Median” category is agree, while the CDFs show the probability of each category

Combined probability of either agree or strongly agree is 46% + 25% = 71%



females, all else equal, 1989

−1× latent sexism

0

0.2

0.4

0.6

0.8

1

Can working moms be warm to kids?

Pr(D) Pr(d) Pr(a) Pr(A)

τ1= 0 τ3= 2.41τ2= 1.20

τ
j

Pr(D) = 0.04 

Pr(d) = 0.25

Pr(a) = 0.46

Pr(A) = 0.25

Pedagogically helpful but inefficient – and we have 4 more covariates!

Can we get this all one one slide? With confidence intervals?

Caveat on labeling latent variables

Technically, the latent y∗ is just the propensity to agree with the GSS question;
any other label one applies is a subjective assessment – I’ve given mine
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Let’s apply our usual techniques to the 1977 covariates:
simulate counterfactual predicted probabilities for each category

Simulations above done with simcf’s oprobitsimev()

and graphed in dotplots with CIs using tile’s ropeladder()

Flexible way to show a variety of specific counterfactuals at once

But do we really need to show all four categories every time?



Efficient & clear presentation for models of categorical data

With more than three categories, presenting ordered probit results can get tedious

One plot per category seems like a lot to wade through for 5 or 7 categories. . .

Two bad solutions:

1. Use linear regression instead (because it’s “easier to interpret”)

• assumes interval level outcome, which is unlikely

• what does an expected response of 4.2 on a 7 point scale really mean
when 4 is “no opinion” and 5 is “slightly agree”?



Efficient & clear presentation for models of categorical data

With more than three categories, presenting ordered probit results can get tedious

One plot per category seems like a lot to wade through for 5 or 7 categories. . .

Two bad solutions:

1. Use linear regression instead (because it’s “easier to interpret”)

• assumes interval level outcome, which is unlikely

• what does an expected response of 4.2 on a 7 point scale really mean
when 4 is “no opinion” and 5 is “slightly agree”?

2. Collapse categories before estimation (to “make things simpler”)

• throws away information, so you results will have larger standard errors

To see why this is bad, think back to latent variables justification of binary logit



Why collapsing categories before estimation is inefficient

Suppose you were interested in risk factors for high blood pressure – arbitrarily
defined as systolic bp > 140 – and have measures of exact bp.

You could:

(i) dichotomize the data and run a logit with outcome I(bp > 140)

• throws away most information

• may badly estimate the intensity of effects on bp unless you have lots of data

• Tells you nothing about other thresholds (e.g., > 120)



Why collapsing categories before estimation is inefficient

Suppose you were interested in risk factors for high blood pressure – arbitrarily
defined as systolic bp > 140 – and have measures of exact bp.

You could:

(i) dichotomize the data and run a logit with outcome I(bp > 140)

• throws away most information

• may badly estimate the intensity of effects on bp unless you have lots of data

• Tells you nothing about other thresholds (e.g., > 120)

(ii) run a linear regression on bp, then simulate the probability b̂p > 140

• uses all information

• yields most precise available estimates of quantities of interest,
including probability of high bp (the binary outcome)



Why collapsing categories before estimation is inefficient

Suppose we didn’t have exact bp,
but did have an ordered measure (low, medium, high, very high)

While not as granular as the latent variable,
this is still more informative than a single dichotomy

Collapsing categories has the same disadvantages as discarding the latent variable

We should keep these categories in the estimation model to get better results

As in the thought experiment above,
we can always predict collapsed categories after efficient estimation
using the full set of categories

A better solution for modeling many ordered categories:

3. Use ordered probit with all categories;
simulate predictions for all categories;
sum up similar categories before computing CIs



Efficient & clear presentation for models of categorical data

Step 1. Estimate the four category ordered probit; retain β̂ and Var(β̂)

Step 2. Choose counterfactual scenarios

Step 3. Simulate a predicted probability for each category-scenario combination
using draws from β ∼ MVN(β̂,Var(β̂)). Repeat this step 1000 times:

Str. Disagree Disagree Agree Str. Agree

12% 20% 35% 33%
11% 22% 34% 33%
14% 23% 32% 31%

... ... ... ...



Efficient & clear presentation for models of categorical data

Step 1. Estimate the four category ordered probit; retain β̂ and Var(β̂)

Step 2. Choose counterfactual scenarios

Step 3. Simulate a predicted probability for each category-scenario combination
using draws from β ∼ MVN(β̂,Var(β̂)). Repeat this step 1000 times:

Str. Disagree Disagree Agree Str. Agree

12% 20% 35% 33%
11% 22% 34% 33%
14% 23% 32% 31%

... ... ... ...

Step 4: Sum up the simulations by groups of categories

Str. Disagree or Disagree Agree or Str. Agree

32% 68%
33% 67%
37% 63%

... ...



Efficient & clear presentation for models of categorical data

Step 5: Present predicted probabilities, first differences, and relative risks for the
collapsed categories:

“In scenario ___, the probability of any agreement is 66% [95% CI: 64%–68%].”
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Step 5: Present predicted probabilities, first differences, and relative risks for the
collapsed categories:

“In scenario ___, the probability of any agreement is 66% [95% CI: 64%–68%].”

Advantages:

Estimation on the full categories uses all available information (more precise results)

“Simulating out” to the probabilities of collapsed categories yields MLEs for a
simpler model summary without making assumptions you don’t believe

Results can be as easy to present as a linear regression,
but much more meaningful in terms of the substance of the question



Efficient & clear presentation for models of categorical data

Step 5: Present predicted probabilities, first differences, and relative risks for the
collapsed categories:

“In scenario ___, the probability of any agreement is 66% [95% CI: 64%–68%].”

Advantages:

Estimation on the full categories uses all available information (more precise results)

“Simulating out” to the probabilities of collapsed categories yields MLEs for a
simpler model summary without making assumptions you don’t believe

Results can be as easy to present as a linear regression,
but much more meaningful in terms of the substance of the question

Caveats:

Worth looking at the results for all categories to make sure collapsing makes sense

Be wary of combining “unlike” results and hiding important relationships
(Not likely with ordered probit, could happen with next week)
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Simulated counterfactual probabilities aggregated after estimation into 2 categories

Note these are mirror images – they must be, as Pr(a) + Pr(A) = 1 - Pr(d) - Pr(D)
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A complete summary of counterfactual expected probabilities for the 1977 model,
given the chosen aggregation (judgment call for the analyst)

We used the full precision of the data in estimation,
but simplify presentation to focus on the key substantive findings
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Usually first differences (or relative risks) are more interesting than EVs

Above: the change in Pr(a or A) given a shift from 1 to (2), all else equal
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Answers the questions a table of coefficients answers for linear regression

If you can only give one summary of this model, use this one
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For comparability, all counterfactuals here use 1977 covariate means & sd’s

Otherwise we’d conflate changing population composition with changing relationships
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Almost no substantive change – little or no attenuation (resarch question 2)

Aside: Are any interyear differences statistically significant?
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To find out, need a hierarchical model or interaction terms with I(year = 1989)

(Why? Separate models like ours don’t estimate interyear correlations in β̂)
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probit

naive

Good to use the same display for descriptive statistics & model results

Here, reveals massive confounding bias in descriptive statistics
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If the change from 1977 to 1989 isn’t attenutation across subgroups, what is it?

Broad decline in sexism? Or growth in population share of less sexist groups?
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To find out: (1) simulate EVs for average person in 1977, using the 1977 model

(2) simulate EVs for the average person in 1989, using the 1989 model
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Close to the sample means. What if we (3) used 1989 model but 1977 sample?

⇒ show whether changes in population or parameters lay behind changing attitudes
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Changing model parameters responsible for almost all (85%?) of the difference

Supports broad attitudinal change over subgroup composition explanations
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One worry: we’ve used simulations of a hypothetical person
with average characteristics to draw conclusions about the whole sample

What if changes throughout the sample are relevant, not just at the mean?
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Alternative approach: “In-sample simulaton”

simulate every person in the sample and take the mean across (((((((hhhhhhhcounterfactual cases
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In-sample simulation makes only a small difference here

More important when specific cases in sample are of direct interest



Concluding thoughts

We’ve learned

1. How to model ordered categorical data using ordered probit

2. How to interpret ordered probit results through simulation & visuals

3. A bit about model selection for these models

Everything we’ve done applies straightforwardly to ordered logit

No real difference between these models; coefficients just on different scales

Caveats

With a large number of categories, ordered probit may not be worth the effort
compared to linear regression – but confirm roughly equal spacing!

If your outcome variable is the sum of ordered scales, ordered probit doesn’t help:
DGP in this case is quite murky, as steps on the scale are hard to characterize

If you can’t order your outcome at all, ordered probit doesn’t help –
you’ll need a multinomial method (next week)




